The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Available Satellite Data
2.3. Land Cover Classification and Its Validation
2.4. Analysis of Trends
3. Results
3.1. Model Training and Validation
3.2. Land Cover Dynamics
3.3. Forest Transitions
4. Discussion and Conclusions
4.1. Applying Satellite Data to Historical Land Cover Analysis
4.2. Net Afforestation in the ChEZ
4.3. Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tebeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.E.H.J.; van der Berg, M.; van Zeist, W.-J.; Daioglou, V.; et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Chang. Biol. 2019, 26, 1576–1591. [Google Scholar] [CrossRef]
- Shvidenko, A.; Buksha, I.; Krakovska, S.; Lakyda, P. Vulnerability of Ukrainian Forests to Climate Change. Sustainability 2017, 9, 1152. [Google Scholar] [CrossRef] [Green Version]
- Thom, D.; Rammer, W.; Garstenauer, R.; Seidl, R. Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences 2018, 15, 5699–5713. [Google Scholar] [CrossRef] [Green Version]
- Bilous, A.; Myroniuk, V.; Holiaka, D.; Bilous, S.; See, L.; Schepaschenko, D. Mapping growing stock volume and forest live biomass: A case study of the Polissya region of Ukraine. Environ. Res. Lett. 2017, 12, e105001. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerle, T.; Olofsson, P.; Chaskovskyy, O.; Baumann, M.; Ostapowicz, K.; Woodcock, C.E.; Houghton, R.A.; Hostert, P.; Keeton, W.S.; Radeloff, W. Post-soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Glob. Chang. Biol. 2011, 17, 1335–1349. [Google Scholar] [CrossRef]
- Osinska-Skotak, K.; Radecka, A.; Piorkowski, H.; Michalska-Hejduk, D.; Kopec, D.; Tokarska-Guzik, B.; Ostrowski, W.; Kania, A.; Niedzielko, J. Mapping Succession in Non-Forest Habitats by Means of Remote Sensing: Is the Data Acquisition Time Critical for Species Discrimination? Remote Sens. 2019, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of Soviet Union versus Chernobyl. Environ. Res. Lett. 2011, 6, 045201. [Google Scholar] [CrossRef]
- Lesiv, M.; Shvidenko, A.; Schepaschenko, D.; See, L.; Fritz, S. A spatial assessment of the carbon budget for Ukraine. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 985–1006. [Google Scholar] [CrossRef] [Green Version]
- Yoschenko, V.; Ohcubo, T.; Kashparov, V. Radioactive contaminated forests in Fukushima and Chernobyl. J. For. Res. 2017, 21. [Google Scholar] [CrossRef]
- Matsala, M.; Bilous, A.; Myroniu, V.; Diachuk, P.; Burianchuk, M.; Zadorozhniuk, R. Natural forest regeneration in Chernobyl Exclusion Zone: Predictive mapping and model diagnostics. Scand. J. For. Res. 2021, 36, 164–176. [Google Scholar] [CrossRef]
- Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T.A.; Moller, A.P.; et al. Resuspension and atmospheric transport of radionuclides due to wildfires near Chernobyl Nuclear Power Plant in 2015: An impact assessment. Sci. Rep. 2016, 6, 26062. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.A.; Lasko, R.; Myroniuk, V.; Zibtsev, S.; Day, M.A.; Usenia, U.; Bogomolov, V.; Kovalets, I.; Evers, C.R. The wildfire problem in areas contaminated by the Chernobyl disaster. Sci. Total Environ. 2019, 696, 133954. [Google Scholar] [CrossRef]
- Beresford, N.; Barnett, C.L.; Gashchak, S.; Kashparov, V.; Kirieiev, S.I.; Levchuk, S.; Morozova, V.; Smith, J.T.; Wood, M.D. Wildfires in the Chornobyl Exclusion Zone-risks and consequences. Integr. Environ. Assess. Manag. 2021. [Google Scholar] [CrossRef]
- Kennedy, R.; Yang, Z.; Cohen, W. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kozubov, G.; Taskaev, A. Radiological and Radioecological Studies of Woody Plants; Nauka: St. Petersburg, Russia, 1994. (In Russian) [Google Scholar]
- Holiaka, D.; Fesenko, S.; Kashparov, V.; Protsak, V.; Levchuk, S.; Holiaka, M. Effects of radiation on radial growth of Scots pine in areas highly affected by the Chernobyl accident. J. Environ. Radioact. 2020, 222, 106320. [Google Scholar] [CrossRef]
- Kukarskih, V.V.; Modorov, M.V.; Devi, N.M.; Mikhailovskaya, L.N.; Shimalina, N.S.; Pozolotina, V.N. Radial growth of Pinus sylvestris in the East Ural Radioactive Trace (EURT): Climate and ionizing radiation. Sci. Total Environ. 2021, 781, 146827. [Google Scholar] [CrossRef]
- Geraskin, S.A.; Fesenko, S.V.; Alexakhin, R.M. Effects of non-human species irradiation after the Chernobyl NPP accident. Environ. Int. 2008, 34, 880–897. [Google Scholar] [CrossRef] [PubMed]
- Yoschenko, V.; Kashparov, V.; Melnychuk, M.; Levchuk, S.; Bondar, Y.; Lazarev, M.; Yoschenko, M.; Farfan, E.; Jannik, T. Chronic irradiation of Scots pine trees (Pinus sylvestris) in the Chernobyl Exclusion Zone: Dosimetry and radiobiological effects. Health Phys. 2011, 101, 393–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Bey, A.; Díaz, A.S.-P.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land use and land cover assessment through augmented visual interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- Myroniuk, V.; Kutia, M.; Sarkissian, A.J.; Bilous, A.; Liu, S. Regional-Scale Forest Mapping Over Fragmented Landscapes Using Global Forest Products and Landsat Time Series Classification. Remote Sens. 2020, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Lieskovsky, J.; Kaim, D.; Balasz, P.; Boltiziar, M.; Chmiel, M.; Grabska, E.; Kiraly, G.; Konkoly-Gyuro, E.; Kozak, J.; Antalova, K.; et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 2018, 14, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Li, M.; Huang, C.; Tao, X.; Li, S.; Wei, A. Mapping annual forest change due to afforestation in Guangdong Province of China using active and passive remote sensing data. Remote Sens. 2019, 11, 490. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Sallnas, O.; Hugosson, M.; Shvidenko, A. The Forest Resources of the Former European USSR; The Parthenon Published Group Limited: Canrforth, UK, 1992; p. 403. [Google Scholar]
- Janus, J.; Bozek, P. Using ALS data to estimate afforestation and secondary forest succession on agricultural areas: An approach to improve the understanding of land abandonment cases. Appl. Geogr. 2018, 97, 128–141. [Google Scholar] [CrossRef]
- Sackov, I.; Barka, I.; Bucha, T. Mapping aboveground woody biomass on abandoned agricultural land based on airborne laser scanning data. Remote Sens. 2020, 12, 4189. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecol. Eng. 2019, 138, 106–117. [Google Scholar] [CrossRef]
- Beresford, N.A.; Scott, E.M.; Copplestone, D. Field effects studies in the Chernobyl Exclusion Zone: Lessons to be learnt. J. Environ. Radioact. 2020, 211, 105893. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Onda, Y.; Wakiyama, Y.; Konoplev, A.; Zheleznyak, M.; Lisovyi, H.; Laptev, G.; Damiyanovich, V.; Samoilov, D.; Nanba, K.; et al. Impact of wildfire on 137Cs and 90Sr wash-off in heavily contaminated forests in the Chernobyl exclusion zone. Environ. Pollut. 2020, 259, 113764. [Google Scholar] [CrossRef]
Observed/Predicted | Bare Soil | Built-Up | Burned | Forest | Grassland | Water Bodies | Woodland | Classification Error (%) |
---|---|---|---|---|---|---|---|---|
bare soil | 6 | 1 | 0 | 1 | 2 | 0 | 0 | 40.0 |
built-up | 0 | 22 | 1 | 0 | 0 | 1 | 2 | 15.3 |
burned | 0 | 1 | 43 | 1 | 3 | 0 | 6 | 20.4 |
forest | 0 | 0 | 2 | 439 | 14 | 0 | 31 | 9.7 |
grassland | 1 | 1 | 0 | 16 | 119 | 6 | 55 | 39.9 |
water bodies | 0 | 1 | 0 | 3 | 7 | 19 | 1 | 38.7 |
woodland | 0 | 0 | 2 | 28 | 48 | 0 | 182 | 30.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsala, M.; Bilous, A.; Myroniuk, V.; Holiaka, D.; Schepaschenko, D.; See, L.; Kraxner, F. The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. Forests 2021, 12, 1024. https://doi.org/10.3390/f12081024
Matsala M, Bilous A, Myroniuk V, Holiaka D, Schepaschenko D, See L, Kraxner F. The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. Forests. 2021; 12(8):1024. https://doi.org/10.3390/f12081024
Chicago/Turabian StyleMatsala, Maksym, Andrii Bilous, Viktor Myroniuk, Dmytrii Holiaka, Dmitry Schepaschenko, Linda See, and Florian Kraxner. 2021. "The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster" Forests 12, no. 8: 1024. https://doi.org/10.3390/f12081024
APA StyleMatsala, M., Bilous, A., Myroniuk, V., Holiaka, D., Schepaschenko, D., See, L., & Kraxner, F. (2021). The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. Forests, 12(8), 1024. https://doi.org/10.3390/f12081024