Seedling Growth Performance of Four Forest Species with Different Techniques of Soil Tillage Used in Romanian Nurseries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Forest Nurseries and Local Conditions
2.2. Description of Seedbed Tillage Systems
2.3. Species Used, Sowing and Cultural Operations
2.4. Data Collection
2.4.1. Designation of Control and Test Plots
2.4.2. Shoot Size, Root Collar Diameter and Root System Size
2.4.3. Soil Samples
2.5. Data Processing and Statistical Analysis
2.5.1. Data Processing
2.5.2. Statistical Analysis
3. Results
3.1. Seedling Growth
3.1.1. Shoot Length and Root Collar Diameter
3.1.2. Root Volume
3.2. Condition of the Soils
3.2.1. Soil Condition in the Control Treatments
3.2.2. Changes in Soils’ Physical Properties as an Effect of the Seedbed Tillage System
3.3. Dependence of Seedling Growth Parameters on the Soil Physical Properties
3.3.1. Effect of Soil Physical Properties on Seedling Growth
3.3.2. Similarity of Growth in Root Collar Diameter, Height and Root Volume as a Response to Seedbed Tillage System and Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Forest Nursery (Soil) | Sampling Depth (cm) | Sand (%) | Silt (%) | Clay (%) | ||
---|---|---|---|---|---|---|
>0.2 mm | 0.2–0.02 mm | 0.02–0.01 mm | 0.01–0.0002 mm | <0.0002 mm | ||
FN1 (Fluvisol) | 0–10 | 1.7 | 39.0 | 14.5 | 24.2 | 20.6 |
10–20 | 1.8 | 37.5 | 14.1 | 23.0 | 23.8 | |
20–30 | 2.4 | 39.5 | 14.5 | 18.5 | 25.2 | |
Average | 2.0 | 38.7 | 14.3 | 21.9 | 23.2 | |
FN2 (Luvisol) | 0–10 | 0.7 | 36.0 | 16.9 | 16.9 | 29.5 |
10–20 | 2.3 | 45.4 | 12.5 | 12.5 | 27.3 | |
20–30 | 1.8 | 39.3 | 16.5 | 13.8 | 28.6 | |
Average | 1.6 | 40.2 | 15.3 | 14.4 | 28.5 | |
FN3 (Cambisol) | 0–10 | 23.9 | 31.1 | 8.0 | 22.0 | 15.0 |
10–20 | 28.2 | 30.8 | 9.0 | 16.0 | 16.0 | |
20–30 | 25.2 | 31.8 | 9.0 | 16.5 | 17.5 | |
Average | 25.8 | 31.2 | 8.7 | 18.2 | 16.2 |
Forest Nursery | Sampling Depth (cm) | pH | IN | Ah (me/100 g) | SB (me/100 g) | AI (me/100 g) | Carbonates (%) | Humus (%) | N (%) | N-NO3 (ppm) | P(AL) (ppm) | K(AL) (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FN1 (Fluvisol) | 0–10 | 7.85 | - | - | - | - | 1.30 | 2.95 | 0.143 | 1.4 | 14.6 | 150 |
10–20 | 8.00 | - | - | - | - | 2.70 | 2.40 | 0.118 | 5.3 | 14.5 | 200 | |
20–30 | 7.95 | - | - | - | - | 4.30 | 1.70 | 0.079 | 5.9 | 13.5 | 127 | |
Average | 7.93 | - | - | - | - | 2.77 | 2.35 | 0.113 | 4.20 | 14.20 | 159 | |
FN2 (Luvisol) | 0–10 | 7.50 | - | - | - | - | 2.15 | 3.20 | 0.157 | 9.6 | 20.6 | 188 |
10–20 | 7.60 | - | - | - | - | 1.75 | 3.50 | 0.172 | 7.6 | 19.7 | 192 | |
20–30 | 7.70 | - | - | - | - | 1.25 | 2.50 | 0.120 | 4.5 | 16,6 | 175 | |
Average | 7.60 | - | - | - | - | 1.72 | 3.07 | 0.150 | 7.23 | 18.97 | 185 | |
FN3 (Cambisol) | 0–10 | 5.75 | 2.18 | 4.90 | 17.20 | 0.05 | - | 2.80 | 0.137 | 1.8 | 9.0 | 65 |
10–20 | 5.50 | 1.14 | 6.60 | 16.40 | 0.50 | - | 1.60 | 0.077 | 4.4 | 9.0 | 96 | |
20–30 | 5.60 | 0.69 | 6.05 | 16.00 | 0.45 | - | 0.95 | 0.045 | 3.9 | 9.0 | 90 | |
Average | 5.62 | 1.34 | 5.85 | 16.53 | 0.33 | - | 1.78 | 0.086 | 3.37 | 9.00 | 84 |
Property & Forest Nursery | Soil Depth (cm), Control | Soil Depth (cm), Traditional | Soil Depth (cm), Minimal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0…5 | 5…10 | 10…20 | 20…30 | 0…5 | 5…10 | 10…20 | 20…30 | 0…5 | 5…10 | 10…20 | 20…30 | |
Bulk density (g × cm−3) | ||||||||||||
FN1 (Fluvisol) | 1.76 (0.25) | 1.75 a (0.22) | 1.73 (0.24) | 1.79 (0.25) | 1.64 (0.29) | 1.65 (0.21) | 1.66 (0.21) | 1.72 (0.24) | 1.77 (0.11) | 1.84 (0.07) | 1.81 (0.04) | 1.88 (0.08) |
FN2 (Luvisol) | 1.77 (0.28) | 1.73 (0.24) | 1.72 (0.23) | 1.75 (0.18) | 1.36 b (0.01) | 1.37 b (0.01) | 1.40 b (0.01) | 1.44 b (0.02) | 1.56 (0.11) | 1.64 (0.08) | 1.82 (0.05) | 1.87 (0.04) |
FN3 (Cambisol) | 1.56 (0.16) | 1.59 (0.24) | 1.70 a (0.21) | 1.66 (0.17) | 1.37 b (0.01) | 1.38 bc (0.01) | 1.40 b (0.01) | 1.45 ab (0.02) | 1.58 (0.02) | 1.59 (0.05) | 1.69 (0.09) | 1.76 (0.11) |
Moisture content (%) | ||||||||||||
FN1 (Fluvisol) | 20.04 (2.32) | 18.91 (2.59) | 17.14 (3.02) | 16.27 (2.97) | 20.41 (1.89) | 19.34 (1.96) | 18.12 a (0.95) | 16.93 (1.16) | 15.30 b (1.64) | 15.93 b (1.04) | 17.86 (1.61) | 16.95 (1.46) |
FN2 (Luvisol) | 23.67 (1.72) | 22.06 (2.15) | 20.00 (2.41) | 18.67 (1.97) | 23.55 (1.57) | 21.62 (1.94) | 20.43 (0.56) | 19.75 (0.73) | 13.34 b (0.87) | 14.71 b (1.17) | 16.71 b (1.50) | 16.52 b (1.07) |
FN3 (Cambisol) | 22.20 (6.98) | 18.91 (3.58) | 17.43 (3.31) | 15.48 (3.13) | 22.83 (1.54) | 20.94 (1.90) | 19.78 (0.56) | 19.14 b (0.73) | 13.97 b (1.98) | 13.52 b (2.00) | 13.40 b (1.37) | 13.54 (1.31) |
Porosity (%) | ||||||||||||
FN1 (Fluvisol) | 34.67 (9.39) | 35.01 a (8.02) | 35.76 (9.04) | 33.85 (9.26) | 39.25 (10.74) | 39.01 (7.90) | 38.50 (7.96) | 36.24 (8.91) | 34.53 (4.19) | 31.95 (2.58) | 32.80 (1.46) | 30.44 (3.00) |
FN2 (Luvisol) | 34.33 (10.28) | 36.08 (8.85) | 36.34 (8.37) | 35.22 (6.80) | 49.48 b (0.20) | 49.09 b (0.44) | 48.26 b (0.46) | 46.62 ab (0.85) | 42.27 (3.99) | 39.10 (2.95) | 32.47 (1.87) | 30.79 (1.59) |
FN3 (Cambisol) | 42.05 (5.94) | 41.18 (8.71) | 37.05 a (7.84) | 38.69 (6.16) | 49.28 b (0.20) | 48.87 c (0.45) | 48.02 b (0.46) | 46.38 ab (0.85) | 41.56 (0.57) | 41.07 (1.93) | 37.41 (3.51) | 34.92 (3.99) |
Water stock (m3×ha−1) | ||||||||||||
FN1 (Fluvisol) | 176.05 (27.89) | 331.61 (63.41) | 449.10 (116.67) | 731.97 (190.05) | 166.01 (24.38) | 316.20 (32.01) | 451.49 a (63.99) | 731.08 (128.06) | 135.84 b (21.69) | 292.57 (21.93) | 485.65 (40.15) | 793.47 (45.40) |
FN2 (Luvisol) | 209.25 (32.71) | 377.87 (41.12) | 516.36 (91.31) | 818.68 (133.09) | 160.63 b (10.65) | 297.05 b (25.17) | 428.13 b (14.78) | 711.83 c (32.10) | 104.19 b (11.84) | 242.32 b (27.07) | 456.48 (34.44) | 770.76 (37.96) |
FN3 (Cambisol) | 174.96 (58.96) | 301.58 (73.19) | 448.95 (118.51) | 649.23 (178.62) | 156.35 (10.47) | 288.94 (24.76) | 416.42 (14.65) | 692.84 (31.86) | 110.11 b (14.74) | 215.48 b (35.72) | 340.06 c (42.14) | 595.12 (70.20) |
Compactness (%) | ||||||||||||
FN1 (Fluvisol) | 28.36 (19.40) | 28.27 a (16.44) | 27.19 (18.41) | 31.05 (18.86) | 18.89 (22.20) | 20.09 (16.19) | 21.59 (16.21) | 26.17 (18.15) | 28.64 (8.67) | 34.54 (5.29) | 33.21 (2.98) | 37.99 (6.12) |
FN2 (Luvisol) | 28.35 (21.46) | 25.04 (18.39) | 24.86 (17.32) | 27.35 (14.04) | 0.65 b (0.40) | 1.21 b (0.88) | 2.83 b (0.93) | 3.82 ab (1.75) | 15.13 (8.01) | 21.33 (5.94) | 34.61 (3.78) | 36.47 (3.28) |
FN3 (Cambisol) | 11.37 (12.52) | 13.39 (18.32) | 22.17 a (16.47) | 19.15 (12.88) | -3.86 b (0.42) | -2.79 c (0.94) | -0.87 b (0.97) | 3.09 ab (1.78) | 12.41 (1.20) | 13.61 (4.05) | 21.41 (7.37) | 27.03 (8.33) |
References
- FAO. The State of the World’s Forests. Forests, Biodiversity and People; FAO: Rome, Italy, 2020; p. 188, ISSN 2521-7542. [Google Scholar]
- Mexal, J.G.; Landis, T.D. Target seedling concepts: Height and diameter. In Proceedings of the Target Seedling Symposium: Combined Meeting of the Western Forest Nursery Associations, Roseburg, OR, USA, 13–17 August 1990; General Technical Report, RM-200. Rose, R., Campbell, S.J., Landis, T.D., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1990; pp. 17–35. [Google Scholar]
- Abrudan, I.V. Împăduriri; Transilvania University Press: Brașov, Romania, 2006; ISBN 973-635-688-4. [Google Scholar]
- Boja, N.; Boja, F.; Teusdea, A.; Vidrean, D.; Marcu, M.V.; Iordache, E.; Duţă, C.I.; Borz, S.A. Resource allocation, pit quality, and early survival of seedlings following two motor-manual pit-drilling options. Forests 2018, 9, 665. [Google Scholar] [CrossRef] [Green Version]
- Ersson, B.T.; Laine, T.; Saksa, T. Mechanized tree planting in Sweden and Finland: Current state and key factors for future growth. Forests 2018, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.K.; Hamann, A. Strategies for reforestation under uncertain future climates: Guidelines for Alberta, Canada. PLoS ONE 2011, 6, e22977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiskanen, J.; Saksa, T.; Luoranen, J. Soil preparation method affects outplanting success of Norway spruce container seedlings on till soils susceptible to frost heave. Silva. Fenn 2013, 47, 893. [Google Scholar] [CrossRef] [Green Version]
- Luoranen, J.; Saksa, T.; Lappi, J. Seedling, planting site and weather factors affecting the success of autumn plantings in Norway spruce and Scot pine seedlings. For. Ecol. Manag. 2018, 419, 79–90. [Google Scholar] [CrossRef]
- McDonald, T.P.; Fulton, J.P.; Darr, M.J.; Gallagher, T.V. Evaluation of a system to spatially monitor hand planting of pine seedlings. Comput. Electron. Agric. 2008, 64, 173–182. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Keane, M.; Farrel, E.P. Effect of planting stocktype and cultivation treatment on the establishment of Norway spruce on cutaway peatlands. New For. 2008, 36, 307–330. [Google Scholar] [CrossRef]
- Hallsby, G.; Örlander, G. A comparison of mounding and inverting to establish Norway spruce on podzolic soils in Sweden. Forestry 2004, 77, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Buitrago, M.; Paquette, A.; Thiffault, N.; Bélanger, N.; Messier, C. Early performance of planted hybrid larch: Effects of mechanical site preparation and planting depth. New For. 2015, 46, 319–377. [Google Scholar] [CrossRef] [Green Version]
- Harrington, T.B.; Howell, K.D. Planting cost, survival, and growth one to three years after establishing loblolly pine seedlings with straight, deformed or pruned roots. New For. 1998, 15, 193–204. [Google Scholar] [CrossRef]
- Laine, T.; Saarinen, V.-M. Comparative study of the Risutec automatic plant container (APC) and Bracke planting devices. Silva Fenn. 2014, 48. [Google Scholar] [CrossRef] [Green Version]
- Luoranen, J.; Rikala, R. Field performance of Scots pine (Pinus sylvestris L.) seedlings planted in disk trenched or mounded sites over an extended planting season. New For. 2013, 44, 147–162. [Google Scholar] [CrossRef]
- Luoranen, J.; Viiri, H. Deep planting decreases risk of drought damage and increases growth of Norway spruce container seedlings. New For. 2016, 47, 701–714. [Google Scholar] [CrossRef]
- Luoranen, J. Autumn versus spring planting: The initiation of root growth and subsequent field performance of Scots pine and Norway spruce seedlings. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef]
- Luoranen, J.; Rikala, R.; Smolander, H. Machine planting of Norway spruce by Bracke and Ecoplanter: An evaluation of soil preparation, planting method and seedling performance. Silva Fenn. 2011, 45, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Niuwenhuis, M.; Egan, D. An evaluation and comparison of mechanised and manual tree planting on afforestation and reforestation sites in Ireland. Int. J. For. Eng. 2002, 3, 11–23. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable forest operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinimann, H.R. Forest operations engineering and management—The ways behind and ahead a scientific discipline. Croat. J. For. Eng 2007, 28, 107–121. [Google Scholar]
- Grossnickle, S.C. Why seedlings survive: Influence of plant attributes. New For. 2012, 43, 711–738. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; MacDonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; p. 347. ISBN 9781118422342. [Google Scholar]
- Bejarano, M.D.; Villar, R.; Murillo, A.M.; Quero, J.L. Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res. 2010, 110, 108–114. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Moderate soil compaction: Implication on growth and architecture in seedlings of 17 woody plant species. Soil Tillage Res. 2009, 103, 325–331. [Google Scholar] [CrossRef]
- Forest Nursery Manual: Production of Bareroot Seedlings; Duryea, M.L.; Landis, T.D. (Eds.) Oregon State University: Corvallis, OR, USA, 1984; p. 386. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvorák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdinš, A.; Styranivsky, O. Timber harvesting methods in Eastern European countries: A review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- National Forest Administration—RNP Romsilva: Forest Nurseries. Available online: http://www.rosilva.ro/articole/pepiniere_silvice__p_130.htm (accessed on 9 April 2021).
- Del Campo, A.D.; Navarro, R.M.; Ceacero, C.J. Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: An approach for establishing a quality standard. New For. 2010, 39, 19–37. [Google Scholar] [CrossRef]
- Marogel-Popa, T.; Marcu, M.V.; Nuţă, I.S.; Borz, S.A. Evaluarea productivităţii şi a condiţiilor ergonomice posturale în operaţii mecanizate de întreţinere a solului realizate cu agregate pentru discuit şi frezat în culture de plop. Revista Pădurilor 2019, 134, 31–48. [Google Scholar]
- Marcu, M. Meteorologie şi Climatologie Forestieră; Ceres Publishing House: Bucureşti, Romania, 1983; pp. 184–186. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015. World Soil Resources Report 106. 2015. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 9 April 2021).
- Canarache, A.; Șerbănescu, I.; Teaci, D. , Savopol, L. Îndrumător Pentru Studiul Solului pe Teren şi în Laborator; Agro-Silvică Publishing House: Bucharest, Romania, 1990. [Google Scholar]
- Osman, K.T. Forest Soils. Properties and Management; Springer: Cham, Switzerland, 2013; p. 217. ISBN 978-3-319-02541-4. [Google Scholar]
- Şofletea, N.; Curtu, L. Dendrologie, 2nd ed.; “Pentru Viaţă” Publishing House: Brasov, Romania, 2008; p. 419. ISBN 978-973-85874-4-1. [Google Scholar]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Burdett, A.N. Quality control in the production of forest planting stock. For. Chron. 1983, 59, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Chavasse, C.G.R. Planting stock quality: A review of factors affecting performance. N. Z. J. For. Sci. 1980, 25, 144–171. [Google Scholar]
- Dey, D.C.; Parker, W.C. Morphological indicators of stock quality and field performance of red oak (Quercus rubra L.) seedlings underplanted in a central Ontario shelterwood. New For. 1997, 14, 145–156. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Seedling size and reforestation success. How big is enough? Forest Research Information Paper. In The Thin green line. Proceedings of a Symposium on the State-of-Art in Reforestation, Thunder Bay, ON, Canada, 26–28 July 2005; Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 2005; Volume 160, pp. 144–149. [Google Scholar]
- Ivetić, V.; Devetaković, J.; Maksimović, Z. Initial height and diameter are equally related to survival and growth of hardwood seedlings in first year after field planting. Reforesta 2016, 2, 6–21. [Google Scholar] [CrossRef]
- Ivetić, V.; Grossnickle, S.; Škorić, M. Forecasting the field performance of Austrian pine seedlings using morphological attributes. iForest 2016, 10, 99–107. [Google Scholar] [CrossRef] [Green Version]
- South, D.B.; Rakestraw, J.L.; Lowerts, G.A. Early gains from planting large-diameter seedlings and intensive management are additive for loblolly pine. New For. 2001, 22, 97–110. [Google Scholar] [CrossRef]
- Davis, A.S.; Jacobs, D.F. Quantifying root system quality of nursery seedlings and relationship to outplanting performance. New For. 2005, 30, 295–311. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Importance of root growth in overcoming planting stress. New For. 2005, 30, 273–294. [Google Scholar] [CrossRef]
- Rose, R.; Haase, D.L.; Kroiher, F.; Sabin, T. Root volume and growth of ponderosa pine and Douglas-fir seedlings: A summary of eight growing seasons. West. J. Appl. For. 1997, 12, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Orozco, M.M.; Prieto-Ruiz, J.A.; Aldrete, A.; Hernandez-Diaz, J.C.; Chavez-Simental, J.A.; Rodriguez-Laguna, R. Nursery production of Pinus engelmannii Carr. With substrates based on fresh sawdust. Forests 2018, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Cicek, E.; Cicek, N.; Bilir, N. Effects of seedbed density on one-year-old Fraxinus angustifolia seedling characteristics and outplanting performance. New For. 2007, 33, 81–91. [Google Scholar] [CrossRef]
- Popescu, I.; Popescu, S. Mecanizarea Lucrărilor Silvice; Transilvania University Press: Brașov, România, 2000; p. 533. ISBN 973-9474-53-5. [Google Scholar]
- Braunack, M.V.; Dexter, A.R. Soil aggregation in the seedbed: A review. II. Effect of aggregate sizes on plant growth. Soil Tillage Res. 1989, 14, 281–298. [Google Scholar] [CrossRef]
- Cubera, E.; Moreno, G.; Solla, A. Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4-N content. Soil Tillage Res. 2009, 103, 16–22. [Google Scholar] [CrossRef]
- Taylor, H.M.; Brar, G.S. Effect of soil compaction on root development. Soil Tillage Res. 1991, 19, 111–119. [Google Scholar] [CrossRef]
- Atkinson, B.S.; Sparkes, D.L.; Mooney, S.J. Effect of seedbed cultivation and soil macrostructure on the establishment of winter wheat (Triticum aestivum). Soil Tillage Res. 2009, 103, 291–301. [Google Scholar] [CrossRef]
- Oprea, I. Tehnologia Exploatării Lemnului; Transilvania University Press: Brasov, Romania, 2008; p. 273. ISBN 978-973-598-301-7. [Google Scholar]
- Radu, S.; Contescu, L.; Herta, I.; Burza, E.; Rosca, T. Pepiniere—Metode si Procedee Pentru Cultura in Pepiniera a Principalelor Specii Forestiere si Ornamentale—Recomandări Tehnice; Ministerul Apelor, Pădurilor şi Protecţiei Mediului, Regia Autonomă a Pădurilor Romsilva R.A.: Bucureşti, Romania, 1994; p. 134. [Google Scholar]
Nursery | Abbreviation | Location | Altitude (m, a.s.l.) | Aspect | Area (ha) | Soil Taxonomy |
---|---|---|---|---|---|---|
Iarac | FN1 | 46°09′35.4″ N 21°16′36.0″ E | 100 | Northeastern | 2.20 | Fluvisol |
Agrişul Mare | FN2 | 46°16′40.5″ N 21°45′59.6″ E | 175 | Northeastern | 5.40 | Luvisol |
Iosăşel | FN3 | 46°18′27.7″ N 22°21′29.5″ E | 380 | Northeastern | 1.20 | Cambisol |
Seedbed Tillage System | System Abbreviation | Equipment | Number of Passes | Operated Depth (cm) |
---|---|---|---|---|
Traditional | T | Tractor + Plow + Disk Harrow + Cultivator | 3 | 30 |
Minimal | M | Tractor + Scarifier + Rototiller | 2 | 50 |
Forest Nursery | Seedbed Tillage System (Abbreviation) | Area (ha) | Plot Type (Species abbreviation) | Purpose for the Study | Treatment Abbreviation |
---|---|---|---|---|---|
FN1 (Iarac) | Traditional (T) | 0.4 | Pedunculate oak (O) | Soil changes & effect on growth | FN1TO |
Minimal (M) | 0.4 | Pedunculate oak (O) | Soil changes & effect on growth | FN1MO | |
Traditional (T) | 0.4 | Common ash (A) | Soil changes & effect on growth | FN1TA | |
Minimal (M) | 0.4 | Common ash (A) | Soil changes & effect on growth | FN1MA | |
Control (C) | 0.2 | Empty | Soil changes | FN1C | |
FN2 (Agrişul Mare) | Traditional (T) | 0.4 | Wild cherry (C) | Soil changes & effect on growth | FN2TC |
Minimal (M) | 0.4 | Wild cherry (C) | Soil changes & effect on growth | FN2MC | |
Control (C) | 0.2 | Empty | Soil changes | FN2C | |
FN3 (Iosăşel) | Traditional (T) | 0.4 | Norway spruce (S) | Soil changes & effect on growth | FN3TS |
Minimal (M) | 0.4 | Norway spruce (S) | Soil changes & effect on growth | FN3MS | |
Control (C) | 0.2 | Empty | Soil changes | FN3C |
Nursery | Seedbed Tillage System (Abbreviation) | Total Number of Sampling Pits | Before Operations (Pits) | After Plowing (Pits) | After Disking (Pits) | After Cultivation (Pits) | After Scarifying (Pits) | After Rototilling (Pits) |
---|---|---|---|---|---|---|---|---|
FN1 (Iarac) | Traditional (T) | 18 | - | 6 | 6 | 6 | - | - |
Minimal (M) | 12 | - | - | - | - | 6 | 6 | |
Control (C) | 6 | 6 | - | - | - | - | - | |
FN2 (Agrişul Mare) | Traditional (T) | 18 | - | 6 | 6 | 6 | - | - |
Minimal (M) | 12 | - | - | - | - | 6 | 6 | |
Control (C) | 6 | 6 | - | - | - | - | - | |
FN3 (Iosăşel) | Traditional (T) | 18 | - | 6 | 6 | 6 | - | - |
Minimal (M) | 12 | - | - | - | - | 6 | 6 | |
Control (C) | 6 | 6 | - | - | - | - | - |
Treatment Abbreviation | Root Collar Diameter (mm) 1 | Shoot Height (cm) 1 | Diameter’s Coefficient of Variation (%) | Height’s Coefficient of Variation | Height to Diameter Ratio | Diameter Gain (%) | Height Gain (%) | Comparison Diagnose 2 |
---|---|---|---|---|---|---|---|---|
FN1TO | 2.12 (1.03) | 10.64 (2.71) | 48.62 | 25.51 | 5.0 | D (***) H (***) | ||
FN1MO | 3.63 (1.52) | 22.25 (6.06) | 41.85 | 27.24 | 6.1 | +71 | +109 | |
FN1TA | 5.75 (1.35) | 25.18 (5.12) | 23.55 | 20.33 | 4.4 | D (***) H (***) | ||
FN1MA | 7.53 (1.88) | 43.66 (12.18) | 25.00 | 27.90 | 5.8 | +31 | +73 | |
FN2TC | 1.84 (1.18) | 19.04 (5.79) | 64.13 | 30.40 | 10.3 | D (***) H (***) | ||
FN2MC | 4.32 (1.27) | 22.88 (6.26) | 29.53 | 27.37 | 5.3 | +134 | +20 | |
FN3TS | 4.12 (1.25) | 21.25 (6.30) | 30.27 | 29.63 | 5.2 | D (**) H (***) | ||
FN3MS | 4.52 (1.28) | 24.59 (5.85) | 28.31 | 23.78 | 5.4 | +10 | +16 |
Physical Property and Depth (cm) | Coefficients of Correlation and Determination | ||
---|---|---|---|
Root Collar Diameter (mm) | Shoot Height (cm) | Root Volume (cm3) | |
Bulk density (g × cm−3) | |||
0…5 | 0.503 (0.252) | 0.428 (0.183) | 0.417 (0.174) |
5…10 | 0.520 (0.271) | 0.474 (0.225) | 0.488 (0.239) |
10…20 | 0.490 (0.240) | 0.409 (0.167) | 0.673 (0.452) |
20…30 | 0.495 (0.245) | 0.411 (0.169) | 0.673 (0.453) |
Moisture content (%) | |||
0…5 | −0.454 (0.206) | −0.433 (0.187) | −0.911 (0.829) * |
5…10 | −0.435 (0.189) | −0.404 (0.163) | −0.929 (0.863) ** |
10…20 | −0.288 (0.083) | −0.165 (0.027) | −0.800 (0.639) |
20…30 | −0.331 (0.109) | −0.173 (0.030) | −0.744 (0.553) |
Porosity (%) | |||
0…5 | −0.503 (0.253) | −0.428 (0.183) | −0.417 (0.174) |
5…10 | −0.520 (0.271) | −0.474 (0.225) | −0.488 (0.239) |
10…20 | −0.490 (0.240) | −0.409 (0.167) | −0.673 (0.453) |
20…30 | −0.495 (0.245) | −0.411 (0.169) | −0.673 (0.453) |
Water stock (m3 × ha−1) | |||
0…5 | −0.282 (0.080) | −0.320 (0.103) | −0.952 (0.906) ** |
5…10 | −0.112 (0.012) | −0.136 (0.019) | −0.865 (0.749) * |
10…20 | 0.198 (0.039) | 0.237 (0.056) | −0.280 (0.078) |
20…30 | 0.218 (0.047) | 0.281 (0.079) | −0.160 (0.026) |
Compactness degree (%) | |||
0…5 | 0.461 (0.213) | 0.416 (0.173) | 0.394 (0.155) |
5…10 | 0.482 (0.232) | 0.457 (0.209) | 0.451 (0.203) |
10…20 | 0.455 (0.207) | 0.393 (0.154) | 0.626 (0.392) |
20…30 | 0.487 (0.237) | 0.404 (0.163) | 0.639 (0.409) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boja, N.; Borz, S.A. Seedling Growth Performance of Four Forest Species with Different Techniques of Soil Tillage Used in Romanian Nurseries. Forests 2021, 12, 782. https://doi.org/10.3390/f12060782
Boja N, Borz SA. Seedling Growth Performance of Four Forest Species with Different Techniques of Soil Tillage Used in Romanian Nurseries. Forests. 2021; 12(6):782. https://doi.org/10.3390/f12060782
Chicago/Turabian StyleBoja, Nicuşor, and Stelian Alexandru Borz. 2021. "Seedling Growth Performance of Four Forest Species with Different Techniques of Soil Tillage Used in Romanian Nurseries" Forests 12, no. 6: 782. https://doi.org/10.3390/f12060782
APA StyleBoja, N., & Borz, S. A. (2021). Seedling Growth Performance of Four Forest Species with Different Techniques of Soil Tillage Used in Romanian Nurseries. Forests, 12(6), 782. https://doi.org/10.3390/f12060782