Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Profile System In Situ Measurements
2.3. Calibration of Forest CO2 and Its δ13C
2.4. Meteorological Measurements and Atmospheric Conditions
2.5. Vegetation and Aridity Indexes and Statistical Analyses
3. Results
3.1. Environmental and Biological Factors
3.2. Temporal and Vertical Variations of Ecosystem CO2 and Its δ13C
3.3. Effects of Atmospheric Conditions on Variations in Ecosystem CO2 and Its δ13C
3.4. Effects of Environmental and Biological Factors on Variations in Ecosystem CO2 and Its δ13C
4. Discussion
4.1. Diel Variations and Effects of δ13C of Ecosystem CO2
4.2. Seasonal Variations and Effects of δ13C of Ecosystem CO2
4.3. Vertical Variations and Effects of δ13C of Ecosystem CO2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Le Quere, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.A.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.; Marland, G.; Moriarty, R.; et al. Global carbon budget 2013. Earth Syst. Sci. Data 2014, 6, 235–263. [Google Scholar] [CrossRef] [Green Version]
- Walden, L.L.; Fontaine, J.B.; Ruthrof, K.X.; Matusick, G.; Harper, R.J.; Hardy, G.E.S.J. Carbon consequences of drought differ in forests that resprout. Glob. Chang. Biol. 2019, 25, 1653–1664. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Ehleringer, A.R. Ecosystem-atmosphere CO2 exchange: Interpreting signals of change using stable isotope ratios. Trends Ecol. Evol. 1998, 13, 10–14. [Google Scholar] [CrossRef]
- Sternberg, L.D.L.O. A Model to Estimate Carbon Dioxide Recycling in Forests Using 13C/12C Ratios and Concentrations of Ambient Carbon-Dioxide. Agric. For. Meteorol. 1989, 48, 163–173. [Google Scholar] [CrossRef]
- Lloyd, J.; Kruijt, B.; Hollinger, D.Y.; Grace, J.; Francey, R.J.; Wong, S.C.; Kelliher, F.M.; Miranda, A.C.; Farquhar, G.D.; Gash, J.H.C.; et al. Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: Theoretical aspects and a comparison between rain forest in amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 1996, 23, 371–399. [Google Scholar] [CrossRef]
- Bowling, D.R.; Burns, S.P.; Conway, T.J.; Monson, R.K.; White, J.W.C. Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Santos, E.; Wagner-Riddle, C.; Lee, X.; Warland, J.; Brown, S.; Staebler, R.; Bartlett, P.; Kim, K. Use of the isotope flux ratio approach to investigate the C18O16O and 13CO2 exchange near the floor of a temperate deciduous forest. Biogeosciences 2012, 9, 2385–2399. [Google Scholar] [CrossRef] [Green Version]
- Wingate, L.; Ogee, J.; Burlett, R.; Bosc, A.; Devaux, M.; Grace, J.; Loustau, D.; Gessler, A. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytol. 2010, 188, 576–589. [Google Scholar] [CrossRef]
- Chen, C.; Pang, J.; Wei, J.; Wen, X.; Sun, X. Inter-comparison of three models for δ13C of respiration with four regression approaches. Agric. For. Meteorol. 2017, 247, 229–239. [Google Scholar] [CrossRef]
- Braendholt, A.; Ibrom, A.; Steenberg Larsen, K.; Pilegaard, K. Partitioning of ecosystem respiration in a beech forest. Agric. For. Meteorol. 2018, 252, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Paul-Limoges, E.; Wolf, S.; Eugster, W.; Hortnagl, L.; Buchmann, N. Below-canopy contributions to ecosystem CO2 fluxes in a temperate mixed forest in Switzerland. Agric. For. Meteorol. 2017, 247, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S.G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschutz, J.; et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. Biogeosciences 2011, 8, 3457–3489. [Google Scholar] [CrossRef] [Green Version]
- Meier-Augenstein, W. Isotope Effects, Mass Discrimination and Isotopic Fractionation. In Stable Isotope Forensics; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 10–15. [Google Scholar]
- Badeck, F.W.; Tcherkez, G.; Nogues, S.; Piel, C.; Ghashghaie, J. Post-photo synthetic fractionation of stable carbon isotopes between plant organs—A widespread phenomenon. Rapid Commun. Mass Spectrom. 2005, 19, 1381–1391. [Google Scholar] [CrossRef]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Aust. J. Plant Physiol. 1982, 9, 121. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Millgate, A.; Farquhar, G.D.; Furbank, R.T. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by antisense RNA in the C4 plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination. Plant Physiol. 1997, 113, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Gessler, A. Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: A review of dynamics and mechanisms. Biogeosciences 2011, 8, 2437–2459. [Google Scholar] [CrossRef] [Green Version]
- Apostel, C.; Herschbach, J.; Bore, E.K.; Spielvogel, S.; Kuzyakov, Y.; Dippold, M.A. Food for microorganisms: Position-specific 13C labeling and 13C-PLFA analysis reveals preferences for sorbed or necromass C. Geoderma 2018, 312, 86–94. [Google Scholar] [CrossRef]
- Moyes, A.B.; Gaines, S.J.; Siegwolf, R.T.W.; Bowling, D.R. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant Cell Environ. 2010, 33, 1804–1819. [Google Scholar] [CrossRef]
- Van Asperen, H.; Warneke, T.; Sabbatini, S.; Hopker, M.; Nicolini, G.; Chiti, T.; Papale, D.; Bohm, M.; Notholt, J. Diel variation in isotopic composition of soil respiratory CO2 fluxes: The role of non-steady state conditions. Agric. For. Meteorol. 2017, 234, 95–105. [Google Scholar] [CrossRef]
- Zappa, C.J.; McGillis, W.R.; Raymond, P.A.; Edson, J.B.; Hintsa, E.J.; Zemmelink, H.J.; Dacey, J.W.H.; Ho, D.T. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, L.A.; Almeida, S.; Brown, I.F.; Moreira, M.Z.; Victoria, R.L.; Sternberg, L.S.L.; Ferreira, C.A.C.; Thomas, W.W. Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia 1998, 114, 170–179. [Google Scholar] [CrossRef]
- Schaeffer, S.M.; Anderson, D.E.; Burns, S.P.; Monson, R.K.; Sun, J.; Bowling, D.R. Canopy structure and atmospheric flows in relation to the delta 13C of respired CO2 in a subalpine coniferous forest. Agric. For. Meteorol. 2008, 148, 592–605. [Google Scholar] [CrossRef]
- Migliavacca, M.; Reichstein, M.; Richardson, A.D.; Mahecha, M.D.; Cremonese, E.; Delpierre, N.; Galvagno, M.; Law, B.E.; Wohlfahrt, G.; Black, T.A.; et al. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Glob. Chang. Biol. 2015, 21, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, N.; Kao, W.Y.; Ehleringer, J.R. Carbon dioxide concentrations within forest canopies—Variation with time, stand structure, and vegetation type. Glob. Chang. Biol. 1996, 2, 421–432. [Google Scholar] [CrossRef]
- Williams, T.G.; Flanagan, L.B. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 1996, 108, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Riveros-Iregui, D.A.; Hu, J.; Burns, S.P.; Bowling, D.R.; Monson, R.K. An interannual assessment of the relationship between the stable carbon isotopic composition of ecosystem respiration and climate in a high-elevation subalpine forest. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Unger, S.; Pereira, J.S.; Maia, R.; David, T.S.; Kurz-Besson, K.; David, J.S.; Maguas, C. Importance of short-term dynamics in carbon isotope ratios of ecosystem respiration (δ13C) in a Mediterranean oak woodland and linkage to environmental factors. New Phytol. 2006, 172, 330–346. [Google Scholar] [CrossRef]
- Shim, J.H.; Powers, H.H.; Pereira, J.S.; Maia, R.; David, T.S.; Kurz-Besson, C.; David, J.S.; Maguas, C. The role of interannual, seasonal, and synoptic climate on the carbon isotope ratio of ecosystem respiration at a semiarid woodland. Glob. Chang. Biol. 2011, 17, 2584–2600. [Google Scholar] [CrossRef]
- Ekblad, A.; Bostrom, B.; Holm, A.; Comstedt, D. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 2005, 143, 136–142. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.Q.; Xia, J.; Shi, Z.; Jiang, L.; Niu, S.; Zhou, X.; Cao, J. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 2016, 220, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Dorrepaal, E.; Toet, S.; van Logtestijn, R.S.P.; Swart, E.; van de Weg, M.J.; Callaghan, T.V.; Aerts, T. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 2009, 460, 616–619. [Google Scholar] [CrossRef]
- Miao, G.F.; Noormets, A.; Domec, J.-C.; Fuentes, M.; Trettin, C.C.; Sun, G.; McNulty, S.G.; King, J.S. Hydrology and microtopography control carbon dynamics in wetlands: Implications in partitioning ecosystem respiration in a coastal plain forested wetland. Agric. Forest Meteorol. 2017, 247, 343–355. [Google Scholar] [CrossRef]
- Doughty, C.E.; Metcalfe, D.B.; Girardin, C.A.J.; Farfan Amezquita, F.; Galiano Carbera, D.; Huaraca Huasco, W.; Silva-Espejo, J.E.; Araujo-Murakami, A.; da Costa, M.C.; Rocha, W.; et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 2015, 519, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, J.P.; Wen, X.F.; Sun, X.; Huang, K. Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2/12CO2 measurement. Atmos. Meas. Tech. 2016, 9, 3879–3891. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.R.; Chen, Z.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.F.; Wang, H.M.; Wang, J.-L.; Yu, G.-R.; Sun, X.-M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences 2010, 7, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. 2018. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1379 (accessed on 13 November 2020).
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Yang, B.; Wen, X.; Sun, X. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 2015, 201, 218–228. [Google Scholar] [CrossRef]
- Chen, C.; Wei, J.; Wen, X.; Sun, X.; Guo, Q. Photosynthetic Carbon Isotope Discrimination and Effects on Daytime NEE Partitioning in a Subtropical Mixed Conifer Plantation. Agric. For. Meteorol. 2019, 272, 143–155. [Google Scholar] [CrossRef]
- Zobitz, J.M.; Burns, S.P.; Reichstein, M.; Bowling, D.R. Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Glob. Chang. Biol. 2008, 14, 1785–1800. [Google Scholar] [CrossRef]
- Wingate, L.; Seibt, U.; Moncrieff, J.B.; Jarvis, P.G.; Lloyd, J. Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ. 2007, 30, 600–616. [Google Scholar] [CrossRef]
- Keeling, C.D. The Concentration and Isotopic Abundances of Atmospheric Carbon Dioxide in Rural Areas. Geochim. Cosmochim. Acta 1958, 13, 322–334. [Google Scholar] [CrossRef]
- Miller, J.B.; Tans, P.P.; White, J.W.C.; Conway, T.J.; Vaughn, B.W. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus B Chem. Phys. Meteorol. 2003, 55, 197–206. [Google Scholar] [CrossRef]
- Bowling, D.R.; Sargent, S.D.; Tanner, B.D.; Ehleringer, J.R. Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric. For. Meteorol. 2003, 118, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Griffis, T.J.; Baker, J.M. Using continuous stable isotope measurements to partition net ecosystem CO2 exchange. Plant Cell Environ. 2006, 29, 483–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, S.; Maguas, C.; Pereira, J.S.; Aires, L.M.; David, T.S.; Werner, C. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes. Oecologia 2010, 163, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Kodama, N.; Barnard, R.L.; Salmon, Y.; Weston, C.; Ferrio, J.P.; Holst, J.; Werner, R.A.; Saurer, M.; Rennenberg, H.; Buchmann, N.; et al. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: From newly assimilated organic carbon to respired carbon dioxide. Oecologia 2008, 156, 737–750. [Google Scholar] [CrossRef]
- Sun, W.; Resco, V.; Williams, D.G. Environmental and physiological controls on the carbon isotope composition of CO2 respired by leaves and roots of a C3 woody legume (Prosopis velutina) and a C4 perennial grass (Sporobolus wrightii). Plant Cell Environ. 2012, 35, 567–577. [Google Scholar] [CrossRef]
- Bowling, D.R.; Ballantyne, A.P.; Miller, J.B.; Burns, S.P.; Conway, T.J.; Menzer, O.; Stephens, O.O.; Vaughn, B.H. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest. Glob. Biogeochem. Cycles 2014, 28. [Google Scholar] [CrossRef]
- Graven, H.; Keeling, R.F.; Rogelj, J. Changes to Carbon Isotopes in Atmospheric CO2 Over the Industrial Era and into the Future. Glob. Biogeochem. Cycles 2020, 34. [Google Scholar] [CrossRef] [PubMed]
- Graven, H.; Allison, C.E.; Etheridge, D.M.; Hammer, S.; Keeling, R.F.; Levin, I.; Meijer, H.A.J.; Rubino, M.; Tans, P.P.; Trudinger, C.M.; et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 2017, 10, 4405–4417. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhou, L.; Vaughn, B.; Miller, J.B.; Brand, W.A.; Rothe, M.; Xia, L. Background variations of atmospheric CO2 and carbon-stable isotopes at Waliguan and Shangdianzi stations in China. J. Geophys. Res. Atmos. 2014, 119, 5602–5612. [Google Scholar] [CrossRef]
- Scartazza, A.; Mata, C.; Matteucci, G.; Yakir, D.; Moscatello, S.; Brugnoli, E. Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 2004, 140, 340–351. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.G.; Bowling, D.R.; Schauer, A.; Irvine, J.; Bond, B.J.; Law, B.E.; Ehleringer, J.R. Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance. Glob. Chang. Biol. 2004, 10, 1767–1784. [Google Scholar] [CrossRef]
- Choi, W.J.; Chang, S.X.; Allen, H.L.; Kelting, D.L.; Ro, H.-M. Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand. For. Ecol. Manag. 2005, 213, 90–101. [Google Scholar] [CrossRef]
- Basu, S.; Ghosh, S.; Sanyal, P. Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: Inferences from a global compilation. Glob. Planet. Chang. 2019, 176, 123–131. [Google Scholar] [CrossRef]
- Ghashghaie, J.; Badeck, F.W. Opposite carbon isotope discrimination during dark respiration in leaves versus roots—A review. New Phytol. 2014, 201, 751–769. [Google Scholar] [CrossRef]
- Wegener, F.; Beyschlag, W.; Werner, C. Dynamic carbon allocation into source and sink tissues determine within-plant differences in carbon isotope ratios. Funct. Plant Biol. 2015, 42, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A.; Farquhar, G.D. Effect of Temperature on the CO2/O2 Specificity of Ribulose-1,5-Bisphosphate Carboxylase Oxygenase and the Rate of Respiration in the Light—Estimates from Gas-Exchange Measurements on Spinach. Planta 1985, 165, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.P.; Patton, E.G.; Shaw, R.H.; Finnigan, J.J.; Weil, J.C. Atmospheric Stability Influences on Coupled Boundary Layer and Canopy Turbulence. J. Atmos. Sci. 2016, 73, 1621–1647. [Google Scholar]
Year | CO2 (μmol mol−1) | δ13C (‰) | ||||
---|---|---|---|---|---|---|
Std1 | Std2 | Std3 | Std1 | Std2 | Std3 | |
2015 | −1.59 ± 0.17 | 3.00 ± 0.34 | 1.42 ± 0.14 | 0.006 ± 0.049 | −0.009 ± 0.077 | 0.004 ± 0.030 |
2016 | −1.63 ± 0.13 | 3.09 ± 0.28 | −1.46 ± 0.11 | 0.017 ± 0.048 | −0.027 ± 0.075 | 0.011 ± 0.030 |
2017 | −1.62 ± 0.13 | 3.06 ± 0.28 | 1.45 ± 0.10 | 0.011 ± 0.051 | −0.017 ± 0.079 | 0.009 ± 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wen, X.; Wang, J.; Guo, Q. Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation. Forests 2021, 12, 584. https://doi.org/10.3390/f12050584
Chen C, Wen X, Wang J, Guo Q. Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation. Forests. 2021; 12(5):584. https://doi.org/10.3390/f12050584
Chicago/Turabian StyleChen, Changhua, Xuefa Wen, Jingyuan Wang, and Qingjun Guo. 2021. "Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation" Forests 12, no. 5: 584. https://doi.org/10.3390/f12050584
APA StyleChen, C., Wen, X., Wang, J., & Guo, Q. (2021). Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation. Forests, 12(5), 584. https://doi.org/10.3390/f12050584