Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.1.1. Community Diagnosis
2.1.2. Moisture Content
2.1.3. Granulometry
2.1.4. Bulk Density
2.1.5. Proximate Analysis
2.1.6. Ultimate Analysis
2.1.7. Basic Chemical Analysis
2.1.8. Ash Microanalysis
2.1.9. Calorific Value
2.1.10. Community Energy Potential
- PE: Energy potential [TJ/year]
- Mrs: Mass of dry residue [t/year]
- E: Energy of the residue per unit mass [TJ/t]
- CV: Calorific value (MJ/kg)
2.1.11. Statistical Analysis
2.1.12. Multi-Criteria Analysis
3. Results
3.1. Community Diagnosis
3.2. Moisture Content
3.3. Granulometry
3.4. Bulk Density
3.5. Proximate Analysis
3.6. Ultimate Analysis
3.7. Basic Chemical Analysis
3.8. Ash Microanalysis
3.9. Calorific Value
3.10. Community Energy Potential
3.11. Multi-Criteria Analysis
4. Discussion
4.1. Moisture Content
4.2. Granulometry
4.3. Bulk Density
4.4. Proximate Analysis
4.5. Ultimate Analysis
4.6. Basic Chemical Analysis
4.7. Ash Microanalysis
4.8. Calorific Value
4.9. Community Energy Potential
4.10. Multi-Criteria Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stöcker, M. Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass Using Porous Materials. Angew. Chem. 2008, 47, 9200–9211. [Google Scholar] [CrossRef] [PubMed]
- Gomez, L.D.; Steele-King, G.C.; Mcqueen-Mason, S.J. Sustainable Liquid Biofuels from Biomass: The Writing’s on the Walls. New Phytol. 2008, 178, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Competitive Liquid Biofuels from Biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Rennkamp, B.; Haunss, S.; Wongsa, K.; Ortega, A.; Casamadrid, E. Competing Coalitions: The Politics of Renewable Energy and Fossil Fuels in Mexico, South Africa and Thailand. Energy Res. Soc. Sci. 2017, 34, 214–223. [Google Scholar] [CrossRef]
- Rica, C.; Jose, S.; Rica, C. Biogas as an Alternative Energy Source to Promote Indigenous Communities Development. Scientific Papers Series Management. Econ. Eng. Agric. Rural. Dev. 2013, 13, 345–352. [Google Scholar]
- Secretaría de Energía (SENER). Balance Nacional de Energía; SENER: Mexico City, Mexico, 2018; Volume 25. [Google Scholar]
- Hernández-Escobedo, Q.; Perea-Moreno, A.J.; Manzano-Agugliaro, F. Wind Energy Research in Mexico. Renew. Energy 2018, 123, 719–729. [Google Scholar] [CrossRef]
- Sovacool, B.K. How Long Will It Take? Conceptualizing the Temporal Dynamics of Energy Transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.J.; Stephens, J.C. Energy Democracy: Goals and Policy Instruments for Sociotechnical Transitions. Energy Res. Soc. Sci. 2017, 33, 35–48. [Google Scholar] [CrossRef]
- Czekała, W.; Bartnikowska, S.; Dach, J.; Janczak, D.; Smurzyńska, A.; Kozłowski, K.; Bugała, A.; Lewicki, A.; Cieślik, M.; Typańska, D.; et al. The Energy Value and Economic Efficiency of Solid Biofuels Produced from Digestate and Sawdust. Energy 2018, 159, 1118–1122. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Hryniewicz, M.; Szadkowska, D.; Szadkowski, J. Production of Electricity and Heat from Biomass Wastes Using a Converted Aircraft Turbine AI-20. Processes 2021, 9, 364. [Google Scholar] [CrossRef]
- Hernández, J.C.A. Ley de Transición Energética; Cámara de Diputados del H. Congreso de la Unión: Mexico City, Mexico, 2015. [Google Scholar]
- Healy, N.; Barry, J. Politicizing Energy Justice and Energy System Transitions: Fossil Fuel Divestment and a “Just Transition”. Energy Policy 2017, 108, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.; Goggins, J.; Hajdukiewicz, M. Super-Insulate or Use Renewable Technology? Life Cycle Cost, Energy and Global Warming Potential Analysis of Nearly Zero Energy Buildings (NZEB) in a Temperate Oceanic Climate; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 139, ISBN 3539149260. [Google Scholar]
- Wang, C.; Chang, Y.; Zhang, L.; Pang, M.; Hao, Y. A Life-Cycle Comparison of the Energy, Environmental and Economic Impacts of Coal versus Wood Pellets for Generating Heat in China. Energy 2017, 120, 374–384. [Google Scholar] [CrossRef]
- Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S. Young People’s Acceptance of Bioenergy and the Influence of Attitude Strength on Information Provision. Renew. Energy 2017, 107, 417–430. [Google Scholar] [CrossRef]
- White, E.H. Sustainable Biofuels from Forests: Woody Biomass. Forests 2011, 983. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Bioresource Technology Characterization of Spanish Biomass Wastes for Energy Use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Núñez-Retana, V.D.; Wehenkel, C.; Vega-Nieva, D.J.; García-Quezada, J.; Carrillo-Parra, A. The Bioenergetic Potential of Four Oak Species from Northeastern Mexico. Forests 2019, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of Pellets from Three Forest Species: From Raw Material to End Use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Flores, J.J.A.; Quiñones, J.G.R.; Rodríguez, M.L.Á.; Vera, J.V.A.; Valencia, J.E.; Martínez, S.J.G.; Montesino, F.M.; Rosas, A.A. Thermal Degradation Kinetics and FT-IR Analysis on the Pyrolysis of Pinus pseudostrobus, Pinus leiophylla and Pinus montezumae as Forest Waste in Western Mexico. Energies 2020, 13, 969. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- White, B.W.; Niemeier, D. Quantifying Greenhouse Gas Emissions and the Marginal Cost of Carbon Abatement for Residential Buildings under California’s 2019 Title 24 Energy Codes. Environ. Sci. Technol. 2019, 53, 12121–12129. [Google Scholar] [CrossRef]
- Van Holsbeeck, S.; Srivastava, S.K. Feasibility of Locating Biomass-to-Bioenergy Conversion Facilities Using Spatial Information Technologies: A Case Study on Forest Biomass in Queensland, Australia. Biomass Bioenergy 2020, 139, 105620. [Google Scholar] [CrossRef]
- Núñez-Retana, V.D.; Rosales-Serna, R.; Prieto-Ruíz, J.Á.; Wehenkel, C.; Carrillo-Parra, A. Improving the Physical, Mechanical and Energetic Properties of Quercus Spp. Wood Pellets by Adding Pine Sawdust. Peer J. 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Galicia, L.; Potvin, C.; Messier, C. Maintaining the High Diversity of Pine and Oak Species in Mexican Temperate Forests: A New Management Approach Combining Functional Zoning and Ecosystem Adaptability. Can. J. Forest Res. 2015, 45, 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Maciel-Nájera, J.F.; Hernández-Velasco, J.; González-Elizondo, M.S.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Antúnez, P.; Bailón-Soto, C.E.; Wehenkel, C. Unexpected Spatial Patterns of Natural Regeneration in Typical Uneven-Aged Mixed Pine-Oak Forests in the Sierra Madre Occidental, Mexico. Global Ecol. Conserv. 2020, 23. [Google Scholar] [CrossRef]
- SEMARNAT. Anuario Estadístico de La Producción Forestal 2018. In Anuarios Estadísticos Forestales 2021; SEMARNAT: Mexico City, Mexico, 2021. [Google Scholar]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The Potential for Sustainable Biomass Pellets in Mexico: An Analysis of Energy Potential, Logistic Costs and Market Demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- Francisco Arriaga, F.; Guerrero García Rojas, H.; Kido Cruz, A.; Cortés Zavala, M. Ingreso Generado Por La Recolección de Recursos Forestales En Pichátaro, Michoacán, México. Agric. Soc. Desarro. 2011, 8, 107–117. [Google Scholar]
- Cuencas, E.N.; Prioritarias, H.; Diana, P.; Ascencio, M.; Calderas, S.G.; Luna, E.; Alcocer, G.; Patricia, D.; García, Á. Evaluación Social Regional; Sistema de Microcuencas Prioritarias Pátzcuaro-Zirahuén; SEMARNAT: Mexico City, Mexico, 2014.
- Rios, M.; Kaltschmitt, M. Bioenergy Potential in Mexico-Status and Perspectives on a High Spatial Distribution. Biomass Convers. Biorefin. 2013, 3, 239–254. [Google Scholar] [CrossRef]
- Muller, A. Sustainable Farming of Bioenergy Crops; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595614. [Google Scholar]
- García, C.A.; Riegelhaupt, E.; Ghilardi, A.; Skutsch, M.; Islas, J.; Manzini, F.; Masera, O. Sustainable Bioenergy Options for Mexico: GHG Mitigation and Costs. Renew. Sustain. Energy Rev. 2015, 43, 545–552. [Google Scholar] [CrossRef]
- Aldana, H.; Lozano, F.J.; Acevedo, J. Evaluating the Potential for Producing Energy from Agricultural Residues in México Using MILP Optimization. Biomass Bioenergy 2014, 67, 372–389. [Google Scholar] [CrossRef]
- Morales-Máximo, M.; Castro Sánchez, F.J.; Rutiaga-Quiñones, J.G. Estudio Socioeconómico para La Evaluación de Biocombustibles Sólidos: Eficiencia Energética y Alterna en La Comunidad de San Francisco Pichátaro, Michoacán, México. In Proceedings of the International Energy Conference: IEC, Morelia City, Mexico, 9–13 September 2019; Volume 2, pp. 577–582. [Google Scholar]
- UNE-EN 14774-1. Biocombustibles sólidos. Determinación del contenido de humedad. In Parte 1: Humedad Total; Asociación Española de Normalización y Certificación: Madrid, Spain, 2010; p. 10.
- UNE-EN 15149-1. Biocombustibles sólidos. Determinación del tamaño de partícula. In Parte 2: Método del Tamiz Vibrante con Abertura de Malla Inferior o Igual a 3.15mm; Asociación Española de Normalización y Certificación: Madrid, Spain, 2011; p. 15.
- UNE-EN 15103. Biocombustibles sólidos. In Determinación de la Densidad a Granel; Asociación Española de Normalización y Certificación: Madrid, Spain, 2010; p. 13.
- UNE-EN 14775. Biocombustibles sólidos. In Método para la Determinación del Contenido de Cenizas; Asociación Española de Normalización y Certificación: Madrid, Spain, 2010; p. 10.
- ASTM E872-82 Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels; ASTM International: West Conshohocken, PA, USA, 2013.
- U.-C. 15104 E. In Determinación Del Contenido de Carbono, Hidrógeno y Nitrógeno. Métodos Instrumentales [Determination of the Content of Carbon, Hydrogen and Nitrogen. Instrumental Methods]; Métodos Instrumentales: Madrid, Spain, 2008.
- Ghetti, P.; Ricca, L.; Angelini, L. Thermal Analysis of Biomass and Corresponding Pyrolysis Products. Fuel 1996, 75, 565–573. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Symposium: Carbohydrate Methodology, Metabolism, and Nutritional Implications in Dairy Caltle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; US Government Printing Office: Washington, DC, USA, 1970; Volume 379.
- Arcibar-Orozco, J.A.; Josue, D.B.; Rios-Hurtado, J.C.; Rangel-Mendez, J.R. Influence of Iron Content, Surface Area and Charge Distribution in the Arsenic Removal by Activated Carbons. Chem. Eng. J. 2014, 249, 201–209. [Google Scholar] [CrossRef]
- UNE-EN 14918:2011. In Determinación del Poder Calorífico; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016.
- Serrato Monroy, C.C.; Lesmes Cepeda, V. Metodología Para El Cálculo de Energía Extraída a Partir de La Biomasa en El Departamento de Cundinamarca; Universidad Distrital Francisco José de Caldas: Bogota, Colombia, 2016. [Google Scholar]
- Gutiérrez-Pulido, H.; de la Vara-Salazar, R. Análisis y Diseño de Experimentos [Analysis and Design of Experiments]; McGrawHill: Mexico City, Mexico, 2004. [Google Scholar]
- Lopez-Ridaura, S.; Masera, O.; Astier, M. Evaluating the Sustainability of Integrated Peasantry Systems the MESMIS Framework. LEISA Mag. 2000, 16, 28–30. [Google Scholar]
- López-Sosa, L.; Morales-Máximo, M. Software Multiberso. 2019. Available online: https://Cejude.Webnode.Mx/News/Software-Multiberso/ (accessed on 18 June 2021).
- Ngangyo-Heya, M.; Foroughbahchk-Pournavab, R.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Zelinski, V.; Pintor-Ibarra, L.F. Calorific Value and Chemical Composition of Five Semi-Arid Mexican Tree Species. Forests 2016, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Correa-Méndez, F.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Márquez-Montesino, F.; González-Rodríguez, H.; Jurado-Ybarra, E.; Garza-Ocañas, F. Contenido de Humedad y Sustancias Inorgánicas En Subproductos Maderables de Pino Para Su Uso En Pélets y Briquetas. Rev. Chapingo Ser. Cienc. For. Ambiente 2014, 20, 77–88. [Google Scholar] [CrossRef]
- Reis Portilho, G.; Resende De Castro, V.; Oliveira Carneiro, A.D.C.; Cola Zanuncio, J.; Vinha Zanuncio, A.J.; Gabriella Surdi, P.; Gominho, J.; De Oliveira Araújo, S. Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests 2020, 11, 1272. [Google Scholar] [CrossRef]
- Ang, D.; Sevgi, Ş. International Journal of Phytoremediation Effect of Pyrolysis Temperature on Chemical and Surface Properties of Biochar of Rapeseed (Brassica napus L.). Int. J. Phytoremediat. 2014, 16, 37–41. [Google Scholar] [CrossRef]
- Bolzon De Muñiz, G.I.; Lengowski, E.C.; Nisgoski, S.; De Magalhães, W.L.E.; Tanaboe De Oliveira, V.; Hansel, F. Characterization of Pinus spp. Needles and Evaluation of Their Potential Use for Energy. CERNE 2014, 20, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Morales-Máximo, M.; Ruíz-García, V.M.; López-Sosa, L.B.; Rutiaga-Quiñones, J.G. Exploitation of Wood Waste of Pinus spp. for Briquette Production: A Case Study in the Community of San Francisco Pichátaro, Michoacán, Mexico. Appl. Sci. 2020, 10, 2933. [Google Scholar] [CrossRef]
- Cavali, M.; Soccol, C.R.; Tavares, D.; Zevallos Torres, L.A.; De Andrade Tanabe, V.O.; Zandoná Filho, A.; Lorenci Woiciechowski, A. Bioresource Technology Effect of Sequential Acid-Alkaline Treatment on Physical and Chemical Characteristics of Lignin and Cellulose from Pine (Pinus spp.) Residual Sawdust. Bioresour. Technol. 2020, 316, 123884. [Google Scholar] [CrossRef]
- Funda, T.; Fundova, I.; Gorzsás, A.; Fries, A.; Wu, H.X. Predicting the Chemical Composition of Juvenile and Mature Woods in Scots Pine (Pinus sylvestris L.) Using FTIR Spectroscopy. Wood Sci. Technol. 2020, 54, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Cuilty, K.; Ballinas-Casarrubias, L.; Rodríguez de San Miguel, E.; de Gyves, J.; Robles-Venzor, J.C.; González-Sánchez, G. Cellulose Recovery from Quercus sp. Sawdust Using Ethanosolv Pretreatment. Biomass Bioenergy 2018, 111, 114–124. [Google Scholar] [CrossRef]
- Herrera-Fernandez, A.; Carrillo-Parra, A.; Pedraza-Bucio, F.E.; Correa-Méndez, F.; Herrera-Bucio, R.; López-Albarran, P.; Rutiaga-Quiñones, J.G. Densidad, Composición Química y Poder Calorífico de La Madera de Tres Especies de Encino (Quercus candicans, Q. laurina y Q. rugosa). Cienc. Nicolaita 2017, 72, 136–154. [Google Scholar]
- Monedero, E.; Portero, H.; Lapuerta, M. Pellet Blends of Poplar and Pine Sawdust: Effects of Material Composition, Additive, Moisture Content and Compression Die on Pellet Quality. Fuel Process. Technol. 2015, 132, 15–23. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Correa-Méndez, F.; Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Márquez-Montesino, F.; González-Rodríguez, H.; Jurado Ybarra, E.; Garza-Ocañas, F. Distribución Granulométrica En Subproductos de Aserrío Para Su Posible Uso En Pellets y Briquetas. Rev. Mex. Cienc. For. 2018, 5, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Pintor-Ibarra, L.F.; Carrillo-Parra, A.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Physical and Chemical Properties of Timber By-Products from Pinus Leiophylla, P. Montezumae and P. Pseudostrobus for a Bioenergetics Use. Wood Res. 2017, 62, 849–861. [Google Scholar]
- Cesprini, E.; Resente, G.; Causin, V.; Urso, T.; Cavalli, R.; Zanetti, M. Energy Recovery of Glued Wood Waste—A Review. Fuel 2020, 262, 116520. [Google Scholar] [CrossRef]
- Yang, B.; Peng, L.; Wang, Y.; Song, J. The Characteristics of Air Pollutants from the Combustion of Biomass Pellets. Energy Sources Part A Recovery Util. Environ. Effects 2018, 40, 351–357. [Google Scholar] [CrossRef]
- Huron, M.; Oukala, S.; Lardière, J.; Giraud, N.; Dupont, C. An Extensive Characterization of Various Treated Waste Wood for Assessment of Suitability with Combustion Process. Fuel 2017, 202, 118–128. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. The Pellet Handbook: The Production and Thermal Utilisation of Pellets; Routledge: London, UK, 2010. [Google Scholar]
- Morales-Máximo, M.; Rutiaga-Quiñones, J.G. Aprovechamiento Del Aserrín de Pino Para La Producción de Briquetas Como Energía Alterna: Caracterización Térmica y Análisis de Durabilidad Por Masa Presente En La Combustión. Sem. Nac. Energía 2018, XVLL, 420–425. [Google Scholar]
- MacBain, R. Pelleting Animal Feed, Regional Feed School Presentation; American Feed Manufacturing Association: Arlington, VA, USA, 1966. [Google Scholar]
- Grover, P.D.; Mishra, S.K. Biomass Briquetting: Technology and Pratices.Regional Wood Energy Development Program in Asia; Field Document No. 46; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 1996. [Google Scholar]
- Morales-Máximo, M.; López-Sosa, L.B.; Rutiaga-Quiñones, J.G. Evaluación Termografíca de La Combustión de Briquetas Con Aglomerante Variable de Residuos Maderables de Pino: Análisis Comparativo En Fogones Tradicionales Del Estado de Michoacán. Sem. Nac. Energía Sol. 2018, XVLL, 439–444. [Google Scholar]
- Filipe, H.; Rodrigues, A.M.; Godina, R. Evaluation of the Physical, Chemical and Thermal Properties of Portuguese Maritime Pine Biomass. Sustainability 2018, 10, 2877. [Google Scholar] [CrossRef] [Green Version]
- Nurek, T.; Gendek, A.; Roman, K. Forest Residues as a Renewable Source of Energy: Elemental Composition and Physical Properties. BioResources 2019, 14, 6–20. [Google Scholar] [CrossRef]
- Rutiaga-Quiñones, J.G.; Pintor-Ibarra, L.F.; Orihuela-Equihua, R.; González-Ortega, N.; Ramírez-Ramírez, A.; Carrillo-Parra, A.; Carrillo-Ávila, N.; Navarrete-García, M.A.; Ruíz-Aquino, F.; Rangel-Mendez, J.; et al. Characterization of Mexican Waste Biomass Relative to Energy Generation. BioResources 2020, 15, 8529–8553. [Google Scholar] [CrossRef]
- Velázquez Martí, B. Aprovechamiento de La Biomasa para Uso Energético; Reverté; Universitat Politècnica de València: Barcelona, Spain, 2018. [Google Scholar]
- ISO. 17225–2 Solid Biofuels—Fuel Specifications and Clases; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Antwi-Boasiako, C.; Acheampong, B.B. Strength Properties and Calorific Values of Sawdust-Briquettes as Wood-Residue Energy Generation Source from Tropical Hardwoods of Different Densities. Biomass Bioenergy 2016, 85, 144–152. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Y.; Li, X.; Liu, H.; Yan, W.; Sui, R.; Lu, Q. Temperature and Emissivity Measurements from Combustion of Pine Wood, Rice Husk and Fir Wood Using Fl Ame Emission Spectrum. Fuel Process. Technol. 2020, 204, 106423. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Thermal and Catalytic Pyrolysis of Pine Sawdust (Pinus ponderosa) and Gulmohar Seed (Delonix regia) towards Production of Fuel and Chemicals. Mater. Sci. Energy Technol. 2019, 2, 139–149. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chai, M.; Sarker, M.; Nishu; Liu, R. Catalytic Pyrolysis of Pinewood over ZSM-5 and CaO for Aromatic Hydrocarbon: Analytical Py-GC/MS Study. J. Energy Inst. 2020, 93, 425–435. [Google Scholar] [CrossRef]
- Muley, P.D.; Henkel, C.; Abdollahi, K.K.; Marculescu, C.; Boldor, D. A Critical Comparison of Pyrolysis of Cellulose, Lignin, and Pine Sawdust Using an Induction Heating Reactor. Energy Convers. Manag. 2016, 117, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Parra, A.; Contreras-Trejo, J.C.; Pompa-García, M.; Pulgarín-Gámiz, M.Á.; Rutiaga-Quiñones, J.G.; Pámanes-Carrasco, G.; Ngangyo-Heya, M. Agro-Pellets from Oil Palm Residues/Pine Sawdust Mixtures: Relationships of Their Physical, Mechanical and Energetic Properties, with the Raw Material Chemical Structure. Appl. Sci. 2020, 10, 6383. [Google Scholar] [CrossRef]
- Lin, B.; Silveira, E.A.; Colin, B.; Chen, W.; Lin, Y. Modeling and Prediction of Devolatilization and Elemental Composition of Wood during Mild Pyrolysis in a Pilot-Scale Reactor. Ind. Crops Prod. 2019, 131, 357–370. [Google Scholar] [CrossRef]
- Taylor, M.J.; Alabdrabalameer, H.A.; Michopoulos, A.K.; Volpe, R.; Skoulou, V. Augmented Leaching Pretreatments for Forest Wood Waste and Their Effect on Ash Composition and the Lignocellulosic Network. ACS Sustain. Chem. Eng. 2020, 8, 5674–5682. [Google Scholar] [CrossRef]
- Bernabé-Santiago, R.; Ávila-Calderón, L.E.A.; Rutiaga-Quiñones, J.G. Componentes Químicos de La Madera de Cinco Especies de Pino Del Municipio de Morelia, Michoacán. Madera Bosques 2013, 19, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Huang, J.; Feng, C.; Wang, G.; Tabil, L.; Wang, D. Bioresource Technology Effects and Mechanism of Ball Milling on Torrefaction of Pine Sawdust. Bioresour. Technol. 2016, 214, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Bravo, C.; Garcés, D.; Faba, L.; Sastre, H.; Ordóñez, S. Selective Arabinose Extraction from Pinus sp. Sawdust by Two-Step Soft Acid Hydrolysis. Ind. Crops Prod. 2017, 104, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Rusanen, A.; Lappalainen, K.; Kärkkäinen, J.; Tuuttila, T.; Mikola, M.; Lassi, U. Selective Hemicellulose Hydrolysis of Scots Pine Sawdust. Biomass Convers. Biorefin. 2019, 9, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Bennici, S.; Jeguirim, M.; Limousy, L.; Haddad, K.; Vaulot, C.; Michelin, L.; Josien, L.; Zorpas, A.A. Influence of CO2 Concentration and Inorganic Species on the Gasification of Lignocellulosic Biomass Derived Chars. Waste Biomass Valoriz. 2019, 10, 3745–3752. [Google Scholar] [CrossRef]
- Huang, F.; Singh, P.M.; Ragauskas, A.J. Characterization of Milled Wood Lignin (MWL) in Loblolly Pine Stem Wood, Residue, and Bark. J. Agric. Food Chem. 2011, 59, 12910–12916. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Rosales, J.S.; Pintor-Ibarra, L.F.; González-Ortega, N.; Orihuela-Equihua, R.; Ruiz-Aquino, F.; Lujan-Álvarez, C.; Rutiaga-Quiñones, J.G. Basic Chemical Composition of Pinus spp. Sawdust from Five Regions of Mexico, for Bioenergetic Purposes. BioResources 2021, 16, 816–824. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Wang, D.; Li, D. Structure Elucidation and Properties of Different Lignins Isolated from Acorn Shell of Quercus Variabilis Bl. Int. J. Biol. Macromol. 2018, 107, 1193–1202. [Google Scholar] [CrossRef]
- Rugolo, M.; Lechner, B.; Mansilla, R.; Mata, G.; Rajchenberg, M. Evaluation of Pleurotus Ostreatus Basidiomes Production on Pinus Sawdust and other Agricultural and Forestry Wastes from Patagonia, Argentina. Maderas Cienc. Tecnol. 2020, 22, 517–526. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; De Gruyter: Berlín, Germany, 1983. [Google Scholar]
- Ulmgren, P. Non-Process Elements in a Bleached Kraft Pulp Mill with a High Degree of System Closure-State of the Art. Nord. Pulp Paper Res. J. 1997, 12, 32–41. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Van Lith, S.C.; Alonso-Ramírez, V.; Jensen, P.A.; Frandsen, F.J.; Glarborg, P. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 1: Development and Evaluation of Quantification Methods. Energy Fuels 2006, 20, 964–978. [Google Scholar] [CrossRef]
- Camps, M.M.; Marcos, M.F. Los Biocombustibles, 2nd ed.; Mundi-Prensa Libros: Madrid, Spain, 2008. [Google Scholar]
- Orihuela, R.; Reyes, L.A.; Rangel, J.R.; Chávez, M.C.; Márquez, F.; Correa, F.; Carrillo, A.; Rutiaga, J.G. Elaboración de briquetas con residuos maderables de pino. In Química de los Materiales Lignocelulósicos y su Potencial Bionergético; Rutiaga-Quiñones, J.G., Carrillo-Parra, A., Eds.; Sierke Verlag: Göttingen, Germany, 2016; Chapter 11. [Google Scholar]
- Morales-Máximo, M.; Orihuela-Equihua, R.; González-Ortega, N.; Pintor-Ibarra, L.F.; Rutiaga-Quiñones, J.G. Materiales Densificados con Biomasa Forestal Como Alternativa Energética en La Comunidad de San Francisco Pichátaro, Michoacán, México. Red Mex. Bioenergía 2018, XIV, 168–169. [Google Scholar] [CrossRef]
- Schmatz, M.J.; Antonio, J.; Siqueira, C.; Eduardo, C.; Nogueira, C.; Nelson, S.; de Souza, M.; Tokura, L.K.; Menezes, K.L. Evaluation of the Gross and Net Calorific Value of Residues of Wood Pine and Araucaria from Reforestation. Afr. J. Agric. Res. 2016, 11, 4157–4161. [Google Scholar] [CrossRef] [Green Version]
- Hernández, U.F.; Jaeger, D.; Samperio, J.I. Bioenergy Potential and Utilization Costs for the Supply of Forest Woody Biomass for Energetic Use at a Regional Scale in Mexico. Energies 2017, 10, 1192. [Google Scholar] [CrossRef] [Green Version]
- Flores Hernandez, U.; Jaeger, D.; Islas Samperio, J. Modeling Forest Woody Biomass Availability for Energy Use Based on Short-Term Forecasting Scenarios. Waste Biomass Valoriz. 2020, 11, 2137–2151. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Morini, M.; Pinelli, M.; Ruggero, P.; Venturini, M.; Finkenrath, M.; Witold-roger, P. Methodology for Estimating Biomass Energy Potential and Its Application to Colombia. Appl. Energy 2014, 136, 781–796. [Google Scholar] [CrossRef] [Green Version]
Samples | C | H | O | N | S |
---|---|---|---|---|---|
SD1 | 47.73 | 6.09 | 45.45 | 0.71 | <0.01 |
SD2 | 47.98 | 6.13 | 45.49 | 0.37 | <0.01 |
SD3 | 48.79 | 5.98 | 44.79 | 0.41 | <0.01 |
SD4 | 48.12 | 6.09 | 45.37 | 0.40 | <0.01 |
SD5 | 48.29 | 6.00 | 45.26 | 0.43 | <0.01 |
Average | 48.18 (±0.39) | 6.06 (±0.06) | 45.27 (±0.28) | 0.46 (±0.13) | <0.01 |
SH1 | 47.78 | 5.99 | 45.60 | 0.60 | <0.01 |
SH2 | 48.31 | 6.16 | 45.12 | 0.38 | <0.01 |
SH3 | 47.73 | 6.04 | 45.81 | 0.38 | <0.01 |
SH4 | 47.96 | 6.05 | 45.56 | 0.41 | <0.01 |
SH5 | 48.96 | 6.09 | 44.50 | 0.43 | <0.01 |
Average | 48.15 (±0.50) | 6.06 (±0.06) | 45.32 (±0.52) | 0.44 (±0.09) | <0.01 |
Samples | Hemicellulose | Cellulose | Lignin | Extractives |
---|---|---|---|---|
SD1 | 17.34 | 48.16 | 25.60 | 8.9 |
SD2 | 12.41 | 54.87 | 26.88 | 5.84 |
SD3 | 11.39 | 54.54 | 26.94 | 7.13 |
SD4 | 12.83 | 51.69 | 28.01 | 7.47 |
SD5 | 10.49 | 54.17 | 26.23 | 9.11 |
Average | 12.89 (±2.64) | 52.68 (±2.82) | 26.73 (±0.89) | 7.69 (±1.34) |
SH1 | 10.34 | 51.89 | 26.01 | 11.76 |
SH2 | 10.51 | 54.79 | 25.95 | 8.75 |
SH3 | 9.12 | 53.86 | 25.83 | 11.19 |
SH4 | 9.24 | 53.24 | 27.46 | 10.06 |
SH5 | 14.19 | 50.35 | 24.66 | 10.8 |
Element | SD1 | SD2 | SD3 | SD4 | SD5 | SH1 | SH2 | SH3 | SH4 | SH5 |
---|---|---|---|---|---|---|---|---|---|---|
Ag | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Al | 15,883.66 | 4770.21 | 19,198.40 | 16,808.97 | 16,211.77 | 10,390.06 | 15,397.57 | 14,295.14 | 12,238.74 | 22,787.87 |
As | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
B | 22.23 | 148.20 | 69.71 | 115.31 | 48.15 | 21.26 | 85.56 | 15.76 | 94.17 | 88.92 |
Ba | 115.58 | 292.05 | 183.96 | 162.40 | 114.96 | 131.66 | 203.33 | 92.94 | 158.19 | 200.81 |
Be | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Ca | 3946.68 | 24,350.40 | 8771.71 | 14,685.20 | 8720.03 | 2671.08 | 16,015.29 | 7234.63 | 14,357.56 | 15,801.00 |
Cd | 1.57 | 1.32 | 2.25 | 2.34 | 1.75 | 2.01 | 2.54 | 1.10 | 1.82 | 2.93 |
Co | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Cr | 11.54 | ND | 9.22 | 10.66 | 8.20 | 15.19 | 7.27 | 3.57 | 6.91 | 16.98 |
Cu | 70.21 | 230.36 | 156.34 | 223.88 | 126.50 | 117.05 | 420.09 | 58.18 | 236.96 | 415.85 |
Fe | 5114.25 | 2110.25 | 7834.38 | 8357.62 | 7647.26 | 4696.31 | 7862.51 | 6923.31 | 6633.44 | 11,632.98 |
K | 12,776.78 | 96,001.30 | 29,193.39 | 50,875.25 | 30,390.46 | 8301.61 | 56,352.52 | 27,200.89 | 48,529.56 | 58,896.15 |
Li | 9.35 | 105.45 | 31.74 | 38.03 | 24.42 | 32.26 | 29.15 | 31.66 | 33.24 | 6.32 |
Mg | 1312.76 | 8714.68 | 3034.71 | 5224.66 | 3127.17 | 819.25 | 5332.31 | 2612.19 | 4816.56 | 5531.51 |
Mn | 287.62 | 1031.42 | 574.89 | 928.14 | 402.66 | 318.79 | 730.33 | 281.38 | 646.38 | 694.20 |
Mo | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Na | 2368.42 | 3636.02 | 2200.23 | 2121.57 | 1723.90 | 1513.92 | 2734.95 | 2220.94 | 2229.47 | 2313.20 |
Ni | 22.60 | 19.82 | 64.48 | 59.41 | 34.14 | 40.22 | 40.92 | 15.78 | 23.19 | 30.74 |
P | 5892.63 | 8477.57 | 5159.20 | 10,391.33 | 4566.17 | 2625.44 | 6984.77 | 2055.79 | 6442.35 | 6885.04 |
Pb | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Sb | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Se | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Si | 287.89 | 3864.95 | 234.59 | 6050.14 | 338.16 | 174.93 | 7548.83 | 18.01 | 50.05 | 1501.70 |
Sn | 2.76 | 16.96 | 2.26 | 20.47 | ND | 8.12 | 3.97 | ND | ND | 2.57 |
Sr | 102.81 | 452.39 | 240.41 | 350.54 | 178.83 | 104.16 | 280.28 | 97.79 | 346.09 | 326.90 |
Tl | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
V | 28.07 | 6.39 | 29.08 | 28.22 | 27.10 | 35.02 | 26.73 | 21.97 | 18.87 | 37.25 |
Zn | 245.44 | 2557.69 | 535.13 | 614.66 | 340.92 | 241.61 | 1058.91 | 181.06 | 571.45 | 696.06 |
Parameter | Indicator |
---|---|
Energetic | Calorific value (MJ/Kg) |
Physical-proximal | Moisture (%) |
Ash (%) | |
Volatile matter (%) Fixed carbon (%) | |
Chemical composition | Lignin (%) |
Cellulose (%) Hemicellulose (%) | |
Extractives (%) |
Indicator | Maximum Value | Minimum Value |
---|---|---|
Calorific value (MJ/Kg) | 20.92 [53] | 0 |
Moisture (%) | 56 [54] | 0 |
Ash (%) | 18.20 [53] | 0 |
Volatile matter (%) | 86.32 [55] | 0 |
Fixed carbon (%) | 66.16 [56] | 0 |
Lignin (%) | 43.37 [57] | 0 |
Cellulose (%) | 53.3 [58] | 0 |
Hemicellulose (%) | 87.11 [59] | 0 |
Extractives (%) | 56.1 [60] | 0 |
Indicator | Pinus spp. Waste | Quercus spp. Waste |
---|---|---|
Calorific value (MJ/Kg) | 18.0 | 19.5 [26] |
Moisture (%) | 16.82 | 25 [26] |
Ash (%) | 0.64 | 0.95 [26] |
Volatile matter (%) | 78.92 | 87.33 [26] |
Fixed carbon (%) | 8.76 | 8.88 [26] |
Lignin (%) | 26.7 | 24.5 [61] |
Cellulose (%) | 52.6 | 38.4 [61] |
Hemicellulose (%) | 13.14 | 24 [61] |
Extractives (%) | 19.8 | 6.94 [62] |
Indicator | Pinus spp. Waste | Quercus spp. Waste |
---|---|---|
Calorific value (MJ/Kg) | 8.60 | 9.32 |
Moisture (%) | 3.00 | 4.46 |
Ash (%) | 0.18 | 0.27 |
Volatile matter (%) | 9.14 | 10.11 |
Fixed carbon (%) | 1.32 | 1.34 |
Lignin (%) | 6.15 | 5.64 |
Cellulosa (%) | 9.86 | 7.20 |
Hemicellulose (%) | 1.50 | 2.75 |
Extractives (%) | 3.52 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Máximo, M.; García, C.A.; Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Velázquez-Martí, B.; Rutiaga-Quiñones, J.G. Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests 2021, 12, 977. https://doi.org/10.3390/f12080977
Morales-Máximo M, García CA, Pintor-Ibarra LF, Alvarado-Flores JJ, Velázquez-Martí B, Rutiaga-Quiñones JG. Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests. 2021; 12(8):977. https://doi.org/10.3390/f12080977
Chicago/Turabian StyleMorales-Máximo, Mario, Carlos A. García, Luis Fernando Pintor-Ibarra, José Juan Alvarado-Flores, Borja Velázquez-Martí, and José Guadalupe Rutiaga-Quiñones. 2021. "Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico" Forests 12, no. 8: 977. https://doi.org/10.3390/f12080977
APA StyleMorales-Máximo, M., García, C. A., Pintor-Ibarra, L. F., Alvarado-Flores, J. J., Velázquez-Martí, B., & Rutiaga-Quiñones, J. G. (2021). Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests, 12(8), 977. https://doi.org/10.3390/f12080977