Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.)
Abstract
:1. Introduction
- What are the climatic niches occupied by:
- Particular taxa within the maple genus and
- The continental maple floras of temperate East Asia, North America, and Eurasia?
- To what extent do the climatic niches of North American and Eurasian maple flora display evidence of (sensu [39]):
- Weak selection and drift, such that niche axes and niche overlap vary proportionally with phylogenetic distance as predicted by a BM model (e.g., phylogenetic signal);
- Divergence, such that continental niches are distinct and sympatric taxa and/or sister taxa show low niche overlap;
- Constraint, such that continental niches are similar and sympatric taxa show low niche overlap; and/or
- Conservatism, such that continental niches are similar and sympatric taxa—including those from different sections—show high niche overlap?
2. Methods
2.1. Distribution Data
2.2. Climate Data
2.3. Environmental Niche Modeling (ENM)
2.4. Niche Comparisons
2.5. Phylogenetic Signal Analysis
3. Results
3.1. Niches Vary Across Acer Taxa and Continental Floras
3.2. Pairwise Niche Comparisons
3.3. Phylogenetic Signal Analysis
4. Discussion
4.1. The Global Acer Climatic Niche
4.2. Niche Divergence, Constraints, and Conservatism Vary Across Scales in the North American Maple Flora
4.3. Constrained Divergence in Most Eurasian Maple Niches Contrasts with Conservatism in the Caucasus
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Explanation of Selection and Taxonomic Treatment of Study Taxa
References
- Renner, S.S.; Grimm, G.W.; Schneeweiss, G.M.; Stuessy, T.F.; Ricklefs, R.E. Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock: Implications for North American/Asian disjunctions. Syst. Biol. 2008, 57, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Crowley, D.; Barstow, M.; Rivers, M.; Harvey-Brown, Y. The Red List of Acer; Botanic Gardens Conservation International: Richmond, UK, 2020; ISBN 9781905164356. [Google Scholar]
- De Jong, P.C. Taxonomy and reproductive biology of maples. In Maples of the World; van Gelderen, D.M., de Jong, P.C., Oterdoom, H.J., Eds.; Timber Press: Portland, OR, USA, 1994; pp. 69–99. [Google Scholar]
- Burns, J.H.; Strauss, S.Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 2011, 108, 5302–5307. [Google Scholar] [CrossRef] [Green Version]
- Anacker, B.L.; Strauss, S.Y. The geography and ecology of plant speciation: Range overlap and niche divergence in sister species. Proc. R. Soc. B Biol. Sci. 2014, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoghue, M.J.; Smith, S.A. Patterns in the assembly of temperature forests around the Northern Hemisphere. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1633–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Boulter, M.C.; Benfield, J.N.; Fisher, H.C.; Gee, D.A.; Lhotak, M. The evolution and global migration of the Aceraceae. Philos. Trans. R. Soc. B Biol. Sci. 1996, 351, 589–603. [Google Scholar] [CrossRef]
- Tanai, T. Revisions of Tertiary Acer from East Asia. J. Fac. Sci. Hokkaido Univ. 1983, 20, 291–390. [Google Scholar]
- Wolfe, J.A.; Tanai, T. Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of Western North America. J. Fac. Sci. Hokkaido Univ. 1987, 22, 1–246. [Google Scholar]
- Walther, H. Studien über tertiäre Acer Mitteleuropas. Abh. Staatl. Mus. Min. Geol. Dresden 1972, 19, 1–309. [Google Scholar]
- Walther, H. Invasion of Arcto-tertiary elements in the Paleogene of Central Europe. In Cenozoic Plants and Climates of the Arctic; Boulter, M.C., FIsher, H.C., Eds.; Springer: Berlin, Germany, 1994; Volume 1. [Google Scholar]
- Donoghue, M.J.; Bell, C.D.; Li, J. Phylogenetic patterns in Northern Hemisphere plant geography. Int. J. Plant Sci. 2001, 162. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Stukel, M.; Bussies, P.; Skinner, K.; Lemmon, A.R.; Lemmon, E.M.; Brown, K.; Bekmetjev, A.; Swenson, N.G. Maple phylogeny and biogeography inferred from phylogenomic data. J. Syst. Evol. 2019, 57, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Areces-Berazain, F.; Hinsinger, D.D.; Strijk, J.S. Genome-wide supermatrix analyses of maples (Acer, Sapindaceae) reveal recurring inter-continental migration, mass extinction, and rapid lineage divergence. Genomics 2021, 113, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Tiffney, B.H.; Manchester, S.R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere tertiary. Int. J. Plant Sci. 2001, 162, S3–S17. [Google Scholar] [CrossRef]
- Saeki, I.; Dick, C.W.; Barnes, B.V.; Murakami, N. Comparative phylogeography of red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.): Impacts of habitat specialization, hybridization and glacial history. J. Biogeogr. 2011, 38, 992–1005. [Google Scholar] [CrossRef] [Green Version]
- Grimm, G.W.; Denk, T.; Hemleben, V. Evolutionary history and systematics of Acer section Acer—A case study of low-level phylogenetics. Plant Syst. Evol. 2007, 267, 215–253. [Google Scholar] [CrossRef]
- Kvaček, Z.; Walther, H. Oligocene Flora of Bechlejovice At Děčín From the Neovolcanic Area of the České Středohoří Mountains, Czech Republic. Acta Musei Natl. Pragae 2004, 60, 9–60. [Google Scholar]
- Walther, H.; Zastawniak, E. Sapindaceae (Aceroideae) from the late Miocene flora of Sośnica near Wrocław—A revision of Göppert’s original materials and a study of more recent collections. Acta Palaeobot. 2005, 45, 85–106. [Google Scholar]
- Walther, H.; Kvaček, Z. Early Oligocene Flora of Seifhennersdorf (Saxony). Acta Musei Natl. Pragae 2007, 63, 85–174. [Google Scholar]
- Manchester, S.R. Biogeographical relationships of North American Tertiary floras. Ann. Missouri Bot. Gard. 1999, 86, 472–522. [Google Scholar] [CrossRef]
- Xiang, Q.Y.; Soltis, D.E. Dispersal-vicariance analyses of intercontinental disjuncts: Historical biogeographical implications for angiosperms in the Northern Hemisphere. Int. J. Plant Sci. 2001, 162. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, D.D.; Basak, J.; Gaudeul, M.; Cruaud, C.; Bertolino, P.; Frascaria-Lacoste, N.; Bousquet, J. The phylogeny and biogeographic history of ashes (Fraxinus, oleaceae) highlight the roles of migration and vicariance in the diversification of temperate trees. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Manthey, M.; Box, E.O. Realized climatic niches of deciduous trees: Comparing western Eurasia and eastern North America. J. Biogeogr. 2007, 34, 1028–1040. [Google Scholar] [CrossRef]
- Qian, H.; Ricklefs, R.E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 2000, 407, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Svenning, J.-C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 2003, 6, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumibao, C.Y.; Hoban, S.M.; McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 2017, 20, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Rodriguez, Y.L.; Platt, W.J.; Urbatsch, L.E.; Foltz, D.W. Large scale patterns of genetic variation and differentiation in sugar maple from tropical Central America to temperate North America. BMC Evol. Biol. 2015, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Jong, P.C. Flowering and Sex Expression in Acer L.: A Biosystematic Study; H. Veenman & Zonen B.V.: Wageningen, The Netherlands, 1976; Volume 2. [Google Scholar]
- Ackerly, D.D.; Donoghue, M.J. Leaf size, sapling allometry, and Corner’s Rules: Phylogeny and correlated evolution in maples (Acer). Am. Nat. 1998, 152, 767–791. [Google Scholar] [CrossRef]
- Lens, F.; Sperry, J.S.; Christman, M.A.; Choat, B.; Rabaey, D.; Jansen, S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 2011, 190, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Münkemüller, T.; Boucher, F.C.; Thuiller, W.; Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 2015, 29, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
- Wiens, J.J.; Ackerly, D.D.; Allen, A.P.; Anacker, B.L.; Buckley, L.B.; Cornell, H.V.; Damschen, E.I.; Jonathan Davies, T.; Grytnes, J.-A.; Harrison, S.P.; et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 2010, 13, 1310–1324. [Google Scholar] [CrossRef]
- Losos, J.B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008, 11, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, S.P.; Garland, T.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef]
- Pyron, R.A.; Costa, G.C.; Patten, M.A.; Burbrink, F.T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 2015, 90, 1248–1262. [Google Scholar] [CrossRef]
- Harvey, P.H.; Pagel, M. The Comparative Method in Evolutionary Biology; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Moncrieff, G.R.; Hickler, T.; Higgins, S.I. Intercontinental divergence in the climate envelope of major plant biomes. Glob. Ecol. Biogeogr. 2015, 24, 324–334. [Google Scholar] [CrossRef]
- Wüest, R.O.; Antonelli, A.; Zimmermann, N.E.; Linder, H.P. Available climate regimes drive niche diversification during range expansion. Am. Nat. 2015, 185, 640–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, R.D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 2009, 106, 19659–19665. [Google Scholar] [CrossRef] [Green Version]
- Blach-Overgaard, A.; Svenning, J.C.; Dransfield, J.; Greve, M.; Balslev, H. Determinants of palm species distributions across Africa: The relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 2010, 33, 380–391. [Google Scholar] [CrossRef]
- Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol. 2019, 221, 669–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheth, S.N.; Jiménez, I.; Angert, A.L. Identifying the paths leading to variation in geographical range size in western North American monkeyflowers. J. Biogeogr. 2014, 41, 2344–2356. [Google Scholar] [CrossRef]
- Males, J. Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation. AoB Plants 2018, 10, ply008. [Google Scholar] [CrossRef]
- Martínez-Meyer, E.; Peterson, A.T. Conservativism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. J. Biogeogr. 2006, 33, 1779–1789. [Google Scholar] [CrossRef]
- Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; Peters, M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manag. 2008, 254, 390–406. [Google Scholar] [CrossRef]
- Morin, X.; Lechowicz, M.J.; Augspurger, C.; O’keefe, J.; Viner, D.; Chuine, I. Leaf phenology in 22 North American tree species during the 21st century. Glob. Chang. Biol. 2009, 15, 961–975. [Google Scholar] [CrossRef]
- Morin, X.; Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 2009, 90, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Kabaš, E.; Batanjski, V.; Glasnović, P.; Vicić, D.; Tanasković, A.; Kuzmanović, N.; Lakušić, D.; Šinžar-SEKULIĆ, J. Towards detecting bioclimatic niche—Species distribution modelling in four maple species (Acer spp.). Acta Bot. Croat. 2014, 73, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Botella, C.; Joly, A.; Bonnet, P.; Monestiez, P.; Munoz, F. Species distribution modeling based on the automated identification of citizen observations. Appl. Plant Sci. 2018, 6, 1–11. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 206, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Bivand, R.; Keitt, T.; Rowlingson, B. rgdal: Bindings for the “Geospatial” Data Abstraction Library. 2019. Available online: https://cran.rproject.org/package=-rgdal (accessed on 14 April 2021).
- Pebesma, E.J.; Bivand, R.S. Classes and methods for spatial data in R. R News 2005, 5, 1–21. [Google Scholar]
- Bivand, R.; Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. 2019. Available online: https://cran.r-project.org/web/packages/maptools/index.html (accessed on 14 April 2021).
- GBIF: The Global Biodiversity Information Facility. What Is GBIF? Available online: https://www.gbif.org/what-is-gbif (accessed on 24 April 2021).
- GBIF: The Global Biodiversity Information Facility. Records from 264 Datasets in Derived Dataset. Available online: https://www.gbif.org/derivedDataset/10.15468/dd.m8etw8 (accessed on 14 April 2021).
- Hijmans, R.J.; Elith, J. Species Distribution Modeling with R. 2017, pp. 1–79. Available online: https://mran.microsoft.com/snapshot/2017-02-04/web/packages/dismo/vignettes/sdm.pdf (accessed on 14 April 2021).
- Van Gelderen, D.M. Maple species and infraspecific taxa. In Maples of the World; van Gelderen, D.M., de Jong, P.C., Oterdoom, H.J., Eds.; Timber Press: Portland, OR, USA, 1994. [Google Scholar]
- Banaszczak, P. The maples of Europe—Part 1. Maple Soc. Newsl. 2010, 20/3, 4–8. [Google Scholar]
- Banaszczak, P. The maples of Europe—Part 2. Maple Soc. Newsl. 2010, 20/4, 4–8. [Google Scholar]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. 2020. Available online: https://rspatial.org/raster (accessed on 14 April 2021).
- Frick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar]
- Woodward, F.I.; Williams, B.G. Climate and plant distribution at global and local scales. Vegetatio 1987, 69, 189–197. [Google Scholar] [CrossRef]
- Bradie, J.; Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 2017, 44, 1344–1361. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijmans, R.J.; Phillips, S.; Elith, J. dismo: Species Distribution Modeling. 2017. Available online: https://rspatial.org/raster/sdm/ (accessed on 14 April 2021).
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Briscoe Runquist, R.D.; Lake, T.; Tiffin, P.; Moeller, D.A. Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ellenwood, J.R.; Jr, F.J.K.; Romero, S.A. National individual tree species atlas. USDA For. Serv. FHTET-15-01 2015, 15-01, 1–332. [Google Scholar]
- Warren, D.; Matzke, N.; Cardillo, M.; Dinnage, R. ENMTools: Analysis of Niche Evolution Using Niche and Distribution Models. 2017. Available online: https://cran.r-project.org/web/packages/ENMTools/ENMTools.pdf (accessed on 14 April 2021).
- Molina-Henao, Y.F.; Hopkins, R. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. Am. J. Bot. 2019, 106, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Gittleman, J.L.; Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 1990, 39, 227–241. [Google Scholar] [CrossRef]
- Grossman, J.J.; Cavender-Bares, J.; Hobbie, S.E. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecol. Monogr. 2020, 1–19. [Google Scholar] [CrossRef]
- Keck, F.; Rimet, F.; Bouchez, A.; Franc, A. phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016, 6, 2774–2780. [Google Scholar] [CrossRef]
- Bolker, B.; Butler, M.; Cowan, P.; de Vienne, D.; Eddelbuettel, D.; Holder, M.; Jombart, T.; Kembel, S.; Michonneau, F.; Orme, D.; et al. phylobase: Base Package for Phylogenetic Structures and Comparative Data. 2020. Available online: https://rdrr.io/cran/phylobase/ (accessed on 14 April 2021).
- Elliott, T.L.; Davies, T.J. Jointly modeling niche width and phylogenetic distance to explain species co-occurrence. Ecosphere 2017, 8. [Google Scholar] [CrossRef]
- Peixoto, F.P.; Villalobos, F.; Cianciaruso, M.V. Phylogenetic conservatism of climatic niche in bats. Glob. Ecol. Biogeogr. 2017, 26, 1055–1065. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. 2019, p. 190. Available online: https://www.mcglinnlab.org/publication/2019-01-01_oksanen_vegan_2019/ (accessed on 14 April 2021).
- Cavender-Bares, J.; Ackerly, D.D.; Baum, D.A.; Bazzaz, F.A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 2004, 163, 823–843. [Google Scholar] [CrossRef]
- Anacker, B.L.; Strauss, S.Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 2016, 97, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classificatio. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, J.; Zhang, X.; Zhang, Q.; Huang, J.; Chen, J.Q.; Hartl, D.L.; Tian, D. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proc. Natl. Acad. Sci. USA 2013, 110, 18572–18577. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Manchester, S.R. Red and silver maples in the Neogene of Western North America: Fossil leaves and samaras of Acer section Rubra. Int. J. Plant Sci. 2020, 181, 542–556. [Google Scholar] [CrossRef]
- Harris, A.; Chen, Y.; Olsen, R.T.; Lutz, S.; Wen, J. On merging Acer sections Rubra and Hyptiocarpa: Molecular and morphological evidence. PhytoKeys 2017, 86, 9–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oterdoom, H.J. Maples in nature and in the garden. In Maples of the World; van Gelderen, D.M., de Jong, P.C., Oterdoom, H.J., Eds.; Timber Press: Portland, OR, USA, 1994. [Google Scholar]
- Wen, J.; Nie, Z.L.; Ickert-Bond, S.M. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J. Syst. Evol. 2016, 54, 469–490. [Google Scholar] [CrossRef]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar] [CrossRef]
- Tarkhnishvili, D. Historical Biogeography of the Caucasus; NOVA Science Publishers: New York, NY, USA, 2014. [Google Scholar]
- Tarkhnishvili, D.; Gavashelishvili, A.; Mumladze, L. Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol. J. Linn. Soc. 2012, 105, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Zimmermann, N.E.; Elith, J.; Graham, C.H.; Phillips, S.; Peterson, A.T. What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecol. Monogr. 2007, 77, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Svenning, J.C.; Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 2004, 7, 565–573. [Google Scholar] [CrossRef]
- Early, R.; Sax, D.F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 2014, 23, 1356–1365. [Google Scholar] [CrossRef]
- Booth, T.H. Assessing species climatic requirements beyond the realized niche: Some lessons mainly from tree species distribution modelling. Clim. Chang. 2017, 145, 259–271. [Google Scholar] [CrossRef]
- Groffman, P.M.; Avolio, M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Hobbie, S.E.; Larson, K.L.; Lerman, S.B.; Locke, D.H.; et al. Ecological homogenization of residential macrosystems. Nat. Ecol. Evol. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Trammell, T.L.E.; Pataki, D.E.; Pouyat, R.V.; Groffman, P.M.; Rosier, C.; Bettez, N.; Cavender-Bares, J.; Grove, M.J.; Hall, S.J.; Heffernan, J.; et al. Urban soil carbon and nitrogen converge at a continental scale. Ecol. Monogr. 2020, 90, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C.; et al. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Primack, R.B.; Miller-Rushing, A.J. The role of botanical gardens in climate change research. New Phytol. 2009, 182, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; LaForgia, M. Seedling traits predict drought-induced mortality linked to diversity loss. Proc. Natl. Acad. Sci. USA 2019, 116, 5576–5581. [Google Scholar] [CrossRef] [Green Version]
- Boorse, G.C.; Ewers, F.W.; Davis, S.D. Response of chaparral shrubs to below-freezing temperatures: Acclimation, ecotypes, seedlings vs. adults. Am. J. Bot. 1998, 85, 1224–1230. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Cerabolini, B.; Castro-Díez, P.; Villar-Salvador, P.; Montserrat-Martí, G.; Puyravaud, J.P.; Maestro, M.; Werger, M.J.A.; Aerts, R. Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 2003, 14, 311–322. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Boucher, F.C.; Zimmermann, N.E.; Conti, E. Allopatric speciation with little niche divergence is common among alpine Primulaceae. J. Biogeogr. 2016, 43, 591–602. [Google Scholar] [CrossRef]
- Anderson, R.P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 2017, 44, 8–17. [Google Scholar] [CrossRef]
- Lavergne, S.; Thuiller, W.; Mouquet, N.; Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Syst. 2010, 41, 321–350. [Google Scholar] [CrossRef] [Green Version]
- Barnes, B.V.; Saeki, I.; Kitazawa, A. Occurrence and landscape ecology of a rare disjunct maple species, Acer pycnanthum, and comparison with Acer rubrum. Environ. Rev. 2004, 12, 163–196. [Google Scholar] [CrossRef]
- Saeki, I. Ecological occurrence of the endangered Japanese red maple, Acer pycnanthum: Base line for ecosystem conservation. Landsc. Ecol. Eng. 2005, 1, 135–147. [Google Scholar] [CrossRef]
- Harvey-Brown, Y. Acer pycnanthum. In The IUCN Red List of Threatened Species 2020; IUCN: Gland, Switzerland, 2020; Available online: https://www.iucnredlist.org/species/193858/2286832 (accessed on 24 April 2021).
Continental Flora | Mean Annual Temp. (°C) | Mean Annual Precip. (mm) | ||
---|---|---|---|---|
Optimum | Breadth | Optimum | Breadth | |
East Asia | (3.6, 17.8) | (4.3, 14.6) | (573, 2009) | (416, 2636) |
North America | (4.9, 17.5) | (3.8, 16.6) | (535, 1437) | (369, 1956) |
Eurasia | (4.8, 17.5) | (5.3, 10.6) | (545, 935) | (219, 907) |
Sister Taxa | Bioregion | Epoch of Divergence | Sympatric? | Both Endemic to Japan? | Schoener’s D | Identity Test | MAT Optimum | MAT Breadth | MAP Optimum | MAP Breadth |
---|---|---|---|---|---|---|---|---|---|---|
p-Value for Comparison (Significance Indicates Difference) | ||||||||||
A. rubrum and A. saccharinum | N. America | Miocene | y | n | 0.63 | 0.01 | 0.21 | <0.001 | <0.001 | <0.001 |
A. saccharum ssp. saccharum and A. saccharum spp. nigrum | N. America | Pleistocene | y | n | 0.65 | 0.05 | 0.01 | <0.001 | <0.001 | <0.001 |
A. saccharum spp. floridanum and A. saccharum spp. leucoderme | N. America | Pleistocene | y | n | 0.66 | 0.15 | <0.001 | <0.001 | 0.77 | 0.81 |
A. pseudoplatanus and A. velutinum | Eurasia | Miocene | y | n | 0.33 | 0.01 | <0.001 | 0.96 | 0.83 | 0.58 |
A. monspessulanum and A. opalus | Eurasia | Pliocene | y | n | 0.44 | 0.01 | <0.001 | 0.42 | <0.001 | 0.86 |
A. hyrcanum and A. obtusifolium | Eurasia | Pliocene | y | n | 0.38 | 0.01 | <0.001 | 0.68 | 0.32 | 0.05 |
A. cappadocicum and A. platanoides | Eurasia | Miocene | y | n | 0.47 | 0.01 | <0.001 | 0.09 | <0.001 | 0.16 |
A. mandshuricum and A. oblongum | E. Asia | Miocene | n | n | 0.32 | 0.01 | <0.001 | 0.29 | <0.001 | <0.001 |
A. sterculiaceum ssp. franchetii and A. diabolicum | E. Asia | Miocene | n | n | 0.21 | 0.01 | <0.001 | 0.19 | <0.001 | 0.08 |
A. barbinerve and A. stachyophyllum | E. Asia | Miocene | n | n | 0.23 | 0.01 | <0.001 | <0.001 | 0.02 | 0.45 |
A. griseum and A. triflorum | E. Asia | Miocene | n | n | 0.23 | 0.01 | <0.001 | 0.35 | 0.13 | 0.70 |
A. micranthum and A. tschonoskii | E. Asia | Miocene | y | y | 0.37 | 0.05 | <0.001 | 0.03 | 0.01 | 0.78 |
A. henryi and A. cissifolium | E. Asia | Miocene | n | n | 0.43 | 0.01 | <0.001 | 0.86 | <0.001 | 0.50 |
A. campbellii and A. ceriferum | E. Asia | Miocene | y | n | 0.45 | 0.01 | 0.30 | 0.12 | <0.001 | <0.001 |
A. buergerianum and A. coriaceifolium | E. Asia | Pleistocene | y | n | 0.33 | 0.01 | <0.001 | 0.23 | 0.28 | 0.03 |
A. davidii and A. pectinatum | E. Asia | Pliocene | y | n | 0.73 | 0.33 | <0.001 | 0.73 | <0.001 | 0.09 |
A. palmatum and A. tenuifolium | E. Asia | Miocene | y | y | 0.44 | 0.06 | <0.001 | 0.02 | <0.001 | 0.04 |
A. pseudosieboldianum and A. shirasawanum | E. Asia | Miocene | y | n | 0.29 | 0.01 | 0.02 | 0.82 | <0.001 | 0.7 |
A. longipes and A. truncatum | E. Asia | Pliocene | y | n | 0.31 | 0.01 | <0.001 | <0.001 | <0.001 | 0.45 |
A. capillipes and A. rufinerve | E. Asia | Miocene | y | n | 0.71 | 0.32 | 0.88 | 0.72 | 0.50 | 0.17 |
A. distylum and A. nipponicum | E. Asia | Eocene | y | y | 0.91 | 0.80 | 0.57 | <0.001 | 0.04 | 0.34 |
A. spicatum and A. ukurunduense | N. America/E. Asia | Oligocene | n | n | 0.27 | 0.01 | 0.89 | <0.001 | <0.001 | <0.001 |
A. campestre and A. miyabei | Eurasia/E. Asia | Miocene | n | n | 0.25 | 0.01 | 0.01 | 0.01 | <0.001 | 0.6 |
A. tataricum and A. ginnala | Eurasia/E. Asia | Miocene | n | n | 0.40 | 0.01 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossman, J.J. Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.). Forests 2021, 12, 535. https://doi.org/10.3390/f12050535
Grossman JJ. Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.). Forests. 2021; 12(5):535. https://doi.org/10.3390/f12050535
Chicago/Turabian StyleGrossman, Jake J. 2021. "Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.)" Forests 12, no. 5: 535. https://doi.org/10.3390/f12050535
APA StyleGrossman, J. J. (2021). Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.). Forests, 12(5), 535. https://doi.org/10.3390/f12050535