Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations
Abstract
:1. Background. Mediterranean Forest: A System Shaped by Water, Nutrient Limitations, and Human Management. The Mediterranean Basin Case
2. Several Concurrent Risks
2.1. Present and Future Aridity: The Larger Threat
2.1.1. Drought Is Currently Shaping the Structure of Mediterranean Forests
2.1.2. Grazing Pressure under Drought Enhancement
2.1.3. Aridity and Warming: An Open Door for Pests. The Case of “La Seca” (Phytophthora cinnamomi Rands) and Insect Outbreaks
2.1.4. The Particular Case of Temperate and Boreal “Forest Islands”
2.2. Species Invasion
2.3. Forest Wildfires
2.4. Soil Fragility and Forest Maintenance and Regeneration
2.5. High Diversity at Risk
2.6. Depopulation and Abandonment of Rural Areas
3. Human Management. How Can it Help Mediterranean Forest Health and Conservation?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Castri, F.; Mooney, H.A. Mediterranean Type Ecosystems: Origin and Structure; Springer: New York, NY, USA, 1973; pp. 11–19. [Google Scholar]
- Di Castri, F. Mediterranean-type shrublands of the world. In Mediterranean-Type Shrublands; Di Castri, F., Goodall, D.W., Specht, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 1–52. [Google Scholar]
- Brauch, H.G. Towards a fourth phase of research on human and environmental security and peace: Conceptualconclusions. In Security and the Environment in the Mediterranean: Conceptualising Security and Environmental Conflicts; Braunch, H.G., Liotta, P.H., Marquina, A., Rogers, P.F., Selim, M.E.S., Eds.; Springer: Berlin, Germany, 2003; pp. 919–953. [Google Scholar]
- Doblas-Miranda, E.; Martínez-Vilalta, J.; Lloret, F.; Álvarez, A.; Ávila, A.; Bonet, F.J.; Brotons, L.; Castro, J.; Curiel Yuste, J.; Díaz, M.; et al. Reassessing global change research priorities in Mediterranean terrestrial ecosystems: How far have we come and where do we go from here? Glob. Ecol. Biogeogr. 2015, 24, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I.; Caudullo, G.; Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on Nature 2000 protected area network. Appl. Geogr. 2016, 75, 83–92. [Google Scholar] [CrossRef]
- Anav, A.; Mariotti, A. Sensitivity of natural vegetation to climate change in the Euro-Mediterranean area. Clim. Res. 2011, 46, 27–292. [Google Scholar] [CrossRef] [Green Version]
- Alessandri, A.; De Felice, M.; Zeng, N.; Mariotti, A.; Pan, Y.; Cherchi, A.; Lee, J.Y.; Wang, B.; Ha, K.J.; Ritu, P.; et al. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci. Rep. 2014, 4, 7211. [Google Scholar] [CrossRef]
- Valladares, F.; Benavides, R.; Rabasa, S.G.; Díaz, M.; Pausas, J.G.; Paula, S.; Simonson, W.D. Global change and Mediterranean forests: Current impacts and potential responses. In Forests and Global Change; Ecological Reviews; Coomes, D.A., Burslem, D.F.R.P., Simonson, W.D., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 47–75. [Google Scholar]
- Peñuelas, J.; Gracia, C.; Alistair Jump, I.F.; Carnicer, J.; Coll, M.; Lloret, F.; Yuste, J.C.; Estiarte, M.; Rutishauser, T.; Ogaya, R. Introducing the climate change effects on Mediterranean forest ecosystems: Observation, experimentation, simulation, and management. Forêt Médit. 2010, 31, 357–362. [Google Scholar]
- FAO. State of the Mediterranean Forest Publishes by the Food and Agriculture Organization of the United Nations and Plan Bleu, Regional Activity Center of UN Environmental/Mediterranean Action Plan Rome; FAO: Rome, Italy, 2018. [Google Scholar]
- Un News. “At Risk” Mediterranean Forest Make “Vital Contributions” to Development. 2018. Available online: https://news.un.org/en/story/2018/11/1026761 (accessed on 23 February 2020).
- Giorgi, F. Climate change hot-spots. Geophys. Res. Let. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Piñol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Int. J. Wildlfire 1998, 11, 95–106. [Google Scholar]
- Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Sabate, S.; Gracia, C. Natural Systems: Terrestrial Ecosystems; Llebot, J.E., Ed.; Institut d’Estudis Catalans: Barcelona, Spain, 2005; pp. 517–553. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Gaol, X.; Giorgi, F. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Chang. 2008, 62, 195–209. [Google Scholar]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomou, A.D.; Proutsos, N.D.; Karetsos, G.; Tsagari, K. Effects of climate change on vegetation in Mediterranean forests: A review. Intern. J. Environ. Agric. Biotechn. 2017, 2, 240–247. [Google Scholar] [CrossRef]
- Specht, R.L. Dark island heath (Ninety-mile Plain. South Australia). VII The effect of fertilisers on composition and growth. Aus. J. Bot. 1963, 23, 1950–1960. [Google Scholar]
- Hanley, M.; Fenner, M. Growth of Aleppo pine (Pinus halepensis) deprived of single mineral nutrients. J. Med. Ecol. 2001, 2, 107–112. [Google Scholar]
- Terradas, J. Ecología de la Vegetación. De la Ecofisiología de las Plantas a la Dinámica de Comunidades y Paisajes; Omega: Barcelona, Spain, 2001. [Google Scholar]
- Sardans, J.; Rodà, F.; Peñuelas, J. Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecol. 2004, 174, 305–317. [Google Scholar] [CrossRef]
- Niinemets, U.; Tenhunen, J.D.; Canta, N.R.; Chaves, M.M.; Faria, T.; Pereira, J.S.; Reynolds, J.F. Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Glob. Chang. Biol. 1999, 5, 455–470. [Google Scholar] [CrossRef]
- Fernández Nogueira, D.; Corbelle Rico, E. Cambios en los usos de suelo en la Península Ibérica: Un meta-análisis para el período 1985–2015. Biblio. Revista Bibliogr.Geogr.Cien. Soc. 2017, 22, 215. [Google Scholar]
- Padilla, F.M.; Pugnaire, F.I. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Func. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Misson, L.; Degueldre, D.; Collin, C.; Rodríguez, R.; Rocheteau, A.; Ourcival, J.M.; Rambal, S. Phenological response to extreme droughts in a Mediterranean forest. Glob. Change. Biol. 2011, 17, 1036–1048. [Google Scholar] [CrossRef]
- Martin-StPaul, N.K.; Limousin, J.M.; Vogt-Schilb, H.; Rodriguez-Calcerrada, J.; Rambal, S.; Longepierre, D.; Misson, L. The temporal response to drought in a Mediterranean evergreen tree: Comparing a regional precipitation gradient and a throughfall exclusion experiment. Glob. Chang. Biol. 2013, 19, 2413–2426. [Google Scholar] [CrossRef]
- Bongers, F.J.; Olmo, M.; Lopez-Iglesias, B.; Anten, N.P.R.; Villar, R. Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Plant Biol. 2017, 19, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Castagneri, D.; Regev, L.; Boaretto, E.; Carrer, M. Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 2017, 133, 128–138. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M.; Rodriguez-Calcerrada, J.; Perez-Ramos, I.M.; Rodriguez-Cortina, R.; Misson, L.; Joffre, R. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 2012, 169, 565–577. [Google Scholar] [CrossRef]
- Forner, A.; Aranda, I.; Granier, A.; Valladares, F. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecol. 2014, 215, 703–719. [Google Scholar] [CrossRef] [Green Version]
- Piayda, A.; Dubbert, M.; Rebmann, C.; Kolle, O.; Silva, F.C.E.; Correia, A.; Pereira, J.S.; Werner, C.; Cuntz, M. Drought impact on carbon and water cycling in a Mediterranean Quercus suber L. woodland during the extreme drought event in 2012. Biogeosciences 2014, 11, 7159–7178. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Begueira, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; Garcia-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperatura rise in southern Europe. Envron. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Siscard, P.; Dalstein-Richier, L. Health and vitally assessment of two common pine species in the context of climate change in southern Europe. Environ. Pollut. 2015, 137, 235–245. [Google Scholar]
- Medrano, H.; Flexas, J.; Galmés, J. Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 2009, 317, 17–29. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lasanta, T.; Gracia, C. Aridification determines changes in forest growth in Pinus halepensis forest under semiarid Mediterranean climate conditions. Agric. For. Meteorol. 2010, 150, 614–628. [Google Scholar] [CrossRef]
- IPCC Working Group, I. Climate Change 2007: The physical Science Basis. Contribution of working group I. In Fourth Assessment Report on the Intergovermental Panel on Climate Chnge; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Sarris, D.; Christodoulakis, D.; Körner, C. Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim. Chang. 2011, 106, 203–223. [Google Scholar] [CrossRef]
- Taibi, S.; Meddi, M.; Mahe, G. Seasonal rainfall variability in the southern Mediterranean border: Observation, regional model simulations and future climate projections. Atmosfera 2019, 32, 39–54. [Google Scholar] [CrossRef]
- Ozturk, M.; Gucel, S.; Kucuk, M.; Sakcali, S. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey. J. Environ. Biol. 2010, 31, 1–9. [Google Scholar]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim Chang. 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Pena-Gallardo, M.; Vicente-Serrano, S.M.; Camarero, J.J.; Gazol, A.; Sanchez-Salguero, R.; Dominguez-Castro, F.; El Kenawy, A.; Beguería-Portugés, S.; Gutiérrez, E.; De Luis, M.; et al. Drought snesitiveness on forest growth in Peninsular Spain and the Balearic Islands. Forests 2018, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Tognetti, R.; Lasserre, B.; Di Febbraro, M.; Marchetti, M. Modelling regional drought-stress indices for beech forest in Mediterranean mountains based on tree-ring data. Agric. For. Meteorol. 2019, 265, 110–120. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejía-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Peñuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Ogaya, R.; Penuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 2007, 189, 291–299. [Google Scholar] [CrossRef]
- Barbeta, A.; Ogaya, R.; Peñuelas, J. Dampening effects of long-term experimental drought on growth and mortality rates of a holm oak forest. Glob. Chang. Biol. 2013, 19, 3133–3144. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe drought effects on Mediterranean woody flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar]
- Romero, R.; Guijarro, J.A.; Ramis, C.; Alonso, S. A 30-year (1964–1993) daily data base for the Spanish Mediterranean regions: First exploratory study. Int. J. Climatol. 1998, 18, 541–560. [Google Scholar] [CrossRef]
- Frei, C.; Schär, C.; Lüthi, D.; Davies, H.C. Heavy precipitation processes in a warmer climate. Geophys. Res. Lett. 1998, 25, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Hernandez, T.; Roldan, A.; Martin, A. Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol. Biochem. 2002, 34, 635–642. [Google Scholar] [CrossRef]
- García-Fayos, P.; Bochet, E. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Glob. Chang. Biol. 2009, 15, 306–308. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.M.; Bochet, E.; Monleon, V.; Espigares, T.; Nicolau, J.M.; Molina, M.J.; Garcia-Fayos, P. Aridity indices nonlinear effects of human disturbance on precipitation-use efficiency of Iberian woodlands. Ecosystems 2018, 21, 1295–1305. [Google Scholar] [CrossRef]
- Ruiz-Sinoga, J.D.; Gabarón Galeote, M.A.; Martínez Murillo, J.F.; Garcia Marín, R. Vegetation strategies for soil consumption along a pluviometric gradient in southern Spain. Catena 2011, 84, 12–20. [Google Scholar] [CrossRef]
- Conacher, A.J. Summary and conclusions. In Land Degradation in Mediterranean Environments of the World: Nature and Extent, Causes and Solutions; Conacher, A.J., Sala, M., Eds.; John Wiley & Sons: Chichester, UK, 1998; pp. 449–457. [Google Scholar]
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 2018, 152, 49–59. [Google Scholar] [CrossRef]
- Peñuelas, J.; Boada, M. A global-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Batllori, E.; Gutierrez, E. Regional tree line dynamics in response to global change in the Pyrennes. J. Ecol. 2008, 96, 1275–1288. [Google Scholar] [CrossRef]
- Stella, J.C.; Riddle, J.; Piegay, H.; Gagnage, M.; Tremelo, M.L. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediteerranean Basin river. Geomorphology 2013, 202, 101–114. [Google Scholar] [CrossRef]
- Boddziewicz, M.; Fernández-Martínez, M.; Bonal, R.; Belmonte, J.; Espelta, J.M. The Moran effect and Environmental vetoes: Phenological synchrony and drought drive seed production in a Mediterranean oak. Proc. R. Soc. B 2017, 284, 1784. [Google Scholar]
- Sanchez-Salguero, R.; Camarero, J.J.; Grau, J.M.; de la Cruz, A.C.; Minaya, M.; Fernanderz-Cancio, A. Analysing atmospheric processes and climatic drivers of tree defoliation to determine forest vulnerability to climate warming. Forests 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Brasier, C.M. Phytophthora cinnamoni and oak decline in southern Europe. Environmental constrains including climate change. An. Sci. For. 1996, 53, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Corcobado, T.; Cubera, E.; Juarez, E.; Moreno, G.; Solla, A. Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric. For. Meteorol. 2014, 192, 1–8. [Google Scholar] [CrossRef]
- Natalini, F.; Alejano, R.; Vazquez-Pique, J.; Canellas, I.; Gea-Izquierdo, G. The role of climate change in the widespread mortality of holm oak in open woodlands of Southwestern Spain. Dendrochronologia 2016, 38, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Gentilesca, T.; Camarero, J.J.; Colangelo, M.; Nole, A.; Ripullone, F. Drought-induced oak decline in the western Mediterranean región: An overview on current evidences, mechanisms and Management options to improve forest resilence. IFor. Biogeosci. For. 2017, 10, 796–806. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Alvarez-Taboada, F.; Hevia, A.; Castedo-Dorado, F. Radial growth and Wood density reflect the impacts and susceptibility to defoliation by gypsy moth and climate in Radiata pine. Front. Plant Sci. 2018, 9, 1582. [Google Scholar] [CrossRef]
- Avila, J.M.; Gallardo, A.; Gomez-Aparicio, L. Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems. Biogeochemistry 2019, 142, 53–71. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Feriz, M.; Garcia-Garrido, S.; Aguin, O.; Elvira-Recuenco, M.; Hernandez-Escribano, L.; Martin-Benito, D.; Raposo, R. Synergistic abiotic and biotic stressors explain widespread decline of Pinus pinaster in a mixed forest. Sci. Total Environ. 2019, 685, 963–975. [Google Scholar] [CrossRef]
- Dominguez-Begines, J.; De Deyn, G.B.; Garcia, L.V.; Eisenhauer, N.; Gomez-Aparicio, L. Cascading spatial and trophic impacts of oak decline on the soil Food web. J. Ecol. 2019, 107, 1199–1214. [Google Scholar] [CrossRef]
- Rodriguez, A.; Duran, J.; Rey, A.; Boudouris, I.; Valladares, F.; Gallardo, A.; Yuste, J.C. Interaction effects of forest die-off and drying-rewetting cycles on C and N mineralization. Geoderma 2019, 333, 81–89. [Google Scholar] [CrossRef]
- Galiano, L.; Martínez-Vilalta, J.; Sabate, S.; Lloret, F. Determinants of drought effects on Crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. Tree Physiol. 2012, 32, 478–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapa, G.; Morandini, F.; Ferrat, L. Sap flow and photosynthetic response to climate and drought of Pinus nigra in a Mediterranean natural forest. Trees Struc. Funct. 2017, 31, 1711–1721. [Google Scholar] [CrossRef]
- Rambal, S.; Ourcival, J.M.; Joffre, R.; Mouillot, F.; Nouvellon, Y.; Reichstein, M.; Rocheteau, A. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to canopy. Glob. Chang. Biol. 2003, 9, 1813–1824. [Google Scholar] [CrossRef]
- Lempereur, M.; Limousin, J.M.; Guibal, F.; Ourcival, J.M.; Rambal, S.; Ruffault, J.; Mouillot, F. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex. Glob. Chang. Biol. 2017, 23, 42–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernandez-Concio, A. Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. For. Syst. 2010, 19, 458–469. [Google Scholar] [CrossRef]
- Manrique-Alba, A.; Ruiz-Yanetti, S.; Moutahir, H.; Novak, K.; De Luis, M.; Bellot, J. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forest. Sci. Total Environ. 2017, 574, 982–990. [Google Scholar] [CrossRef]
- Buras, A.; Menzel, A. Projecting tree species composition changes of European forest for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas-Ubach, A.; Barbeta, A.; Sardans, J.; Guenther, A.; Ogaya, R.; Oravec, M.; Urban, O.; Penuelas, J. Topsoil depth substantially influences the response to drought of the foliar metabolomes of Mediterranean forest. Persp. Plant Ecol. Evol. Syst. 2016, 21, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 2012, 21, 50–63. [Google Scholar] [CrossRef]
- Fernandez-Manjares, J.F.; Ruiz-Benito, P.; Zavala, M.A.; Camarero, J.J.; Pulido, F.; Proença, V.; Navarro, L.; Sansilvestri, R.; Granda, E.; Marqués, L.; et al. Forest adaptation to climate change along steep Ecological gradients: The case of the Mediterranean-temperature transition in South-Western Europe. Sustainability 2018, 10, 3065. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Vallejo, C.; Navarro-Cerrillo, R.M. Contrasting response to drought and climate of planterd and natural Pinus pinaster Aiton forest in Southern Spain. Forests 2019, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.C.; Delgado-Huertas, A.; Camarero, J.J.; Merino, J.; Carreira, J.A. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 2009, 161, 611–624. [Google Scholar] [CrossRef]
- Batllori, E.; de Caceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. J. Ecol. 2019, 107, 1187–1198. [Google Scholar] [CrossRef]
- Liu, D.; Ogaya, R.; Barbeta, A.; Yang, X.; Peñuelas, J. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean Woody species. Glob. Chang. Biol. 2015, 21, 4196–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.J.; Ogaya, R.; Barbeta, A.; Yang, X.H.; Peñuelas, J. Long-term experimental drought combined with natural extremes accelerate vegetation shift in a Mediterrranean holm oak forest. Environ. Exp. Bot. 2018, 151, 1–11. [Google Scholar] [CrossRef]
- Acacio, V.; Dias, F.S.; Catry, F.X.; Rocha, M.; Moreira, F. Landscape dynamics in Mediterranean oak forest under global change: Understanding the role of anthropogenic and Environmental drivers across forest types. Glob Chang. Biol. 2017, 23, 1199–1217. [Google Scholar] [CrossRef]
- Flores-Renteria, D.; Yuste, J.; Rincon, A.; Brearley, F.Q.; Garcia-Gil, J.C.; Valladares, F. Habitat fragmentation can modulate drought effects on the plant-soil-microbial system in Mediterranean holm oak (Quercus ilex) forests. Microb. Ecol. 2015, 69, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Touchan, R.; Anchukaitis, K.J.; Meko, D.M.; Attalah, S.; Baisan, C.; Aloui, A. Long term context for recent drought in northwestern Africa. Geophys. Res. Let. 2008, 35, L13705. [Google Scholar] [CrossRef]
- Slimani, S.; Derridj, A.; Gutierrez, E. Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria). For. Syst. 2014, 23, 448–460. [Google Scholar] [CrossRef] [Green Version]
- Bouachir, B.B.; Khorchani, A.; Guibal, F.; El Aouni, M.H.; Khaldi, A. Dendroecological study of Pinus halepensis and Pinus pinea in northeast coastal dunes in Tunisia according to distance from the shoreline and dieback intensity. Dendrochronologia 2017, 45, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Kabiel, H.F.; Hegazy, A.K.; Lovett-Doust, L.; Al-Rowaily, S.L.; Al Borki, A.E.N.S. Ecological assessment of populations of Junniperus phoenica L. in the Al-Akhdar mountains landscape of Lybia. Arid Land Res. Manag. 2016, 30, 269–289. [Google Scholar] [CrossRef]
- Barbache, A.; Beghami, Y.; Benmessaoud, H. Study and diachronic of forest cover changes of Belezma-Algeria. Geogr. Pannonica 2018, 22, 253–263. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Aouinti, H.; El Khorchani, A.; Elaieb, M.T.; Khaldi, A.; Nasr, Z. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. J. For. Res. 2020, 31, 1461–1477. [Google Scholar] [CrossRef]
- Navarro-Cerillo, R.M.; Sarmoum, M.; Gazol, A.; Abdoum, F.; Camarero, J. The decline of Algerian Cedrus atlantica Forests is driven by a climate shifts towards drier conditions. Dendrochronologia 2019, 55, 60–70. [Google Scholar] [CrossRef]
- Sarmoum, M.; Navarro-Cerrillo, R.; Guibal, F. Assessment of current and previous dieback of Atles cedars in Algeria’s Theniet El Had National Park. Bois For. Des Trop. 2019, 342, 29–40. [Google Scholar]
- Camarero, J.J.; Sanchez-Salguero, R.; Sanguesa-Barreda, G.; Lechuga, V.; Vinegla, B.; Seco, J.I.; Taiqui, L.; Carreira, J.A.; Linares, J.C. Drought, axe and goats. More variable and synchronized growth forecasts worsening dieback in Moroccan Atlas cedar forests. Sci. Total Environ. 2021, 765, 142752. [Google Scholar] [CrossRef]
- Said, L.; Najib, G.; Assmaa, A. Towards a coordinated development of the forest in Maamora (Morocco). Kastamonu Uni. J. For. Facul. 2010, 10, 172–179. [Google Scholar]
- Linares, J.C.; Taiqui, L.; Camarero, J.J. Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlántica) in the Moroccan meddle Atlas forests. Forests 2011, 2, 777–796. [Google Scholar] [CrossRef] [Green Version]
- Chebli, Y.; Chentouf, M.; Ozer, P.; Hornick, J.L.; Cabaraux, J.F. Forest and silvopastoral cover changes and its drivers in northern Morocco. Appl. Geogr. 2018, 101, 23–35. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Martin-StPaul, N.K.; Moron, V.; Trigo, R.M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat. Haz. Earth Syst. Sci. 2018, 18, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Sperlich, D.; Chang, C.T.; Peñuelas, J.; Gracia, C.; Sabate, S. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiol. 2015, 35, 501–520. [Google Scholar] [CrossRef]
- Camarero, J.J.; Sanguesa-Barreda, G.; Vergarechea, M. Prior height, growth, and Wood anatomy differently predispose to drought-induced dieback in two Mediterranean oak species. An. For Sci. 2016, 73, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Lloret, F.; Siscart, D.; Dalmases, C. Canopy recovery after drought dieback in holm-oak Mediterranean forest of Catalonia (NE Spain). Glob. Chang. Biol. 2004, 10, 2092–2099. [Google Scholar] [CrossRef]
- Saura-Mas, S.; Bonas, A.; Lloret, F. Plant community response to drought-induced canopy defoliation in a Mediterranean Quercus ilex forest. Eur. J. For. Res. 2015, 134, 261–272. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Factors driving growth responses to drought in Mediterranean forest. Eur. J. For. Res. 2012, 131, 1797–1807. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, M. Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteorol. 2011, 151, 1800–1811. [Google Scholar] [CrossRef]
- Granda, E.; Camarero, J.J.; Gimeno, T.E.; Martinez-Fernandez, J.; Valladares, F. Intensity and timing of warming and drought differently affect growth patterns of co-occuring Mediterranean tree species. Eur. J. For. Res. 2013, 132, 469–480. [Google Scholar] [CrossRef]
- Bussotti, F.; Feducci, M.; Iacopetti, G.; Maggino, F.; Pollastrini, M.; Selvi, F. Linking forest diversity and tree health: Preliminary insights from a large-scale survey in Italy. For. Ecosyst. 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Forner, A.; Valladares, F.; Aranda, I. Mediterranean trees coping with severe drought: Avoidance might not be safe. Environ. Exp. Bot. 2018, 155, 529–540. [Google Scholar] [CrossRef]
- Caminero, L.; Genova, M.; Camarero, J.J.; Sanchez-Salguero, R. Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forest. Dendrochronologia 2018, 48, 20–29. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Cionni, I.; Fischer, R.; Screpanti, A.; Vitale, M. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation. Environ. Pollut. 2014, 194, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I.; Lloret, F.; Piñol, J.; Siscart, D. Effects of a severe drought on water and nitrogen use by Quercus ilex and Phillyrea latifolia. Biol. Plant. 2000, 43, 47–53. [Google Scholar] [CrossRef]
- Rosas, T.; Galiano, L.; Ogaya, R.; Peñuelas, J.; Martínez-Vilalta, J. Dynamics of non-structural carbohydrates in three Mediterranean Woody species following long-term experimental drought. Front. Plant Sci. 2013, 4, 400. [Google Scholar] [CrossRef] [Green Version]
- Sarris, D.; Koutsias, N. Ecological adaptations of plants to drought influencing the recent fire regime in the Mediterranean. Agric. For. Metereol. 2014, 184, 158–169. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Alonso, R.; Arnan, X.; Bermejo, V.; Brotons, L.; Heras, J.D.; Estiarte, M.; Hódar, J.A.; Llorens, P.; Lloret, F.; et al. A review of the combination among global change factors in forest, shrublands and pastures of the Mediterranean region: Beyond drought effects. Glob. Planet. Chang. 2017, 148, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Riedel, J.L.; Bernués, A.; Casasús, I. Livestock grazing impacts on herbage and shrub dynamics in a Mediterranean Natura Park. Rangel. Ecol. Manag. 2013, 66, 224–233. [Google Scholar] [CrossRef]
- Rolo, V.; Moreno, G. Shrub encroachment and climate change increase the exposure to drought of Mediterranean wood-pastures. Sci. Total Environ. 2019, 660, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Serra-Maluquer, X.; Mencuccini, M.; Martinez-Vilalta, J. Changes in tree resistance, recovery and resilence across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 2018, 187, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Valladares, F.; Bonal, D.; Granier, A.; Grossiord, C.; Aranda, I. Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: The importance of timing. Tree Physiol. 2018, 38, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Puletti, N.; Mattioli, W.; Bussotti, F.; Pollastrini, M. Monitoring the effects of extreme drought events on forest health by Sentinel-2 imagery. J. Appl. Rem. Sens. 2019, 13, 020501. [Google Scholar] [CrossRef]
- Carus, S. Impact of defoliation by the pine processionary moth (Thaumetopoea pityocampa) on radial, height and volume growth of Calabrian pine (Pinus brutia) trees in Turkey. Phytoparasitica 2004, 32, 459–469. [Google Scholar] [CrossRef]
- Mecheri, H.; Kouidri, M.; Boukheroufa-Sakraoui, F.; Adamou, A.E. Variation in Thaumetopoea pityocampa infestation rate of Aleppo pine: Effect on dendrometric parameters in the Djelfa region forest (Saharan Atlas, Algeria). Comptes Rendus Biol. 2018, 341, 380–386. [Google Scholar] [CrossRef]
- Erkan, N. Five-year results of the impact of pine processionary moth (Thaumetopoea wilkinsoni Tams) on the growth of Turkish red pine (Pinus brutia Ten.). Turk. J. For. Res. 2018, 52, 135–142. [Google Scholar]
- Avila, J.M.; Gallardo, A.; Ibañez, B.; Gomez-Aparicio, L. Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forest. J. Ecol. 2016, 104, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Frisullo, S.; Lima, G.; di San Lio, G.M.; Camele, I.; Melissano, L.; Puglisi, I.; Pane, A.; Agosteo, G.E.; Prudente, L.; Cacciola, S.O. Phytophthora cinnamomi involved in the decline of holm oak (Quercus ilex) stands in Southern Italy. For. Sci. 2018, 64, 290–298. [Google Scholar] [CrossRef]
- Rodriguez-Molina, M.C.; Torres-Vila, L.M.; Blanco-Santos, A.; Nunez, E.J.P.; Torres-Alvarez, E. Viability of holm and cork oak seedlings from acorns sown in Soils naturally infected with Phytophthora cinnamomi. For. Pathol. 2002, 32, 365–372. [Google Scholar] [CrossRef]
- Brasier, C.M.; Scott, J.K. European oak declines and global warming: A theoretical assessment with special reference to the activity of Phytophthora cinnamomi. Bull. OEPP 1994, 24, 221–232. [Google Scholar] [CrossRef]
- Camilo-Alves, C.D.E.P.; da Clara, M.I.E.; Ribeiro, N.M.C.D. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. Eur. J. For. Res. 2013, 132, 411–432. [Google Scholar] [CrossRef]
- Martin-Garcia, J.; Solla, A.; Corcobado, T.; Siasou, E.; Woodward, S. Influence of temperatura on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For. Pathol. 2015, 45, 215–223. [Google Scholar] [CrossRef]
- Ajchler, M.; Lobocka, M.; Oszako, T. Pathogenic oomycetes of Phytophthora genus—A new threat to forest in Europe. Sylwan 2017, 161, 870–880. [Google Scholar]
- Hernandez-Lambrano, R.E.; Gonzalez-Moreno, P.; Sanchez-Agudo, J.A. Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. For. Ecol. Manag. 2018, 419, 101–109. [Google Scholar] [CrossRef]
- Solla, A.; Garcia, L.; Perez, A.; Cordero, A.; Cubera, E.; Moreno, G. Evaluating potassium phosphonate injections for the control of Quercus ilex decline in SW Spain: Implications of low soil contamination by Phytophthora cinnamomi and low soil water content on the effectiveness of treatments. Phytoparasitica 2009, 37, 303–316. [Google Scholar] [CrossRef]
- Bergot, M.; Cloppet, E.; Perarnaud, V.; Deque, M.; Marcais, B.; Desprez-Loustau, M.L. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Chang. Biol. 2004, 10, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Marcais, B.; Bergot, M.; Perarnaud, V.; Levy, A.; Desprez-Loustau, M.L. Prediction and mapping of the impact of winter temperature on the development of Phytophthora cinnamomi-induced cankers on red pedunculate oak in France. Phytopathology 2004, 94, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Habas, J.; Fernandez-Rebollo, P.; Casado, M.R.; Moreno, A.M.G.; Abellanas, B. Spatio-temporal analysis of oak decline process in open woodlands: A case study in SW Spain. J. Envron. Manag. 2019, 248, 109308. [Google Scholar] [CrossRef]
- Gallardo, A.; Morcuende, D.; Solla, A.; Moreno, G.; Pulido, F.; Quesada, A. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: Crosstalk between defoliation and Phytophthora cinnamomi infection. Physiol. Plant. 2019, 165, 319–329. [Google Scholar] [CrossRef]
- Sena, K.; Crocker, E.; Vincelli, P.; Barton, C. Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. For. Ecol. Manag. 2018, 409, 799–807. [Google Scholar] [CrossRef]
- Jimenez-Chacon, A.; Homet, P.; Matias, L.; Gomez-Aparicio, L.; Godoy, O. Fine scale determinants of soil litter fauna on a Mediterranean mixed oak forest invaded by the exotic soil-borne Pathogen Phytophthora cinnamomi. Forests 2018, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Aparicio, L.; Ibañez, B.; Serrano, M.S.; De Vita, P.; Avila, J.M.; Perez-Ramos, J.M.; García, L.V.; Sánchez, M.E.; Marañon, T. Spatial patterns of soil pathogens in declining Mediterranean forest: Implications for tree species regeneration. New Phytol. 2012, 194, 1014–1024. [Google Scholar] [CrossRef] [Green Version]
- Moralejo, E.; Garcia-Muñoz, J.A.; Descals, E. Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathol. 2009, 58, 271–283. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Viguera, B.; Cabrera, M.; Canellas, I. Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. For. Ecol. Manag. 2014, 320, 70–82. [Google Scholar] [CrossRef]
- Moreira, A.C.; Tapias, R.; Fernandes, L. Field susceptibility of cork oak trees with different provenances to Phytophthora cinnamomi. For. Pathol. 2018, 48, 12461. [Google Scholar] [CrossRef]
- Serrano, M.S.; Fernandez-Rebollo, P.; De Vita, P.; Sanchez, M.E. Susceptibility of common herbaceous crops to Phytophthora cinnamomi and its influence on Quercus root in rangelands. Eur. J. Plant Pathol. 2012, 134, 409–414. [Google Scholar] [CrossRef]
- Davi, H.; Durand-Gillmann, M.; Damesin, C.; Delzon, S.; Petit, C.; Rozenberg, P.; Sabatier, S.A.; Chadoeuf, J.; Boutte, B.; Boivin, T. Distribution of endemic bark beetle attacks and their physiological consequences on Pinus halepensis. For. Ecol. Manag. 2020, 469, 118187. [Google Scholar] [CrossRef]
- Beghami, R.; Bertella, N.; Laameri, M.; Bensaci, O.A. Bark beetle and woodborer insects’ outbreaks as a potent driver of Atlas cedar (Cedrus atlantica (Endl.)) Carriere) forests dieback in Aures-East Algeria. For. Sci. Technol. 2020, 16, 75–85. [Google Scholar] [CrossRef]
- Sanguesa-Barreda, G.; Camarero, J.J.; Garcia-Martin, A.; Hernandez, R.; de la Riva, J. Remote-sensing and tree-ring based characterization of forest defoliation and growth loss due to the Mediterranean pine processionary moth. For. Ecol. Manag. 2014, 320, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Pernek, M.; Lackovic, N.; Lukic, I.; Zoric, N.; Matosevic, D. Outbreak of Orthotomicus erosus (Coleoptera cucrulionedae) on Aleppo pine in the Mediterranean region in Croatia. Seefor-South-East Eur. For. 2019, 10, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Cahanovitc, R.; Sprintsin, M.; Herr, N.; Schiller, C. A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948–2017. For. Ecol. Manag. 2019, 432, 840–849. [Google Scholar] [CrossRef]
- Rivas-Ubach, A.; Sardans, J.; Hódar, J.A.; Garcia-Porta, J.; Guenther, A.; Paša-Tolić, L.; Oravec, M.; Urban, O.; Peñuelas, J. Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol. Evol. 2017, 7, 8976–8988, Dorad. [Google Scholar] [CrossRef] [Green Version]
- Panzavolta, T.; Panichi, A.; Bracalini, M.; Croci, F.; Ginetti, B.; Ragazzi, A.; Tiberi, R.; Morica, S. Dispersal and propagule pressure of Botryosphaeriacaceae species in a declining oak stand is affected by insect vectors. Forests 2017, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Ertugrul, M.; Varol, T.; Kaygin, A.T.; Ozel, H.B. The relationships between climate change and forest disturbances in Turkey. Fres. Environ. But. 2017, 26, 4064–4074. [Google Scholar]
- Colombari, F.; Battisti, A.; Schroeder, L.M.; Faccoli, M. Life-history promoting outbreaks of the pine bark beetle Ips acuminatus (Coleoptera: Curculionidae scolytinae) in the south-eastern Apls. Eur. J. For. Res. 2012, 131, 553–561. [Google Scholar] [CrossRef]
- Mahamedi, A.E.; Phillips, A.J.L.; Lopes, A.; Djellid, Y.; Arkam, M.; Eichmeier, A.; Zitouni, A.; Alves, A.; Berraf-Tebbal, A. Diversity, distribution and host association of Botryosphaeriaceaes species causing oak decline across different forest ecosystems in Algeria. Eur. J. Plant Pathol. 2020, 158, 745–765. [Google Scholar] [CrossRef]
- Ghaioule, D.; Lumaret, J.P.; Rochat, D.; Maatouf, N.; Niogret, J. Estimation of white grub damage (Coleoptera: Scarabaeoidea) in cork oak (Quercus suber L.) regeneration parcels of the mamora forest (Morocco) and search for biological control using sex pheromones. An. Soc. Entomol. Fr. 2007, 43, 1–8. [Google Scholar] [CrossRef]
- El Abidine, A.Z. Forest decline in Morocco: Causes and control strategy. Secheresse 2003, 14, 209–218. [Google Scholar]
- Ghjalem, A.; Barbosa, I.; Bouhraoua, R.T.; Costa, A. Climate signal in cork-ring chronosequences: Case studies in southwestern Portugal and Northwestern Algeria. Tree-Ring Res. 2018, 74, 15–27. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Rodriguez-Vallejo, C.; Gazol, A.; Palacios-Rodriguez, G.; Camarero, J.J. Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. Maroccana forests in northern Marocco. For. Ecol. Manag. 2020, 459, 117847. [Google Scholar] [CrossRef]
- De Waroux, Y.L.; Lambin, E.F. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl. Geogr. 2012, 32, 777–786. [Google Scholar] [CrossRef]
- Sebbar., B.; Moumni, A.; Lahrouni, A.; Chehbouni, A.; Belghazi, T.; Maksoudi, B. Remotely sensed phenology monitoring and Land-cover classification for the localization of the endemic argan tree in the southern-west of Morocco. J. Sust. For. 2021. [Google Scholar] [CrossRef]
- Mahojane, M.; Essahlaoui, A.; Oudija, F.; El Hafyani, M.; El Hmaidi, A.; El Ouali, A.; Randazzo, G.; Teodoro, A.C. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou F0rest, in the central middle Atlas of Marocco. Environments 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Manzanedo, R.D.; Sanchez-Salguero, R.; Navarro-Cerillo, R.M. Growth response to climate and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. An. For. Sci. 2013, 70, 769–780. [Google Scholar] [CrossRef]
- Barba, J.; Yuste, J.C.; Martínez-Vilalta, J.; Lloret, F. Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For. Ecol. Manag. 2013, 306, 79–87. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Yakir, D.; Osem, Y. Forest growing under dry conditions have higher hydrological resilence to drought than do more humid forest. Glob. Chang. Biol. 2017, 23, 2801–2817. [Google Scholar] [CrossRef]
- Tegel, W.; Seim, A.; Hakelberg, D.; Hoffmann, S.; Panev, M.; Westphal, T.; Büntgen, U. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. For. Res. 2014, 133, 61–71. [Google Scholar] [CrossRef]
- Azuara, J.; Lebreton, V.; Peyron, O.; Mazier, F.; Combourieu-Nebout, N. The Holocene history of low altitude Mediterranean Fagus sylvatica forests in southern France. J. Veg. Sci. 2018, 29, 438–449. [Google Scholar] [CrossRef]
- Castro, J.; Zamora, R.; Hodar, J.A.; Gomez, J.M. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: An experimental approach. Plant Ecol. 2005, 181, 191–202. [Google Scholar] [CrossRef]
- Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought induced multifactor decline of scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 2010, 13, 978–991. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Navarro-Cerrillo, R.M.; Swetnam, T.W.; Zavala, M.A. Is drought the main decline factor al the rear edge of Europe? The case of southern Iberian pine plantations. For. Ecol. Manag. 2012, 271, 158–169. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernandez-Cancio, A. Selective drought-induced decline of pin species in southeastern Spain. Selective drought-induced decline of pine species in southeastern Spain. Clim. Chang. 2012, 113, 767–785. [Google Scholar] [CrossRef]
- Poyatos, R.; Aguade, D.; Galiano, L.; Mencuccini, M.; Martinez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas Exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 2013, 200, 388–401. [Google Scholar] [CrossRef]
- Shestakova, T.A.; Camarero, J.J.; Ferrio, J.P.; Knorre, A.A.; Gutierrez, E.; Voltas, J. Increasing drought effects on five European pines modulate Delta C-13 growth coupling along a Mediterranean altitudinal gradient. Funct. Ecol. 2017, 31, 1359–1370. [Google Scholar] [CrossRef] [Green Version]
- Vila-Abrera, A.; Jump, A.S. Greater growth stability of tres in marginal habitasts suggests a patchy pattern of population loss and retention in response to increased drought at the rear edge. Ecol. Lett. 2019, 22, 1439–1449. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Peñuelas, J.; Ustin, S.L. Improving assessments of tropospheric ozone injury to Mediterranean montane conifer forest in California (USA) and Catalonia (Spain) with GIS models related to plant water relations. Atm. Environ. 2012, 62, 41–49. [Google Scholar] [CrossRef]
- Herrero, A.; Zamora, R.; Castro, J.; Hodar, J.A. Limits of pine forest distribution at the treeline: Herbivory matters. Plant Ecol. 2012, 213, 459–469. [Google Scholar] [CrossRef]
- Vilà, M.; Pino, J.; Font, X. Regional assessment of plant invasions across different habitat types. J. Veget. Sci. 2007, 18, 35–42. [Google Scholar] [CrossRef]
- Chytrý, M.; Maskell, L.C.; Pino, J.; Pyšek, P.; Vilà, M.; Font, X.; Smart, S.M. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 2008, 45, 448–458. [Google Scholar] [CrossRef]
- Clotet, M.; Basnou, C.; Bagaria, G.; Pino, J. Contrasting historical and current land-use correlation with diverse components of current alien plant invasions in Mediterranean habitats. Biol. Invasions 2016, 18, 2897–2909. [Google Scholar] [CrossRef]
- Pino, J.; Arnan, X.; Rodrigo, A.; Retana, J. Post-fire invasion and subsequent extinction of Conyza spp. in Mediterranean forests is mostly explained by local factors. Weed Res. 2013, 53, 470–478. [Google Scholar] [CrossRef]
- Erskine-Ogden, J.; Grotkopp, E.; Rejmanek, M. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change. Am. J. Bot. 2016, 103, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Ribeiro, N.M.C.A. Historical development of the Portuguese forest: The introduction of invasive species. Forest 2019, 10, 974. [Google Scholar] [CrossRef] [Green Version]
- Arianoutsou, M.; Vila, M. Black locust increased C and N stocks in the upper organic layers that are more vulnerable to disturbance. However, it did not increase N stocks in the mineral soil. Fire and Invasive Plant Species in the Mediterranean Basin. Isr. J. Ecol. Evol. 2012, 58, 195–203. [Google Scholar]
- Moreira, F.; Ferreira, A.; Abrantes, N.; Catry, F.; Fernandes, P.; Roxo, L.; Keizer, J.J.; Silva, J.S. Occurrence of native and exotic invasive trees in burned pine and eucaliptus plantations: Implications for post-fire forest conversión. Ecol. Engin. 2013, 58, 296–302. [Google Scholar] [CrossRef]
- Fernandes, P.; Antunes, C.; Correira, O.; Maguas, C. Do climatic and habitat conditions affect the reproductive success of an invasive tree species? An assessment of the phenology of Acacia longifolia in Portugal. Plant Ecol. 2015, 216, 343–355. [Google Scholar] [CrossRef]
- Godoy, O.; de Lemos, J.P.; Valladares, F. Invasive species can handle higher leaf temperatura under wáter stress than Mediterranean natives. Environ. Exp. Bot. 2011, 71, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Moreno, P.; Pino, J.; Gasso, N.; Vila, M. Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol. Invasions 2013, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Cabra-Rivas, I.; Alonso, A.; Castro-Diez, P. Does stream structure affect dispersal by water? A case study of the invasive tree Ailanthus altissima in Spain. Manag. Biol. Invasions 2014, 5, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Medina-Villar, S.; Castro-Diez, P.; Alonso, A.; Cabra-Rivas, I.; Parker, I.M.; Perez-Corona, E. Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain? Plant Soil 2015, 396, 311–324. [Google Scholar] [CrossRef]
- Idzojtic, M.; Zebec, M. Distribution of the tree of heaven (Ailanthus altissima/Mill./Swingle) and spreading of invasive woody alien species in Croatia. Clasniz Sumske Pokuse 2006, 5, 315–323. [Google Scholar]
- De Marco, A.; Arena, C.; Giordano, M.; De Santo, A. Impact of the invasive tree black locus ton soil properties of Mediterranean Stone pine-holm oak forests. Plant Soil 2013, 372, 473–486. [Google Scholar] [CrossRef]
- Castro-Diez, P.; Gonzalez-Munoz, N.; Alonso, A.; Gallardo, A.; Poorter, L. Effects of exotic invasive trees on nitrogen cycling: A case study in Central Spain. Biol. Invasions 2009, 11, 1973–1986. [Google Scholar] [CrossRef]
- Ouadah, N.; Kadik, L.; Bendjedda, N.; Kaabechekl, M. Impact of fire on the regeneration strategy of Mediterranean forest plant species. The present study was carried out in the Chrea National Park (Algeria). Rev. Ecol. Terre Vie 2016, 71, 356–366. [Google Scholar]
- Riva, M.J.; Liniger, H.; Valdecantos, A.; Schwilch, G. Impacts of land Management on the resilence of Mediterranean dry forest to fire. Sustainability 2016, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- Raftoyannis, Y.; Nocentini, S.; Marchi, E.; Sainz, R.C.; Guemes, C.G.; Pilas, I.; Peric, S.; Paulo, J.A.; Moreira-Marcelino, A.C.; Costa-Ferreira, M.; et al. Perceptions of forest experts on climate change and fire management in European Mediterranean forests. iFor. Biogeosci. For. 2013, 7, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape-wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffault, J.; Mouillot, F. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. Intern. J. Wildland Fire 2017, 26, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, J.; Fernandez-Miguelanez, I.; Hernando, C.; Guijarro, M.; Vega-Nieva, D.J.; Tolosana, E. Does forest biomass harvesting for energy reduce fire hazard in the Mediterranean basin? A case study in the Caroig Massif (Eastern Spain). Eur. J. For. Res. 2017, 136, 13–26. [Google Scholar] [CrossRef]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Stamou, Z.; Xystrakis, F.; Koutsias, N. The role of fire as a long-term landscape modifier: Evidence from long-term fire observations (1922–2000) in Greece. Appl. Geogr. 2016, 74, 47–55. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Troumbis, A.Y. Simulating vegetation shifts in north-eastern Mediterranean mountain forest under climatic change scenarios. Glob. Ecol. Biogeogr. 2009, 18, 64–77. [Google Scholar] [CrossRef]
- Turco, M.; Levin, N.; Tessler, N.; Saaroni, H. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Glob. Planet. Chang. 2017, 151, 28–35. [Google Scholar] [CrossRef]
- Batllori, E.; De Caceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere 2017, 8, e01906. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stacionary climate-fire models. Nat. Com. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Parra, A.; Ramirez, D.A.; Carreira, J.A.; Garcia-Ruiz, R.; Moreno, J.M. Effects of drought on soil phosphorus availability and fluxes in a burned Mediterranean shrubland. Geoderma 2012, 191, 61–69. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Parra, A.; Laudicina, V.A.; Moreno, J.M. Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. Sci. Total Environ. 2016, 573, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, M.B.; Laudicina, V.A.; Parra, A.; Albert-Belda, E.; Moreno, J.M. Drought and its legacy modulate the post-fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland. Glob. Chang. Biol. 2019, 25, 1409–1427. [Google Scholar] [CrossRef] [PubMed]
- Baudena, M.; Santana, V.; Baeza, M.J.; Bautista, S.; Eppinga, M.B.; Hemerik, L.; Garcia Mayor, A.; Rodriguez, F.; Valdecantos, A.; Vallejo, V.R.; et al. Increased aridity drives post-fire of Mediterranean forests towards open shrublands. New Phytol. 2020, 225, 1500–1515. [Google Scholar] [CrossRef] [Green Version]
- Baeza, M.J.; Valdecantos, A.; Alloza, J.A.; Vallejo, V.R. Human disturbance and Environmental factors as drivers of long-term post-fire regeneration pattern in Mediterranean forest. J. Veg. Sci. 2007, 18, 243–252. [Google Scholar] [CrossRef]
- Tessler, N.; Wittenberg, L.; Greenbaum, N. Vegetation cover and species richness after recurrent forest fires in the Eastern Mediterranean ecosystem of Mount Carmel, Israel. Sci. Total Environ. 2016, 572, 1395–1402. [Google Scholar] [CrossRef]
- Varol, T.; Ertugrul, M. Climate change and forest fire trend in the Aegean and Mediterranean regions of Turkey. Fres. Environ. Bull. 2015, 24, 3436–3444. [Google Scholar]
- Karavani, A.; Boer, M.M.; Baudena, M.; Colinas, C.; Diaz-Sierra, R.; Peman, J.; de Luis, M.; Enriquez-de-Salamanca, A. Fire-induced deforestation in drought-prone Mediterranean forestrs: Drivers and unknows from leaves to communities. Ecol. Monogr. 2018, 88, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.C.S.; Malvar, M.C.; Fernandez, C.; Serpa, D.; Keizer, J.J. Annual runoff and erosion in a recently burn Mediterranean forest—The effects of plowing and time-since-fire. Geomorphology 2016, 270, 172–180. [Google Scholar] [CrossRef]
- Gomez-Sanchez, E.; Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Moya, D.; De Las Heras, J. Effects of post-fire hillslope stabilisation techniques on chemical, physicochemical and microbiological soil properties in Mediterranean forest ecosystems. J. Environ. Manag. 2019, 246, 229–238. [Google Scholar] [CrossRef]
- Knicker, H.; Gonzalez-Vila, F.J.; Polvillo, O.; Gonzalez, J.A.; Almendros, G. Fire-induced transformation of C- and N-forms in different organic soil fractions from a dystric cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 2005, 37, 701–718. [Google Scholar] [CrossRef]
- Ubeda, X.; Bernia, S.; Simelton, E. The long-term effects on soil properties from a forest fire of varying intensity in a Mediterranean environment. Catchment Dynamics and River Processes: Mediterranean and other Climate Regions. Edited by: Garcia C, Batalla RJ. Book Series: Develop. Earth Surf. Proses. 2005, 7, 87–102. [Google Scholar]
- Alcaniz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Ubeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgri Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Garcia-Llamas, P.; Suarez-Seoane, S.; Taboada, A.; Fernandez-Manso, A.; Quintano, C.; Fernandez-Garia, V.; Fernandez-Guisuraga, J.M.; Marcos, E.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For. Ecol. Manag. 2019, 433, 24–32. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutierrez, J.M. Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Clim. Chang. 2014, 122, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.E.; Benito, E.; Keizer, J.J. Influence of wildfire severity on soil physical degradation in two pine forest stands of NW Spain. Catena 2015, 133, 342–348. [Google Scholar] [CrossRef]
- Varela, V.; Vlachogiannis, D.; Sfetsos, A.; Karozis, S.; Politi, N.; Giroud, F. Projection of forest fire danger due to climate change in the French Mediterranean region. Sustainability 2019, 16, 4284. [Google Scholar] [CrossRef] [Green Version]
- Coello, J.; Ameztegui, A.; Rovira, P.; Fuentes, C.; Pique, M. Innovative soil conditioners and mulches forest restoration in semiarid conditions in northeast Spain. Ecol. Eng. 2018, 118, 52–65. [Google Scholar] [CrossRef]
- Cangir, C.; Boyraz, D. Climate change and impact of desertification or soil/(land degradation in Turkey, combating desertification. J. Tekirdag Agricul. Fac. 2008, 5, 169–186. [Google Scholar]
- Laouina, A.; Aderghal, M.; Al Karkouri, J.; Antari, M.; Chacker, M.; Laghazi, Y.; Machmachi, J.; Machouri, N.; Nafaa, R.; Naimi, K.; et al. The efforts for cork oak forest management and their effects on soil conservation. For. Syst. 2010, 19, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Madeira, M. Thirty years of research on soil quality in forest systems under Mediterranean conditions. Trends and future. Span. J. Soil Sci. 2015, 5, 98–110. [Google Scholar]
- Salvati, L.; Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Belgacem, A.; Sole-Benet, A.; Chaker, M.; Fassouli, V.; Gokceoglu, C.; et al. Unveiling soil degradation and desertification risk in the Mediterranean basin: A data mining analysis of the relationships between biophysical and socioeconomic factors in agro-forest landscapes. J. Environ. Plan. Manag. 2015, 58, 1789–1803. [Google Scholar] [CrossRef]
- Ozalp, M.; Yuksel, E.E.; Yuksek, T. Soil property changes after conversion from forest to pasture in Mount Sacinka, Artvin, Turkey. Land Degrad. Develop. 2016, 27, 1007–1017. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape. Arid Land Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. Towards sustainability in agro-forest systems? Grazing intensity, soil degradatrion and the socioeconomic profile of rural communities in Italy. Ecol. Econom. 2015, 112, 1–13. [Google Scholar] [CrossRef]
- Jimenez, M.N.; Fernandez-Ondono, E.; Ripoll, M.A.; Castro-Rodriguez, J.; Huntsinger, L.; Navarro, F.B. Stones and organic mulches improve Quercus ilex L. afforestation success under Mediterranean climatis conditions. Land Degrad. Develop. 2016, 27, 357–365. [Google Scholar] [CrossRef]
- Guenon, R.; Gros, R. Soil microbial functions after forest fires affrected by the compost quality. Land Degrad. Develop. 2016, 27, 1391–1402. [Google Scholar] [CrossRef]
- Badia, D.; Marti, C. Fire and rainfall energy on soil erosion and runoff generation in semi-arid forested lands. Arid Land Res. Manag. 2008, 22, 93–108. [Google Scholar] [CrossRef]
- Salvati, L.; Sabbi, A.; Smiraglia, D.; Zitti, M. Does forest expansion mitigate the risk of desertification? Exploring soil degradation and land-use changes in a Mediterranean country. Inter. For. Rev. 2014, 16, 485–496. [Google Scholar] [CrossRef]
- Andres-Abellan, M.; Wic-Baena, C.; Lopez-Serrano, F.R.; García-Morote, F.A.; Martinez-García, E.; Picazo, M.I.; Rubio, E.; Moreno-Ortego, J.L.; Bastida-Lopez, F.; Garcia-Izquierdo, C. A soil-quality index for soil from Mediterranean forests. Eur. J. Soil Sci. 2019, 70, 1001–1011. [Google Scholar] [CrossRef]
- Perez-Izquierdo, L.; Saint-Andre, L.; Santenoise, P.; Buee, M.; Rincon, A. Tree genotype and seasonal effects on soil properties and biogeochemical functioning in Mediterranean pine forests. Eur. J. Soil Sci. 2018, 69, 1087–1097. [Google Scholar] [CrossRef]
- Médail, F.; Quézel, P. Biodiversity hotspots in the Mediterranean basin: Setting global conservation priorities. Conserv. Biol. 2001, 13, 1510–1513. [Google Scholar] [CrossRef]
- Infusino, M.; Greco, S.; Turco, R.; Bernardini, V.; Scalercio, S. Managed mountain forest as diversity reservoirs in Mediterranean landscapes: New data on endemic species and faunistic novelties of moths. Bull. Insectol. 2016, 69, 249–258. [Google Scholar]
- Médail, F.; Monnet, A.C.; Pavon, D.; Nikolic, T.; Dimopoulos, P.; Bacchetta, G.; Arroyo, J.; Barina, Z.; Albassatneh, M.C.; Domina, G.; et al. What is a tree in the Mediterranean basin hotspot? A critical analysis. For. Ecosys. 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Gauquelin, T.; Michon, G.; Joffre, R.; Duponnois, R.; Genin, D.; Fady, B.; Dagher-Kharrat, M.B.; Derrigj, A.; Slimani, S.; Badri, W.; et al. Mediterranean forests, land use and climate change: A social-ecological perspective. Reg. Environ. Chang. 2018, 18, 623–636. [Google Scholar] [CrossRef]
- Santoja, M.; Foucault, Q.; Rancon, A.; Gauquelin, T.; Fernandez, C.; Baldy, V.; Mirleau, P. Contrasting responses of bacterial and fungal communications to plant litter diversity in a Mediterranean oak forest. Soil Biol. Biochem. 2018, 125, 27–36. [Google Scholar] [CrossRef]
- Bevivino, A.; Paganin, P.; Bacci, G.; Florio, A.; Pellicer, M.S.; Papaleo, M.C.; Mengoni, A.; Ledda, L.; Fani, R.; Benedetti, A.; et al. Soil Bacterial Community Response to Differences in Agricultural Management along with Seasonal Changes in a Mediterranean Region. PLoS ONE 2014, 9, e105515. [Google Scholar] [CrossRef] [Green Version]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol Biol. Rev. 2017, 8, e00063-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, H.Y.H.; Chen, X.; Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Com. 2019, 10, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oria-de-Rueda, J.A.; Hernandez-Rodriguez, M.; Martin-Pinto, P.; Pando, V.; Olaizola, J. Could artificial reforestation provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean áreas? For. Ecol. Manag. 2010, 260, 171–180. [Google Scholar] [CrossRef]
- Buscardo, E.; Freitas, H.; Pereira, J.S.; De Angelis, P. Common Environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest. Mycorrhiza 2011, 21, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Aragon, G.; Martinez, I.; Izquierdo, P.; Belinchon, R.; Escudero, A. Effects of forest Management on epiphytic lichen diversity in Mediterranean forests. Appl. Veg. Sci. 2010, 13, 183–194. [Google Scholar] [CrossRef]
- Quinto, J.; Micó, E.; Martínez-Falcón, A.P.; Galante, E.; Marcos-García, M.A. Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. J. Insect Cons. 2014, 18, 981–992. [Google Scholar] [CrossRef]
- Herrera, J.M.; Salgueiro, P.A.; Medinas, D.; Costa, P.; Encarnacao, C.; Mira, A. Generalities of vertebrate responses to landscape composition and configuration gradients in a highly heterogeneous Mediterranean región. J. Biogeog. 2016, 43, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Gonzalez-Perez, J.A.; Turmero, A.; Hernandez, M.; Ball, A.S.; Gonzalez-Vila, F.J.; Aria, M.E. Wildfire effects on the microbial activity and diversity in a Mediterranean forest soil. Catena 2017, 158, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Lazarina, M.; Devalez, J.; Neokosmidis, L.; Sgardelis, S.P.; Kallimanis, A.S.; Tscheulin, T.; Tsalkatis, P.; Kourtidou, M.; Mizerakis, P.; Nakas, G.; et al. Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology 2019, 100, e02615. [Google Scholar] [CrossRef]
- Nascimiento, E.; Reis, F.; Chichorro, F.; Canhoto, C.; Gonçalbves, A.L.; Simoes, S.; Sousa, J.P.; da Silva, P.M. Effects of Management on plant litter and consequences for litter mass loss Collembola functional diversity in a Mediterranean agro-forest system. Pedobiologia 2019, 75, 38–51. [Google Scholar] [CrossRef]
- Selvi, F.; Carrari, E.; Coppi, A. Impact of pine invasión on the taxonomic and phylogenetic diversity of a relict Mediterranean forest ecosystem. For. Ecol. Manag. 2016, 367, 1–11. [Google Scholar] [CrossRef]
- Kouba, Y.; Martinez-Garcia, F.; de Frutos, A.; Alados, C.L. Effects of previous land-use on plant species composition and diversity in Mediterranean forest. PLoS ONE 2015, 10, e0139031. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Muñoz, A.; Pesqueira, X.M.; Garcia-Duro, J.; Reyes, O.; Casal, M. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pirenaica in relation to fire. For. Ecol. Manag. 2009, 257, 1596–1602. [Google Scholar] [CrossRef]
- Gil-Tena, A.; Saura, S.; Brotons, L. Effects of forest composition and structure on bird species richness in a Mediterranean context: Implications for forest ecosystem management. For. Ecol. Manag. 2007, 242, 470–476. [Google Scholar] [CrossRef]
- Hernando, S.; Brotons, L. Forest bird diversity in Mediterranean areas affected by wildfires: A multi-scale approach. Ecography 2002, 25, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Gondard, H.; Romane, F.; Santa-Regina, I.; Leonardi, S. Forest management and plant species diversity in chesnut stands of three Mediterranean areas. Biodiver. Conserv. 2006, 15, 1129–1142. [Google Scholar] [CrossRef]
- Buse, J.; Levanony, T.; Timm, A.; Dayan, T.; Assmann, T. Saproxylic beetle assemblages in the Mediterranean region: Impact of forest management on richness and structure. For. Ecol. Manag. 2010, 259, 1376–1384. [Google Scholar] [CrossRef]
- Gil-Tena, A.; Fortin, M.J.; Brotons, L.; Saura, S. Forest avian species richness distribution and management guidelines under global change in Mediterranean landscapes. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin, Germany, 2011; pp. 231–251. [Google Scholar]
- Mazzei, A.; Bonacci, T.; Horak, J.; Brandmayr, P. The role of topography, stand and habitat features form management and biodiversity of a prominent forest hotspot of the Mediterranean Basin: Saproxylic beetles as possible indicators. For. Ecol. Manag. 2018, 410, 66–75. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Pons, X.; Ninyerola, M.; Vayreda, J.; Peñuelas, J. Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers. Glob. Ecol. Biogeogr. 2014, 23, 371–384. [Google Scholar] [CrossRef]
- Carnicer, J.; Barbeta, A.; Sperlich, D.; Coll, A.; Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 2013, 4, 409. [Google Scholar] [CrossRef] [Green Version]
- Puddu, G.; Falcucci, A.; Maiorano, L. Forest changes over a century in Sardinia: Implications for conservation in a Mediterranean hotspot. Agroforest. Syst. 2012, 85, 319–330. [Google Scholar] [CrossRef]
- Cervera, T.; Pino, J.; Marull, J.; Padro, R.; Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Pol. 2019, 80, 318–331. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Galvan, I.; Sanchez-Oliver, J.S.; Benayas, J.M.R. Regional distribution patterns predict bird occurrence in Mediterranean cropland afforestation. Ecol. Res. 2014, 29, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Tague, C.L.; Moritz, M.; Hanan, E. The changing water cycle: The eco-hydrologic impacts of forest density reduction in Mediterranean (seasonality dry) regions. Wiley Interdiscip. Rev. Water 2019, 6, 1350. [Google Scholar] [CrossRef]
- Vacca, A. Effect of land use on forest floor and soil of a Quercus suber L-forest in Gallura (Sardinia, Italy). Land Degrad. Develop. 2000, 11, 167–180. [Google Scholar] [CrossRef]
- Rosati, L.; Fipaldini, M.; Marignani, M.; Blasi, C. Effects of fragmentation on vascular plant diversity in a Mediterranean forest archipelago. Plant Biosys. 2010, 144, 38–46. [Google Scholar] [CrossRef]
- Gonzalez-Moreno, P.; Quero, J.L.; Poorter, L.; Bonet, F.J.; Zamora, R. Is spatial structure the key to promote plant diversity in Mediterranean forest plantations? Basic Appl. Ecol. 2011, 12, 251–259. [Google Scholar] [CrossRef]
- Velamazan, M.; San Miguel, A.; Escribano, R.; Perea, R. Compatibility of regeneration silviculture and wild ungulates in a Mediterranean pine forest: Implications for tree recruitment and Woody plant diversity. Ann. For. Sci. 2018, 75, 35. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Chang. 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Teruel-Coll, M.; Pareja, J.; Bartolome, J.; Serrano, E.; Mentaberre, G.; Cuenca, R. Effects of boom and bust grazing Management on vegetation and Health of beef cattle used for wildfire prevention in a Mediterranean forest. Sci. Total Environ. 2019, 665, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, B.; Gomez-Aparicio, L.; Stoll, P.; Avila, J.M.; Perez-Ramos, I.M.; Maranon, T. A Neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS ONE 2015, 10, 0117827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Dios, V.R.; Fischer, C.; Colinas, C. Climate change effects on Mediterranean forest and preventive measures. New For. 2007, 33, 29–40. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J. Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 2013, 112, 519–535. [Google Scholar] [CrossRef]
- Granados, M.E.; Vilagrosa, A.; Chirino, E.; Vallejo, V.R. Reforestation with resprouter species to increase diversity and resilence in Mediterranean pine forest. For. Ecol. Manag. 2016, 362, 231–240. [Google Scholar] [CrossRef]
- Tomaz, C.; Alegria, C.; Monteiro, J.M.; Teixeira, M.C. Land cover change and afforestation of marginal and abandoned Agricultural land: A 10 year analysis in a Mediterranean region. For. Ecol. Manag. 2013, 308, 40–49. [Google Scholar] [CrossRef]
- Cutino, I.; Pasta, S.; Maggiore, C.V.; Badalamenti, E.; La Mantia, T. The role of dominant tree cover and silvicultural practices on the post-fire recovery of Mediterranean afforestation. An. Silvic. Res. 2018, 42, 20–31. [Google Scholar]
- Pausas, J.G.; Bladé, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, A.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and oaks in the restoration of Mediterranean landscape of Spain: New perspectives for an old practice-a review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Cuesta, B.; Benayas, J.M.R.; Gallardo, A.; Villar-Salvador, P.; Gonzalez-Espinosa, M. Soil Chemical properties in abandoned Mediterranean cropland after succession and oak reforestation. Acta Oecol. 2012, 38, 58–65. [Google Scholar] [CrossRef]
- Andres, C.; Ojeda, F. Effects of afforestation with pines on Woody plant diversity of Mediterranean heathlands in southern Spain. Biodiv. Ccnserv. 2002, 11, 1511–1520. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J.; Bautista, S.; Bellot, J. Does Pinus halepensis facilitate the establishment of shrubs in Mediterranean semi-arid afforestation? For. Ecol. Manag. 2003, 176, 147–160. [Google Scholar] [CrossRef]
- Bellot, J.; Maestre, F.T.; Chirino, E.; Hernandez, N.; de Urbina, J.O. Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol. 2004, 25, 7–15. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Navarro, J.; Espigares, T.; Nicolau, J.M.; Zavala, M.A. Effects of artificial shading and weed mowing in reforestation of Mediterranean abandoned cropland with contrasting Quercus species. For Ecol. Manag. 2005, 212, 302–314. [Google Scholar] [CrossRef]
- Castro, J.; Zamora, R.; Hodar, J.A.; Gomez, J.M.; Gomez-Aparicio, L. Benefits of using shrubs as nurse plants for a reforestation in Mediterranean mountains: A 4-year study. Restor. Ecol. 2004, 12, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Gasque, M.; Garcia-Fayos, P. Interaction between Stipa tenacissima and Pinus halepensis: Consequences for reforestation and the dynamics of grass steppes in semi-arid Mediterranean areas. For. Ecol. Manag. 2004, 189, 251–261. [Google Scholar] [CrossRef]
- Osem, Y.; Ginsberg, P.; Tauber, I.; Atzmon, N.; Perevolotsky, A. Sustainable management of Mediterranean planted coniferous forest: An Israeli definition. J. For. 2008, 106, 38–46. [Google Scholar]
- Osem, Y.; Lavi, A.; Rosenfeld, A. Colonization of Pinus halepensis in Mediterranean habitats: Consequences of afforestation, grazing and fire. Biol. Invasions 2011, 13, 485–498. [Google Scholar] [CrossRef]
- Mauri, A.; Di Leo, M.; de Rigo, D.; Caudullo, G. Pinus halepensis and Pinus brutia in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e0166b8+. [Google Scholar]
- Barbera, G.G.; Martinez-Fernandez, F.; Alvarez-Rogel, J.; Albadalejo, J.; Castillo, V. Short- and intermediate-term effects of site and plant preparation techniques on reforestation of a Mediterranean semiarid ecosystem with Pinus halepensis Mill. New For. 2005, 29, 177–198. [Google Scholar] [CrossRef]
- Catarineu, C.; Reyes-López, J.; Herraiz, J.A.; Barberá, G.G. Effect of pine reforestation associated with soil disturbance on ant assemblages (Hymenoptera: Formicidae) in a semiarid steppe. Eur. J. Entomol. 2018, 115, 562–574. [Google Scholar] [CrossRef]
- Kus, M.; Ulgen, H.; Gunes, Y.; Kiris, R.; Ozel, A.; Zeydanli, U. Carbon certification of afforestation and reforestation areas in Turkey. Carbon Management, Technologies, and Trends in Mediterranean Ecosystems. In Carbon Management, Technologies, and Trends in Mediterranean Ecosystems; Ersahin, S., Kapur, S., Akca, E., Namli, A., Erdogan, H.E., Eds.; Springer: Cham, Switzerland, 2017; Volume 15, pp. 131–137. [Google Scholar]
- Querejeta, J.I.; Roldan, A.; Albadalejo, J.; Castillo, V. The role of mycorrhizae, site preparation, and organioc amendment in the afforestation of a semi-arid Mediterranean site with Pinus halepensis. For Sci. 1998, 44, 203–211. [Google Scholar]
- Hueso-Gonzalez, P.; Martinez-Murillo, J.F.; Ruiz-Sinoga, J.D. The impact of organic emendments on forest soil properties under Mediterranean climatic conditions. Land Degrad. Develop. 2014, 25, 604–612. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, M.A.; De la Rosa, J.M.; Jimenez-Morillo, N.T.; Almendros, G.; Gonzalez-Perez, J.A.; Knicker, H. Post-fire recovery of soil organic Matter in a Cambisol from typical Mediterranean forest in Southwestern Spain. Sci. Total Environ. 2016, 572, 1414–1421. [Google Scholar] [CrossRef]
- Hueso-Gonzalez, P.; Martinez-Murillo, J.F.; Ruiz-Sinoga, J.D. Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain). Solid Earth 2016, 7, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.O.A.; Ferreira, A.J.D.; Laouina, A.; Hamza, A.; Chaker, M.; Naafa, R.; Regaya, K.; Boule, A.K.; Keizer, J.J.; Carvalho, T.M.M. Changes in land use and land management practices affecting land degradation within forest and grazing ecosystems in the western Mediterranean. Adv. Geoecol. 2003, 37, 137–154. [Google Scholar]
- Larcheveque, M.; Ballini, C.; Korboulewsky, N.; Montes, N. The use of compost in afforestation of Mediterranean areas: Effects of soil properties and young tree seedlings. Sci. Total Environ. 2006, 369, 220–230. [Google Scholar] [CrossRef]
- Ingelmo, F.; Albiach, R.; Gamon, S. Organic matter of a soil amended with composted sludges and affected by simulated processes of soil degradation. Adv. Ecol. Sci. 2003, 18–19, 971–980. [Google Scholar]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Tirado, J.; Hidalgo, P.J. Ecological niche modelling of three Mediterranean pin especies in the South of Spain: A tool for afforestation/reforestation programs in the twenty-first century. New For. 2016, 47, 411–429. [Google Scholar] [CrossRef]
- Campo, J.; Stijsiger, R.J.; Nadal-Romero, E.; Cammeraat, E.L.H. The effects of land abandonment and long-term afforestation practices on the organic carbon stock and lignin content of Mediterranean humid mountain Soils. Eur. J. Soil Sci. 2019, 70, 947–959. [Google Scholar] [CrossRef]
- Riva, M.J.; Baeza, J.; Bautista, S.; Chrisoforou, M.; Daliakopoulos, I.N.; Hadjimitis, D.; Keizer, J.J.; Liniger, H.; Quaranta, G.; Ribeiro, C.; et al. How does land management contributr to the resilence of Mediterranean forest and rangelands? A participatory assessment. Land Degrad. Develop. 2018, 29, 3721–3735. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Lopez-Senespleda, E.; Bravo, F.; del Rio, M. Forest Management and carbon sequestration in the Mediterranean region. A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
- Mavsar, R.; Rois, M.; Palahi, M. Innovative and integrated approaches for improved of the Mediterranean forest ecosystem. Forest Policy and Economics in Support of Good Governance. Eur. Forest Inst. Proc. 2010, 58, 157–160. [Google Scholar]
- Moya, D.; Alfaro-Sanchez, R.; Lopez-Serrano, F.; Dadi, T.; Hernandez-Tecles, E.; Ferrandis, P.; Heras, J.D.L. Post-fire Management of Mediterranean forests: Carbon storage in regenerated areas in Eastern iberian Peninsula. Cuad. Investig. Geogr. 2014, 40, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Orenes, F.; Arcenegui, V.; Chrenkova, K.; Mataix-Solera, J.; Molto, J.; Jara-Navarro, A.B.; Torres, M.P. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research. Sci. Total Environ. 2017, 586, 1057–1065. [Google Scholar] [CrossRef]
- Herrando, S.; Brotons, L.; Guallar, S.; Sales, S.; Pons, P. Postfire forest management and Mediterranean birds: The importance of the logging remmants. Biodiv. Conser. 2009, 18, 2153–2164. [Google Scholar] [CrossRef]
- Barberis, A.; Dettori, S.; Filigheddu, M.R. Management problems in Mediterranean cork oak forest: Post-fire recovery. J. Arid Environ. 2003, 54, 565–569. [Google Scholar] [CrossRef]
- Koufopoulou, S.; Michalopoulus, C.; Pappa, A.; Tzamtzis, N. Impact of a long-term fire retardant (Fire troll 931) on the physic-chemical properties of leachates from a Mediterranean forest soil: A short term, lab-scale study. Water Air Soil Pollut. 2015, 226, 158. [Google Scholar] [CrossRef]
- Sabbi, A.; Salvati, L. Searching for a downward spiral? Soil erosion risk, agro-forest landscape and socioeconomic conditions in Italian local communities. Land Use Pol. 2014, 41, 388–396. [Google Scholar] [CrossRef]
- Fabbio, G.; Merlo, M.; Tosi, V. Silvicultural Management in maintaining biodiversity and resistance of forest in Europe—The Mediterranean región. J. Environ. Manag. 2003, 67, 67–76. [Google Scholar] [CrossRef]
- Zornoza, R.; Mataix-Solera, J.; Guerrero, C.; Arcenegui, V.; Mataix-Beneyto, J.; Gomez, I. Validation the effectiveness and sensitivity of two soil Quality índices base don natural forest Soils under Mediterranean conditions. Soil Biol. Biochem. 2008, 40, 2079–2087. [Google Scholar] [CrossRef]
- Llovet, J.; Ruiz-Valera, M.; Josa, R.; Vallejo, V.R. Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment. Int. J. Wildland Fire 2009, 18, 222–232. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land abandonment in Mediterranean Environment provides ecosystem services via soil carbón sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuelas, J.; Sardans, J. Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests 2021, 12, 603. https://doi.org/10.3390/f12050603
Peñuelas J, Sardans J. Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests. 2021; 12(5):603. https://doi.org/10.3390/f12050603
Chicago/Turabian StylePeñuelas, Josep, and Jordi Sardans. 2021. "Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations" Forests 12, no. 5: 603. https://doi.org/10.3390/f12050603
APA StylePeñuelas, J., & Sardans, J. (2021). Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests, 12(5), 603. https://doi.org/10.3390/f12050603