Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Basis
2.2. Bibliometric Analysis
3. Bibliometric Results and Discussion
3.1. General Information
3.2. Bibliographic Coupling and Journal Sources
3.3. Citation of Sources
3.4. Main Terms
3.5. Countries
3.6. Authors and Co-Citation
3.6.1. Co-Authorship
3.6.2. Co-Citation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Geoderma fire and soils: Key concepts and recent advances. Geoderma 2012. [Google Scholar] [CrossRef]
- Ferreira-Leite, F.; Lourenço, L.; Bento-Gonçalves, A. Large forest fires in mainland portugal, brief characterization. Méditerranée 2013, 53–65. [Google Scholar] [CrossRef]
- Bond, W.; Keeley, J. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2004, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Van Langevelde, F.; van de Vijver, C.A.D.M.; Kumar, L.; van de Koppel, J.; de Ridder, N.; van Andel, J.; Skidmore, A.K.; Hearne, J.W.; Stroosnijder, L.; Bond, W.J.; et al. Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 2003, 84, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Modell. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Santos, S.M.B.; Franca-Rocha, W.J.S.; Bento-Gonçalves, A.; Baptista, G.M.M. Quantificação e avaliação dos focos de calor no parque na-cional da chapada diamantina e entorno no período de 2007 a 2016. Rev. Bras. Cartogr. 2017, 69, 701–712. [Google Scholar]
- Parker, B.M.; Lewis, T.; Srivastava, S.K. Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sens. Environ. 2015, 170, 340–349. [Google Scholar] [CrossRef]
- Meng, Q.; Meentemeyer, R.K. Modeling of multi-strata forest fire severity using Landsat TM data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 120–126. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 2008, 17, 443. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ. 2007, 108, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 1161, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Stavros, E.N.; Hook, S.J. Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sens. Environ. 2014, 154, 153–163. [Google Scholar] [CrossRef]
- Sunderman, S.O.; Weisberg, P.J. Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems. Remote Sens. Environ. 2011, 115, 2384–2389. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment: Sampling and analysis methods. In FIREMON: Fire Effects Monitoring and Inventory System; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 1–55. [Google Scholar]
- Santos, S.M.B.D.; Bento-Gonçalves, A.; Franca-Rocha, W.; Baptista, G. Assessment of burned forest area severity and postfire regrowth in chapada diamantina national park (Bahia, Brazil) using dNBR and RdNBR spectral indices. Geosciences 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Leite, C.C.S.S.; Santos, S.M.B.; Franca-Rocha, W.J.S.; Silva, A.B.; Baptista, G.M.M. Análise dos incêndios ocorridos no parque nacional da cha-pada diamantina-bahia em 2008 e 2015 com suporte em ín-dices espectrais de vegetação. Rev. Bras. Cartogr. 2017, 69, 1127–1141. [Google Scholar]
- Soulard, C.; Albano, C.; Villarreal, M.; Walker, J. Continuous 1985–2012 landsat monitoring to assess fire effects on meadows in yosemite national park, California. Remote Sens. 2016, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the google earth engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Szpakowski, D.; Jensen, J. A review of the applications of remote sensing in fire ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.D.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Cambuí, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil spill detection and mapping: A 50-year bibliometric analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Mourao, P.R.; Martinho, V.D. Forest entrepreneurship: A bibliometric analysis and a discussion about the co-authorship networks of an emerging scientific field. J. Clean. Prod. 2020, 256, 120413. [Google Scholar] [CrossRef]
- Uribe-Toril, J.; Ruiz-Real, J.; Haba-Osca, J.; de Pablo Valenciano, J. Forests’ first decade: A bibliometric analysis overview. Forests 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L.; Noyons, E.C.M.; Buter, R.K. Automatic term identification for bibliometric mapping. Scientometrics 2010, 82, 581–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.J.S.; Franca-Rocha, W.J.S.; Baptista, G.M.M.; Souza, D.T.M.; Silva, A.B.; Santos, S.M.B. Análise bibliometrica da espectrorradiometria e geoestatística de solos: Uma discussão em 10 anos. Rev. Geociências UNESP 2019, 38, 1097–1104. [Google Scholar]
- Guan, Y.; Kang, R.; Liu, J. Evolution of the field of ecological restoration over the last three decades: A bibliometric analysis. Restor. Ecol. 2019, 27, 647–660. [Google Scholar] [CrossRef]
- Leal, A.I.; Correia, R.A.; Palmeirim, J.M.; Bugalho, M.N. Is research supporting sustainable management in a changing world? Insights from a Mediterranean silvopastoral system. Agrofor. Syst. 2019, 93, 355–368. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Xie, H.; Murayama, Y.; Ranagalage, M. Bibliometric analysis of highly cited articles on ecosystem services. PLoS ONE 2019, 14, e0210707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Thenkabail, P.S.; Wang, P. A bibliometric profile of the remote sensing open access journal published by MDPI between 2009 and 2018. Remote Sens. 2019, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Leblon, B.; Bourgeau-Chavez, L.; San-Miguel-Ayanz, J. Use of remote sensing in wildfire management. In Sustainable Development—Authoritative and Leading Edge Content for Environmental Management; Curkovic, S., Ed.; InTech: London, UK, 2012. [Google Scholar]
- Govil, K.; Welch, M.L.; Ball, J.T.; Pennypacker, C.R. Preliminary results from a wildfire detection system using deep learning on remote camera images. Remote Sens. 2020, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Arruda, V.L.S.; Piontekowski, V.J.; Alencar, A.; Pereira, R.S.; Matricardi, E.A.T. An alternative approach for mapping burn scars using landsat imagery, google earth engine, and deep learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100472. [Google Scholar] [CrossRef]
- Scopus Scopus Database. Available online: https://www2.scopus.com/home.uri (accessed on 19 January 2021).
- Elsevier Content How Scopus Works—Scopus—Elsevier Solutions. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 12 January 2021).
- VOSviewer VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 10 January 2021).
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Schramme, T. The Future of Academic Journals? Ethical Theory Moral Pract. 2019, 22, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Selmer, J. Are highly ranked academic journals better? J. Glob. Mobil. Home Expatr. Manag. Res. 2018, 6, 126–128. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E. Measuring changes in landscape pattern from satellite images: Short-term effects of fire on spatial diversity. Int. J. Remote Sens. 1999, 20, 2331–2346. [Google Scholar] [CrossRef]
- Kasischke, E.S.; French, N.H.F.; Harrell, P.; Christensen, N.L.; Ustin, S.L.; Barry, D. Monitoring of wildfires in Boreal Forests using large area AVHRR NDVI composite image data. Remote Sens. Environ. 1993, 45, 61–71. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Fraser, R.; Li, Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sens. Environ. 2002, 82, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.O. Effect of wavelength selection on characterization of fire size and temperature. Int. J. Remote Sens. 2003, 24, 3515–3520. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Akther, M.S.; Hassan, Q.K. Remote sensing-based assessment of fire danger conditions over boreal forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 992–999. [Google Scholar] [CrossRef]
- Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens. Environ. 2011, 115, 2626–2639. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
Title | Citations | Documents | Clusters | Link | Total Link-Strength |
---|---|---|---|---|---|
Remote Sensing of Environment | 9777 | 133 | 1 | 42 | 3512.1 |
International Journal of Remote Sensing | 4582 | 118 | 1 | 42 | 1724.61 |
International Journal of Wildland Fire | 2745 | 77 | 1 | 42 | 1842.47 |
Journal of Geophysical Research: Atmospheres | 2562 | 32 | 3 | 40 | 559.19 |
Geophysical Research Letters | 1938 | 25 | 3 | 41 | 348.6 |
Atmospheric Chemistry and Physics | 1253 | 23 | 3 | 42 | 468.02 |
Forest Ecology and Management | 1210 | 43 | 2 | 42 | 1007.5 |
IEEETransactions on Geoscience and Remote Sensing | 1122 | 18 | 1 | 41 | 306.2 |
Atmospheric Environment | 947 | 32 | 3 | 40 | 411.12 |
Remote Sensing | 937 | 89 | 1 | 42 | 2111.45 |
Ecological Applications | 852 | 18 | 2 | 42 | 607.42 |
Global Change Biology | 819 | 15 | 2 | 42 | 520.55 |
Journal of Geophysical Research: Biogeosciences | 736 | 15 | 2 | 41 | 554.91 |
Landscape Ecology | 587 | 11 | 2 | 38 | 203.82 |
Geocarto International | 574 | 17 | 1 | 42 | 260.05 |
Journal of Environmental Management | 570 | 13 | 1 | 42 | 321.42 |
International Journal of Applied Earth Observation and Geoinformation | 459 | 16 | 1 | 41 | 468.21 |
ISPRSJournal of Photogrammetry and Remote Sensing | 438 | 17 | 4 | 42 | 660.48 |
Photogrammetric Engineering and Remote Sensing | 406 | 18 | 1 | 42 | 219.73 |
Ecosystems | 398 | 9 | 2 | 40 | 228.48 |
Applied Geography | 369 | 12 | 1 | 41 | 278.58 |
Environmental Research Letters | 361 | 20 | 2 | 42 | 451.01 |
Biogeosciences | 352 | 9 | 2 | 42 | 276.08 |
Natural Hazards | 292 | 14 | 1 | 42 | 304.76 |
Environmental Management | 274 | 11 | 1 | 42 | 246.22 |
Environmental Monitoring and Assessment | 213 | 12 | 1 | 41 | 162.3 |
Forests | 206 | 27 | 2 | 42 | 892.94 |
Fire Ecology | 186 | 11 | 2 | 41 | 295.57 |
Science of the Total Environment | 182 | 10 | 3 | 41 | 237.59 |
IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing | 176 | 15 | 1 | 41 | 249.06 |
Izvestiya-Atmospheric and Ocean Physics | 133 | 12 | 4 | 40 | 100.4 |
GIScience and Remote Sensing | 120 | 8 | 1 | 41 | 232.23 |
Sensors (Switzerland) | 116 | 13 | 5 | 42 | 275.62 |
Earth Interactions | 107 | 8 | 1 | 40 | 143.21 |
Journal of the Indian Society of Remote Sensing | 101 | 18 | 1 | 41 | 174.16 |
Journal of Applied Remote Sensing | 92 | 10 | 3 | 40 | 138.73 |
Ecosphere | 91 | 8 | 2 | 42 | 247.43 |
European Journal of Remote Sensing | 64 | 8 | 1 | 42 | 224.75 |
Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa | 38 | 13 | 4 | 41 | 96.03 |
Atmosphere | 36 | 9 | 3 | 38 | 145.53 |
Fire | 26 | 9 | 5 | 42 | 323.46 |
Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University | 16 | 10 | 4 | 25 | 13 |
Yaogan Xuebao/Journal of Remote Sensing | 7 | 11 | 1 | 41 | 134.96 |
Country | Clusters | Documents | Citations | Total Link-Strength | Link |
---|---|---|---|---|---|
United Kingdom | 1 | 91 | 4004 | 78 | 23 |
Russia | 88 | 1661 | 31 | 16 | |
Germany | 77 | 3062 | 56 | 26 | |
Greece | 64 | 1385 | 33 | 16 | |
France | 51 | 1791 | 36 | 22 | |
Finland | 20 | 627 | 13 | 15 | |
Switzerland | 16 | 787 | 14 | 13 | |
Norway | 11 | 443 | 9 | 12 | |
Austria | 10 | 218 | 9 | 12 | |
United States | 2 | 681 | 27,655 | 212 | 31 |
China | 191 | 2840 | 82 | 22 | |
Canada | 141 | 4496 | 67 | 25 | |
Japan | 40 | 783 | 26 | 17 | |
Indonesia | 22 | 397 | 15 | 8 | |
South Korea | 17 | 157 | 7 | 8 | |
Malaysia | 15 | 216 | 9 | 17 | |
Iran | 14 | 284 | 8 | 7 | |
Hong Kong | 12 | 237 | 10 | 6 | |
Spain | 3 | 175 | 6137 | 71 | 22 |
Italy | 96 | 2934 | 51 | 22 | |
Brazil | 63 | 1800 | 35 | 15 | |
Portugal | 36 | 894 | 24 | 18 | |
Belgium | 19 | 679 | 16 | 13 | |
Chile | 17 | 344 | 11 | 11 | |
Mexico | 16 | 291 | 11 | 8 | |
Argentina | 11 | 264 | 4 | 8 | |
Australia | 4 | 119 | 3593 | 58 | 23 |
Israel | 10 | 316 | 4 | 3 | |
New Zealand | 10 | 787 | 9 | 6 | |
India | 5 | 77 | 1346 | 22 | 9 |
Netherlands | 29 | 1066 | 26 | 15 | |
South Africa | 6 | 12 | 202 | 5 | 6 |
Turkey | 7 | 17 | 158 | 2 | 2 |
n° | Publication Affiliation | NP | Countries |
---|---|---|---|
1 | USDA Forest Service | 123 | United States |
2 | Chinese Academy of Sciences | 73 | China |
3 | University of Maryland | 69 | United States |
4 | NASA Goddard Space Flight Centre | 65 | United States |
5 | United States Geological Survey | 58 | United States |
6 | University of Idaho | 33 | United States |
7 | United States Department of Agriculture | 31 | United States |
8 | University of Colorado Boulder | 31 | United States |
9 | Canadian Forest Service | 29 | Canada |
10 | USDA ARS Rocky Mountain Research Station | 29 | United States |
11 | Jet Propulsion Laboratory | 28 | United States |
12 | Oregon State University | 28 | United States |
13 | European Commission Joint Research Centre | 27 | Belgium |
14 | University of Chinese Academy of Sciences | 27 | China |
15 | Science Systems and Applications, Inc. SSAI | 26 | United States |
16 | The University of British Columbia | 25 | Canada |
17 | USDA ARS Moscow Forestry Sciences Lab | 25 | United States |
18 | University of Alaska Fairbanks | 25 | United States |
19 | California Institute of Technology | 25 | United States |
20 | NASA Ames Research centre | 24 | United States |
Author | Documents | Citations | Affiliation | Countries |
---|---|---|---|---|
Chuvieco E. | 7 | 501 | University of Alcalá | Spain |
Hassan Q. K. | 5 | 82 | University of Calgary | Canada |
Kinoshita A. M. | 4 | 81 | San Diego State University | United States |
Sunar F. | 4 | 65 | Istanbul Technical University | Turkey |
Author | Documents | Citations | Affiliation | Countries |
---|---|---|---|---|
Kaufman Y. J. | 4 | 2058 | NASA Goddard Space Flight Centre | United States |
Justice C. O. | 9 | 1992 | NASA Goddard Space Flight Centre | United States |
Giglio L. | 10 | 1791 | University of Maryland | United States |
Chuvieco E. | 19 | 1447 | University of Alcalá | Spain |
Wooster M. J. | 16 | 1194 | Department of Geography, King’s College London | United Kingdom |
Kasischke E.S. | 16 | 1006 | Environmental Research Institute of Michigan | United States |
Dennison P. E. | 10 | 952 | University of Utah | United States |
Perry G. L. W. | 5 | 909 | University of Canterbury | New Zealand |
Cohen W. B. | 9 | 752 | USDA Forest Service | United States |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.M.B.d.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. https://doi.org/10.3390/f12050604
Santos SMBd, Bento-Gonçalves A, Vieira A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests. 2021; 12(5):604. https://doi.org/10.3390/f12050604
Chicago/Turabian StyleSantos, Sarah Moura Batista dos, António Bento-Gonçalves, and António Vieira. 2021. "Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis" Forests 12, no. 5: 604. https://doi.org/10.3390/f12050604
APA StyleSantos, S. M. B. d., Bento-Gonçalves, A., & Vieira, A. (2021). Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests, 12(5), 604. https://doi.org/10.3390/f12050604