Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus laevis and Ulmus glabra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Cryopreservation
2.3. Surface Sterilisation
2.4. Initiation
2.5. Multiplication
2.6. Rooting
2.7. Statistical Analysis
3. Results
3.1. Cryopreservation and Initiation
3.2. Surface Sterilisation
3.3. Multiplication
3.4. Rooting and Transplantation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DKW | MS | WPM | |
---|---|---|---|
H4NO3 | 17.70 | 10.30 | 5.00 |
KNO3 | 9.40 | ||
KH2PO4 | 1.95 | 0.62 | 1.25 |
MgSO4 | 3.00 | ||
MgSO4·7H2O | 3.00 | 1.50 | |
CaCl2 | 1.01 | ||
CaCl2·2H2O | 1.50 | 0.65 | |
Ca(NO3)2 | 8.33 | ||
Ca(NO3)2·4H2O | 2.35 | ||
K2SO4 | 8.95 | 5.68 | |
MnSO4·H2O | 0.20 | 0.26 | 0.13 |
ZnSO4·7H2O | 0.06 | 0.03 | |
CuSO4 x 5H2O | 0.001 | 0.002 | 0.001 |
KI | 0.005 | ||
CoCl2·6H2O | 0.0001 | ||
Zn(NO3)2 | 0.09 | ||
NiSO4·6H2O | 0.00002 | ||
H3BO3 | 0.08 | 0.10 | 0.10 |
Na2MoO4·2H2O | 0.002 | 0.001 | 0.001 |
Na2-EDTA | 0.12 | ||
FeSO4·7H2O | 0.12 | ||
NaFe-EDTA | 0.05 | 0.11 | |
Myo-Inositol | 5.55 | 0.56 | 0.56 |
Glycine | 0.027 | 0.027 | 0.027 |
Nicotinic acid | 0.008 | 0.004 | 0.004 |
Pyridoxine-HCl | 0.010 | 0.002 | 0.002 |
Thiamine-HCl | 0.006 | 0.0003 | 0.003 |
References
- Buiteveld, J.; Van der Werf, B.; Hiemstra, J.A. Comparison of commercial elm cultivars and promising unreleased Dutch clones for resistance to Ophiostoma novo-ulmi. IForest 2015, 8, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Collin, E. EUFORGEN Technical Guidelines for Genetic Conservation and Use for European White elm (Ulmus laevis); International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 2003. [Google Scholar]
- Caudullo, G.; De Rigo, D. Ulmus-elms in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg City, Luxembourg, 2016; pp. 186–188. [Google Scholar]
- Vakkari, P.; Rusanen, M.; Kärkkäinen, K. High genetic differentiation in marginal populations of European white elm (Ulmus laevis). Silva Fenn. 2009, 43, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.A.; Sobrino-Plata, J.; Rodríguez-Calcerrada, J.; Collada, C.; Gil, L. Breeding and scientific advances in the fight against Dutch elm disease: Will they allow the use of elms in forest restoration? New For. 2019, 50, 183–215. [Google Scholar] [CrossRef] [Green Version]
- Brasier, C.M.; Buck, K.W. Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 2001, 3, 223–233. [Google Scholar] [CrossRef]
- Brasier, C.M. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 1991, 115, 151–161. [Google Scholar] [CrossRef]
- Newbanks, D.; Bosch, A.; Zimmermann, M.H. Evidence for xylem dysfunction by embolization in Dutch elm disease. Phytopathology 1983, 73, 1060–1063. [Google Scholar] [CrossRef] [Green Version]
- Whitten, R.R.; Single, R.U. The Dutch Elm Disease and Its Control; US Department of Agriculture: Washington, DC, USA, 1958.
- Hannunen, S.; Marinova-Todorova, M. Pest Risk Assessment for Dutch elm disease; Evira Research Reports 1/2016, Finnish Food Safety Authority Evira: Helsinki, Finland, 2016. [Google Scholar]
- Webber, J.F. Experimental studies on factors influencing the transmission of Dutch elm disease. For. Syst. 2004, 13, 197–205. [Google Scholar]
- Mittempergher, L.; Santini, A. The history of elm breeding. For. Syst. 2004, 13, 161–177. [Google Scholar]
- Pehu, T.; Kiviharju, E.; Rusanen, M.; Kantanen, J.; Heinimaa, P. Suomen maa-, metsä-ja kalatalouden kansallinen geenivaraohjelma (Finnish National Genetic Resources Programme for Agriculture, Forestry and Fishery); Ministry of Agriculture and Forestry: Helsinki, Finland, 2018; pp. 67–88.
- Kaviani, B. Conservation of plant genetic resources by cryopreservation. Aust. J. Crop. Sci. 2011, 5, 778–800. [Google Scholar]
- Häggman, H.; Rusanen, M.; Jokipii, S. Cryopreservation of in vitro tissues of deciduous forest trees. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 365–386. [Google Scholar]
- Collin, E.; Rondouin, M.; Joyeau, C.; Matz, S.; Raimbault, P.; Harvengt, L.; Bilger, I.; Guibert, M. Conservation and use of elm genetic resources in France: Results and perspectives. IForest 2020, 13, 41–47. [Google Scholar] [CrossRef]
- Harvengt, L.; Meier-Dinkel, A.; Dumas, E.; Collin, E. Establishment of a cryopreserved gene bank of European elms. Can. J. For. Res. 2004, 34, 43–55. [Google Scholar] [CrossRef]
- Shukla, M.R.; Jones, A.M.P.; Sullivan, J.A.; Liu, C.; Gosling, S.; Saxena, P.K. In vitro conservation of American elm (Ulmus americana): Potential role of auxin metabolism in sustained plant proliferation. Can. J. For. Res. 2012, 42, 686–697. [Google Scholar] [CrossRef]
- Towill, L.E.; Ellis, D.D. Cryopreservation of dormant buds In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 421–442. [Google Scholar]
- Benson, E.E. Cryopreservation theory. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 15–32. [Google Scholar]
- Reed, B.M.; Uchendu, E. Controlled rate cooling. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 77–92. [Google Scholar]
- Ryynänen, L. Survival and regeneration of dormant silver birch buds stored at super-low temperatures. Can. J. For. Res. 1996, 26, 617–623. [Google Scholar] [CrossRef]
- Varis, S.; Klimaszewska, K.; Aronen, T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees. Front. Plant. Sci. 2018, 9, 1551. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Intl. Plant Prop. Soc. Proc. 1980, 30, 421–427. [Google Scholar]
- Driver, J.A.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstock. HortScience 1984, 19, 507–509. [Google Scholar]
- Nickell, L.G.; Tulecke, W. Responses of plant tissue cultures to gibberellin. Bot. Gaz. 1959, 120, 245–250. [Google Scholar] [CrossRef]
- Fenning, T.M.; Gartland, K.; Brasier, C.M. Micropropagation and regeneration of English elm, Ulmus procera Salisbury. J. Exp. Bot. 1993, 44, 1211–1217. [Google Scholar] [CrossRef]
- Micheli, M.; Hafiz, I.A.; Standardi, A. Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo): II. Effects of storage on capsule and derived shoots performance. Sci. Hortic. 2007, 113, 286–292. [Google Scholar] [CrossRef]
- Rikala, R. Metsäpuiden Paakkutaimien Kasvatusopas (Container Seedling Growing Manual for Forest Trees); The Finnish Forest Research Institute: Suonenjoki, Finland, 2012; 247p. [Google Scholar]
- Landis, T.D.; Dumroese, R.K.; Haase, D. The Container Tree Nursery Manual. Vol 6. Seedling Propagation. Agricultural Handbook 674; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2010.
- Malá, J.; Cvikrová, M.; Chalupa, V. Micropropagation of mature trees of Ulmus glabra, Ulmus minor and Ulmus laevis. In Protocols for Micropropagation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 237–246. [Google Scholar]
- Aronen, T.; Ryynänen, L. Cryopreservation of dormant in vivo-buds of hybrid aspen: Timing as critical factor. Cryoletters 2014, 35, 385–394. [Google Scholar]
- Forsline, P.L.; Towill, L.E.; Waddell, J.W.; Stushnoff, C.; Lamboy, W.F.; McFerson, J.R. Recovery and longevity of cryopreserved dormant apple buds. J. Am. Soc. Hortic. Sci. 1998, 123, 365–370. [Google Scholar] [CrossRef]
- Höfer, M. Cryopreservation of winter-dormant apple buds: Establishment of a duplicate collection of Malus germplasm. Plant Cell Tissue Organ Cult. 2015, 121, 647–656. [Google Scholar] [CrossRef]
- Tanner, J.D.; Minas, I.S.; Chen, K.Y.; Jenderek, M.M.; Wallner, S.J. Antimicrobial forcing solution improves recovery of cryopreserved temperate fruit tree dormant buds. Cryobiology 2020, 92, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Malá, J.; Máchová, P.; Cvrčková, H.; Karady, M.; Novák, O.; Mikulík, J.; Dostál, J.; Strnad, M.; Doležal, K. The role of cytokinins during micropropagation of wych elm. Biol. Plant. 2013, 57, 174–178. [Google Scholar] [CrossRef]
- Mirabbasi, S.M.; Hosseinpour, B. Prevention of shoot tip necrosis, hyperhydricity and callus production associated with in vitro shoot culture of Ulmus glabra. J. Nov. Appl. Sci. 2014, 3, 683–689. [Google Scholar]
- Werbrouck, S.P.; Strnad, M.; Van Onckelen, H.A.; Debergh, P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996, 98, 291–297. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Välimäki, S.; Rusanen, M.; Pečínková, D.; Tikkinen, M.; Aronen, T. Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus laevis and Ulmus glabra. Forests 2021, 12, 1121. https://doi.org/10.3390/f12081121
Välimäki S, Rusanen M, Pečínková D, Tikkinen M, Aronen T. Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus laevis and Ulmus glabra. Forests. 2021; 12(8):1121. https://doi.org/10.3390/f12081121
Chicago/Turabian StyleVälimäki, Sakari, Mari Rusanen, Daniela Pečínková, Mikko Tikkinen, and Tuija Aronen. 2021. "Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus laevis and Ulmus glabra" Forests 12, no. 8: 1121. https://doi.org/10.3390/f12081121
APA StyleVälimäki, S., Rusanen, M., Pečínková, D., Tikkinen, M., & Aronen, T. (2021). Cryopreservation and Micropropagation Methods for Conservation of Genetic Resources of Ulmus laevis and Ulmus glabra. Forests, 12(8), 1121. https://doi.org/10.3390/f12081121