Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization
Abstract
:1. Introduction
2. Material and Methods
2.1. Sites and Sampling
2.2. Cellular Structure Characterization
2.3. Chemical Summative Analysis
2.4. Composition and Antioxidant Activity of Polar Extracts
2.5. Composition of Lipophilic Extracts
2.6. Composition of Suberin
2.7. Statistical Analysis
3. Results
3.1. Structure and Anatomy
3.2. Chemical Composition
3.3. Polar Extracts Composition
3.4. Lipophilic Extract Composition
3.5. Suberin Composition
4. Discussion
4.1. Structure and Anatomy
4.2. Chemical Composition
4.3. Polar Extract Composition
4.4. Lipophilic Extracts Composition
4.5. Suberin Composition
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capelo, J.; Catry, F. Biologia, ecologia e distribuição da azinheira (Biology, ecology and distribution of holm oak). In Os Montados—Muito para Além das Árvores; Fundação Luso-Americana: Lisbon, Portugal, 2007; Volume 3, pp. 119–129. [Google Scholar]
- Franco, J.A. Quercus, L. In Flora Ibérica, Platanaceae—Plumbaginaceae; Real Jardín Botánico: Madrid, Spain, 1990; Volume II, pp. 15–36. [Google Scholar]
- Corcuera, L.; Camarero, J.; Pelegrín, E. Effects of a Severe Drought on Quercus Ilex Radial Growth and Xylem Anatomy. Trees 2004, 18, 83–92. [Google Scholar] [CrossRef]
- Montserrat-Martí, G.; Camarero, J.J.; Palacio, S.; Pérez-Rontomé, C.; Milla, R.; Albuixech, J.; Maestro, M. Summer-Drought Constrains the Phenology and Growth of Two Coexisting Mediterranean Oaks with Contrasting Leaf Habit: Implications for Their Persistence and Reproduction. Trees 2009, 23, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Fotelli, M.N.; Radoglou, K.M.; Constantinidou, H.-I.A. Water Stress Responses of Seedlings of Four Mediterranean Oak Species. Tree Physiol. 2000, 20, 1065–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnoli, A.; Dumroese, R.K.; Terzaghi, M.; Onelli, E.; Scippa, G.S.; Chiatante, D. Seasonality of Fine Root Dynamics and Activity of Root and Shoot Vascular Cambium in a Quercus ilex L. Forest (Italy). For. Ecol. Manag. 2019, 431, 26–34. [Google Scholar] [CrossRef]
- Vilagrosa, A.; Chirino, E.; Peguero-Pina, J.J.; Barigah, T.S.; Cochard, H.; Gil-Pelegrín, E. Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–109. ISBN 978-3-642-32653-0. [Google Scholar]
- Pelegrín, E.; Peguero-Pina, J.J.; Sancho-Knapik, D. Oaks Physiological Ecology. In Exploring the Functional Diversity of Genus Quercus L.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lousã, M.; Fabião, A. A Azinheira: Quercus ilex Ou Quercus rotundifolia? In Sobreiro e Cortiça/Cork oak and Cork, European Conference on Cork oak and Cork, 5–7 May 1997; Pereira, H., Ed.; Centro de Estudos Florestais: Lisboa, Portugal, 1998; pp. 248–251. [Google Scholar]
- López-Hidalgo, C.; Trigueros, M.; Menéndez, M.; Jorrin-Novo, J.V. Phytochemical Composition and Variability in Quercus ilex Acorn Morphotypes as Determined by NIRS and MS-Based Approaches. Food Chem. 2021, 338, 127803. [Google Scholar] [CrossRef]
- Carvalho, A. Madeiras Portuguesas—Estrutura Anatómica, Propriedades, Utilizações; Direcção-Geral das Florestas: Lisbon, Portugal, 1997. [Google Scholar]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Pereira, H. The Rationale behind Cork Properties: A Review of Structure and Chemistry. BioResources 2015, 10. [Google Scholar] [CrossRef]
- Şen, A.; Quilhó, T.; Pereira, H. The Cellular Structure of Cork from Quercus cerris Var. cerris Bark in a Materials’ Perspective. Ind. Crop. Prod. 2011, 34, 929–936. [Google Scholar] [CrossRef]
- Miranda, I.; Gominho, J.; Pereira, H. Cellular Structure and Chemical Composition of Cork from the Chinese Cork Oak (Quercus variabilis). J. Wood Sci. 2013, 59, 1–9. [Google Scholar] [CrossRef]
- Leite, C.; Oliveira, V.; Miranda, I.; Pereira, H. Cork Oak and Climate Change: Disentangling Drought Effects on Cork Chemical Composition. Sci. Rep. 2020, 10, 7800. [Google Scholar] [CrossRef]
- Morales, D. Oak Trees (Quercus spp.) as a Source of Extracts with Biological Activities: A Narrative Review. Trends Food Sci. Technol. 2021, 109, 116–125. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Falcão, L.; Araújo, M.E.M. Tannins Characterization in Historic Leathers by Complementary Analytical Techniques ATR-FTIR, UV-Vis and Chemical Tests. J. Cult. Herit. 2013, 14, 499–508. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Effect of Extracts of Oak (Quercus petraea) Bark, Oak Leaves, Aloe Vera (Curacao aloe), Coconut Shell and Wine on the Colloidal Stability of Milk and Concentrated Milk. Food Chem. 1999, 66, 93–96. [Google Scholar] [CrossRef]
- Andrenšek, S.; Simonovska, B.; Vovk, I.; Fyhrquist, P.; Vuorela, H.; Vuorela, P. Antimicrobial and Antioxidative Enrichment of Oak (Quercus robur) Bark by Rotation Planar Extraction Using ExtraChrom®. Int. J. Food Microbiol. 2004, 92, 181–187. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Favre, J.-M. Polyphenols of Quercus robur: Adult Tree and in Vitro Grown Calli and Shoots. Phytochemistry 1988, 27, 3483–3488. [Google Scholar] [CrossRef]
- Ferreira, J.P.A.; Miranda, I.; Sousa, V.B.; Pereira, H. Chemical Composition of Barks from Quercus faginea Trees and Characterization of Their Lipophilic and Polar Extracts. PLoS ONE 2018, 13, e0197135. [Google Scholar] [CrossRef]
- Vangeel, T.; Neiva, D.M.; Quilhó, T.; Costa, R.A.; Sousa, V.; Sels, B.F.; Pereira, H. Tree Bark Characterization Envisioning an Integrated Use in a Biorefinery. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Ruiz-Aquino, F.; González-Peña, M.M.; Valdez-Hernández, J.I.; Revilla, U.S.; Romero-Manzanares, A. Chemical Characterization and Fuel Properties of Wood and Bark of Two Oaks from Oaxaca, Mexico. Ind. Crop. Prod. 2015, 65, 90–95. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Andrés, M.A.; Labidi, J. Characterisation of Bark of Six Species from Mixed Atlantic Forest. Ind. Crop. Prod. 2019, 137, 276–284. [Google Scholar] [CrossRef]
- Pereira, H.; Graça, J.; Rodrigues, J. Wood Chemistry in Relation to Quality. Cheminform 2004, 35. [Google Scholar] [CrossRef]
- Quilhó, T.; Sousa, V.; Tavares, F.; Pereira, H. Turkish Journal of Botany Bark Anatomy and Cell Size Variation in Quercus faginea. Turk. J. Bot. 2013, 37. [Google Scholar] [CrossRef]
- Sen, A.; Quilhó, T.; Pereira, H. Bark Anatomy of Quercus cerris L. Var. cerris from Turkey. Turk. J. Bot. 2011, 35, 33. [Google Scholar] [CrossRef]
- Natividade, J.V. Estudo Histologico Das Peridermes Do Hibrido Quercus ilex X suber; Cout, P., Ed.; Dirercção Geral dos Serviços Florestais: Lisbon, Portugal, 1936; Volume III. [Google Scholar]
- Berahou, A.; Auhmani, A.; Fdil, N.; Benharref, A.; Jana, M.; Gadhi, C.A. Antibacterial Activity of Quercus ilex Bark’s Extracts. J. Ethnopharmacol. 2007, 112, 426–429. [Google Scholar] [CrossRef]
- Minganti, V.; Drava, G. Tree Bark as a Bioindicator of the Presence of Scandium, Yttrium and Lanthanum in Urban Environments. Chemosphere 2018, 193, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Angyalossy, V.; Evert, R.; Marcati, C.; Oskolski, A.; Terrazas, T.; Kotina, E.; Lens, F.; Cristina, M.-V.; Angeles, G.; Machado, S.; et al. IAWA List of Microscopic Bark Features. Int. Assoc. Wood Anat. 2016, 37, 517–615. [Google Scholar] [CrossRef] [Green Version]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical Characterization and Extractives Composition of Heartwood and Sapwood from Quercus faginea. PLoS ONE 2017, 12, e0179268. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H. Chemical Composition and Variability of Cork from Quercus suber L. Wood Sci. Technol. 1988, 22, 211–218. [Google Scholar] [CrossRef]
- Crivellaro, A.; Schweingruber, F. Atlas of Wood, Bark and Pith Anatomy of Eastern Mediterranean Trees and Shrubs. With a Special Focus on Cyprus; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-37234-6. [Google Scholar]
- Gričar, J.; Jagodic, Š.; Prislan, P. Structure and Subsequent Seasonal Changes in the Bark of Sessile Oak (Quercus petraea). Trees 2015, 29, 747–757. [Google Scholar] [CrossRef]
- Whitmore, T.C. Studies in systematic bark morphology. New Phytol. 1963, 62, 161–169. [Google Scholar] [CrossRef]
- Trockenbrodt, M. Structure and Identification of Root Bark of Quercus robur L. Trees 1995, 9, 341–347. [Google Scholar] [CrossRef]
- Gricar, J. Xylem and Phloem Formation in Sessile Oak from Slovenia in 2007. Wood Res. 2010, 55, 15–22. [Google Scholar]
- Vilkovský, P.; Cunderlík, I. Structure of phloem and wood/bark shear strength of the sessile oak during dormant and growing period. Acta Fac. Xylologiae 2017, 59, 17–26. [Google Scholar] [CrossRef]
- Howard, E.T. Bark Structure of Southern Upland Oaks; USDA: Washington, DC, USA, 1977. [Google Scholar]
- Ferreira, J.; Miranda, I.; Sen, A.; Pereira, H. Chemical and Cellular Features of Virgin and Reproduction Cork from Quercus variabilis. Ind. Crop. Prod. 2016, 94. [Google Scholar] [CrossRef]
- Valencia-Avilés, E.; García-Pérez, M.E.; Garnica-Romo, M.G.; Figueroa-Cárdenas, J.D.; Meléndez-Herrera, E.; Salgado-Garciglia, R.; Martínez-Flores, H.E. Antioxidant Properties of Polyphenolic Extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla Bark. Antioxidants 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Şen, A.; Miranda, I.; Santos, S.; Graça, J.; Pereira, H. The Chemical Composition of Cork and Phloem in the Rhytidome of Quercus cerris Bark. Ind. Crop. Prod. 2010, 31, 417–422. [Google Scholar] [CrossRef]
- Miranda, I.; Gominho, J.; Mirra, I.; Pereira, H. Fractioning and Chemical Characterization of Barks of Betula pendula and Eucalyptus globulus. Ind. Crop. Prod. 2013, 41, 299–305. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Pinto, P.C.R.O.; Silvestre, A.J.D.; Neto, C.P. Chemical Composition and Antioxidant Activity of Phenolic Extracts of Cork from Quercus suber L. Ind. Crop. Prod. 2010, 31, 521–526. [Google Scholar] [CrossRef]
- Castola, V.; Marongiu, B.; Bighelli, A.; Floris, C.; Laı, A.; Casanova, J. Extractives of Cork (Quercus suber L.): Chemical Composition of Dichloromethane and Supercritical CO2 Extracts. Ind. Crop. Prod. 2005, 21, 65–69. [Google Scholar] [CrossRef]
- Sen, A.; Melo, M.; Silvestre, A.; Pereira, H.; Silva, C. Prospective Pathway for a Green and Enhanced Friedelin Production through Supercritical Fluid Extraction of Quercus cerris Cork. J. Supercrit. Fluids 2015, 97, 247–255. [Google Scholar] [CrossRef]
- Castola, V.; Bighelli, A.; Rezzi, S.; Melloni, G.; Gladiali, S.; Desjobert, J.-M.; Casanova, J. Composition and Chemical Variability of the Triterpene Fraction of Dichloromethane Extracts of Cork (Quercus suber L.). Ind. Crop. Prod. 2002, 15, 15–22. [Google Scholar] [CrossRef]
- Sousa, A.F.; Pinto, P.C.R.O.; Silvestre, A.J.D.; Pascoal Neto, C. Triterpenic and Other Lipophilic Components from Industrial Cork Byproducts. J. Agric. Food Chem. 2006, 54, 6888–6893. [Google Scholar] [CrossRef]
- Clermont, L.P. The Fatty Acids of Aspen Poplar, Basswood, Yellow Birch and White Birch. Pulp Paper Mag. Can. 62 1961, 3, T511–T514. [Google Scholar]
Site 1 | Site 2 | |
---|---|---|
Tree age (years) * | 44 ± 14 (25–65) | 49 ± 18 (25–65) |
Total tree height (m) | 7.2 ± 0.5 (6.7–7.7) | 6.1 ± 2.1 (3.9–9.2) |
Stem height (m) | 1.6 ± 0.2 (1.4–1.8) | 1.6 ± 0.4 (1.3–1.7) |
Diameter (cm) ** | 27.0 ± 2.2 (24.4–29.4) | 25.9 ± 6.9 (17.3–32.9) |
Bark thickness (mm) | 11.5 ± 2.5 (8.3–15.2) | 11.7 ± 1.7 (9.9–14.5) |
Rhytidome thickness (mm) | 4.9 ± 1.2 (2.8–6.3) | 5.4 ± 1.6 (2.5–6.7) |
Site 1 | Site 2 | p-Value | |
---|---|---|---|
Ash | 14.9 ± 3.1 | 16.0 ± 2.3 | 0.343 |
Extractives, total | 19.3 ± 3.5 | 15.1 ± 0.8 | 0.001 |
Dichloromethane | 1.3 ± 0.3 | 1.8 ± 0.3 | 0.001 |
Ethanol | 9.1 ± 3.5 | 3.7 ± 2.1 | 0.000 |
Water | 8.9 ± 1.0 | 9.6 ± 1.5 | 0.257 |
Suberin | 3.1 ± 0.4 | 2.9 ± 0.6 | 0.440 |
Lignin, total | 29.1 ± 3.5 | 31.8 ± 3.6 | 0.085 |
Klason lignin | 25.9 ± 3.6 | 28.6 ± 3.7 | 0.092 |
Soluble lignin | 3.3 ± 0.2 | 3.3 ± 0.3 | 0.985 |
Polysaccharides * | 33.6 ± 2.5 | 34.2 ± 2.6 | 0.157 |
Site 1 | Site 2 | |
---|---|---|
Rhamnose | 2.8 ± 0.6 | 3.7 ± 0.9 |
Arabinose | 8.9 ± 0.8 | 9.6 ± 2.1 |
Galactose | 5.2 ± 0.4 | 5.6 ± 1.2 |
Glucose | 51.9 ± 1.8 | 49.4 ± 2.5 |
Xylose | 24.0 ± 1.9 | 23.5 ± 3.0 |
Mannose | 0.7 ± 0.2 | 0.9 ± 0.6 |
Galacturonic acid | 5.3 ± 0.6 | 6.3 ± 1.0 |
Glucuronic acid | 0.02 ± 0.04 | 0.2 ± 0.1 |
Acetyl groups | 1.1 ± 0.1 | 0.8 ± 0.2 |
Site 1 | Site 2 | p-Value | |
---|---|---|---|
Ethanol extractives | |||
Total phenolics (mg GAE/g extract) | 561.7 ± 77 | 583.9 ± 58.6 | 0.222 |
Total flavonoids (mg CE/g extract) | 173.8 ± 69.6 | 321.3 ± 28.7 | 0.000 |
Condensed tannins (mg CE/g extract) | 115.8 ± 35.6 | 472.3 ± 189.3 | 0.000 |
Antioxidant capacity (mg TEAC/g extract) | 696.9 ± 97.4 | 1390.6 ± 515.3 | 0.000 |
IC50 values (µg extract/mL) * | 5.8 ± 0.9 | 2.9 ± 1.2 | 0.000 |
FRAP (mM TEAC/g extract) | 2.25 ± 0.92 | 6.33 ± 3.34 | 0.001 |
Water extractives | |||
Total phenolics (mg GAE/g extract) | 253.7 ± 26 | 185.3 ± 40.2 | 0.001 |
Total flavonoids (mg CE/g extract) | 133.9 ± 31 | 191.0 ± 60 | 0.021 |
Condensed tannins (mg CE/g extract) | 44.3 ± 12.1 | 38.1 ± 7.4 | 0.177 |
Antioxidant capacity (mg TEAC/g extract) | 1109.6 ± 268.8 | 770.9 ± 247 | 0.003 |
IC50 values (µg extract/mL) * | 3.4 ± 0.9 | 5.9 ± 1.9 | 0.001 |
FRAP (mM TEAC/g extract) | 1.54 ± 0.25 | 1.13 ± 0.48 | 0.028 |
Compounds | Site 1 | Site 2 |
---|---|---|
Alkanols | 0.91 ± 0.35 | 1.48 ± 0.50 |
hexadecanol | 0.03 ± 0.06 | 0.17 ± 0.05 |
octadecanol | 0.00 ± 0.00 | 0.01 ± 0.03 |
docosanol | 0.36 ± 0.17 | 0.60 ± 0.22 |
tetracosanol | 0.37 ± 0.16 | 0.41 ± 0.11 |
heptatriacotanol | 0.15 ± 0.17 | 0.28 ± 0.35 |
Saturated alkanoic acids | 23.72 ± 7.86 | 31.24 ± 10.21 |
decanoic acid | 0.00 ± 0.00 | 0.02 ± 0.04 |
dodecanoic acid | 0.05 ± 0.05 | 0.19 ± 0.06 |
tetradecanoic acid | 0.61 ± 0.31 | 2.38 ± 1.20 |
pentadecanoic acid | 0.01 ± 0.03 | 0.07 ± 0.07 |
hexadecanoic acid | 9.68 ± 3.65 | 11.63 ± 4.99 |
heptadecanoic acid | 0.01 ± 0.03 | 0.08 ± 0.08 |
octadecanoic acid | 1.55 ± 0.46 | 2.34 ± 0.85 |
eicosanoic acid | 0.26 ± 0.09 | 0.26 ± 0.13 |
heneicosanoic acid | 0.10 ± 0.07 | 0.17 ± 0.11 |
docosanoic acid | 5.14 ± 1.75 | 5.25 ± 2.93 |
tricosanoic acid | 0.22 ± 0.07 | 0.46 ± 0.20 |
pentacosanoic acid | 0.00 ± 0.01 | 0.07 ± 0.10 |
tetracosanoic acid | 5.53 ± 2.59 | 7.54 ± 2.41 |
hexacosanoic acid | 0.55 ± 0.42 | 0.79 ± 0.33 |
Substituted alkanoic acids | 8.95 ± 6.20 | 10.43 ± 5.63 |
trans-9-hexadecenoic acid | 0.01 ± 0.03 | 0.09 ± 0.09 |
cis-9-hexadecenoic acid | 0.09 ± 0.06 | 0.08 ± 0.13 |
9,12-octadecadienoic acid | 3.37 ± 2.43 | 3.22 ± 1.85 |
cis-9-octadecenoic acid | 5.38 ± 5.23 | 6.95 ± 3.57 |
trans-9-octadecenoic acid | 0.10 ± 0.11 | 0.09 ± 0.11 |
Saturated α,ω-diacids | 0.00 ± 0.00 | 0.10 ± 0.14 |
nonanedioic acid | 0.00 ± 0.00 | 0.09 ± 0.12 |
hexadecanedioic acid | 0.00 ± 0.00 | 0.01 ± 0.02 |
Saturated ω-hydroxyacids | 0.10 ± 0.16 | 0.27 ± 0.21 |
22-hydroxydocosanoic acid | 0.10 ± 0.16 | 0.27 ± 0.21 |
Sterols | 2.61 ± 0.98 | 7.39 ± 1.30 |
β-sitosterol | 2.46 ± 0.90 | 6.84 ± 1.26 |
3,5-stigmastadien-7-one | 0.02 ± 0.04 | 0.12 ± 0.17 |
stigmasterol | 0.02 ± 0.04 | 0.04 ± 0.08 |
4-stigmasten-3-one | 0.11 ± 0.11 | 0.32 ± 0.07 |
sitosteryl-3β-D-glucopiranoside | 0.00 ± 0.00 | 0.07 ± 0.14 |
Terpenes/Terpenoids | 56.21 ± 9.15 | 43.66 ± 14.23 |
farnesol | 0.01 ± 0.02 | 0.00 ± 0.00 |
β-amyrin | 0.01 ± 0.02 | 0.24 ± 0.53 |
lupenone | 0.30 ± 0.43 | 0.30 ± 0.24 |
α-amyrin | 0.02 ± 0.04 | 0.00 ± 0.00 |
lupeol | 1.46 ± 1.15 | 3.10 ± 3.10 |
erythrodiol | 2.22 ± 2.12 | 1.09 ± 1.40 |
friedelin | 1.84 ± 4.01 | 5.01 ± 8.59 |
friedelan-3-ol | 0.60 ± 0.84 | 0.11 ± 0.24 |
betulin | 1.74 ± 3.54 | 10.33 ± 10.71 |
oleanolic acid | 7.48 ± 4.20 | 4.06 ± 1.72 |
ursolic acid | 19.85 ± 12.15 | 8.22 ± 4.32 |
betulinic acid | 18.80 ± 6.07 | 9.58 ± 5.80 |
betulinic aldehyde | 0.27 ± 0.19 | 0.52 ± 0.35 |
hederagenin | 0.35 ± 0.71 | 0.08 ± 0.12 |
maslinic acid | 0.93 ± 1.05 | 0.45 ± 0.49 |
echinocystic acid | 0.29 ± 0.32 | 0.59 ± 0.89 |
corosolic acid | 0.04 ± 0.08 | 0.00 ± 0.00 |
Glycerol derivatives | 0.60 ± 0.24 | 2.23 ± 0.63 |
2-monopalmitin | 0.00 ± 0.00 | 0.01 ± 0.03 |
1-monopalmitin | 0.28 ± 0.14 | 1.23 ± 0.52 |
1-monoolein | 0.12 ± 0.14 | 0.07 ± 0.10 |
1-monostearin | 0.14 ± 0.05 | 0.42 ± 0.31 |
docosyl glycerol | 0.02 ± 0.04 | 0.16 ± 0.10 |
tetracosyl glycerol | 0.04 ± 0.05 | 0.34 ± 0.18 |
Aromatics/Phenolics | 0.56 ± 0.39 | 1.13 ± 0.70 |
3-hydroxybenzoic acid | 0.04 ± 0.09 | 0.14 ± 0.13 |
vanillic acid | 0.00 ± 0.00 | 0.02 ± 0.05 |
caffeic acid | 0.42 ± 0.27 | 0.74 ± 0.64 |
docosyl ferulate | 0.06 ± 0.10 | 0.13 ± 0.11 |
tetracosyl ferulate | 0.04 ± 0.07 | 0.10 ± 0.10 |
Identified | 93.65 ± 5.63 | 97.91 ± 1.01 |
Non-identified | 6.35 ± 5.63 | 2.09 ± 1.01 |
Total | 100 | 100 |
Compounds | Site 1 | Site 2 |
---|---|---|
Alkanols | 4.60 ± 0.79 | 4.25 ± 1.02 |
octadecanol | 0.16 ± 0.06 | 0.20 ± 0.16 |
docosanol | 1.13 ± 0.14 | 1.45 ± 0.35 |
tetracosanol | 3.05 ± 0.61 | 2.35 ± 0.72 |
hexacosanol | 0.04 ± 0.01 | 0.02 ± 0.03 |
3-(2-methoxyethyl)-1-octanol | 0.02 ± 0.01 | 0.00 ± 0.00 |
18-methylnonadecanol | 0.08 ± 0.01 | 0.12 ± 0.06 |
falcarinol | 0.12 ± 0.06 | 0.11 ± 0.05 |
Saturated alkanoic acids | 15.26 ± 1.30 | 11.40 ± 0.84 |
octanoic acid | 0.07 ± 0.01 | 0.04 ± 0.01 |
tetradecanoic acid | 0.03 ± 0.01 | 0.01 ± 0.02 |
hexadecanoic acid, methyl ester | 0.49 ± 0.17 | 0.38 ± 0.17 |
hexadecanoic acid | 0.42 ± 0.16 | 0.38 ± 0.19 |
octadecanoic acid | 0.04 ± 0.01 | 0.04 ± 0.02 |
octadecanoic acid, methyl ester | 0.08 ± 0.02 | 0.05 ± 0.03 |
eicosanoic acid, methyl ester | 0.13 ± 0.12 | 0.08 ± 0.04 |
docosanoic acid, methyl ester | 2.39 ± 1.02 | 1.63 ± 0.53 |
tetradecanoic acid, methyl ester | 0.30 ± 0.09 | 0.20 ± 0.06 |
tetradecanoic acid | 1.04 ± 0.22 | 0.83 ± 0.14 |
docosanoic acid | 1.52 ± 0.20 | 0.39 ± 0.24 |
tetracosanoic acid, methyl ester | 7.36 ± 1.70 | 6.42 ± 0.67 |
tetracosanoic acid | 0.51 ± 0.48 | 0.59 ± 0.34 |
eicosanoic acid | 0.69 ± 0.46 | 0.34 ± 0.33 |
hexacosanoic acid | 0.20 ± 0.38 | 0.01 ± 0.03 |
Substituted alkanoic acids | 3.80 ± 1.12 | 2.38 ± 1.39 |
9,12-octadecadienoic acid, methyl ester | 0.06 ± 0.01 | 0.06 ± 0.02 |
9-octadecenoic acid (Z)-, methyl ester | 0.28 ± 0.04 | 0.20 ± 0.08 |
cis-9-octadecenoic acid | 0.08 ± 0.03 | 0.08 ± 0.03 |
9,12-octadecadienoic acid | 1.69 ± 1.35 | 1.52 ± 1.68 |
9,10-epoxyoctadecanoic acid, methyl ester | 1.23 ± 0.63 | 0.25 ± 0.25 |
9-decenoic acid | 0.45 ± 0.07 | 0.26 ± 0.17 |
Saturated α,ω-diacids | 10.83 ± 3.24 | 8.02 ± 2.33 |
octanedioic acid | 0.05 ± 0.00 | 0.05 ± 0.02 |
hexadecanedioic acid, dimethyl ester | 4.97 ± 1.51 | 4.00 ± 1.36 |
eicosandioic acid, dimethyl ester | 1.79 ± 2.90 | 0.45 ± 0.15 |
octanedioic acid, dimethyl ester | 3.71 ± 0.65 | 3.27 ± 1.00 |
hexadecanedioic acid | 0.08 ± 0.03 | 0.06 ± 0.04 |
dodecanedioic acid | 0.11 ± 0.10 | 0.00 ± 0.00 |
docosanedioic acid, dimethyl ester | 0.04 ± 0.04 | 0.13 ± 0.18 |
heptanedioic acid, methyl ester | 0.01 ± 0.01 | 0.00 ± 0.00 |
octanedioic acid, methyl ester | 0.06 ± 0.05 | 0.05 ± 0.05 |
Substituted α,ω-diacids | 8.51 ± 2.66 | 11.31 ± 2.79 |
18-methoxyoctanedioic acid | 0.84 ± 0.71 | 0.86 ± 0.58 |
9,10-dihydroxyoctanedioic acid, dimethyl ester | 5.44 ± 1.07 | 7.63 ± 1.22 |
8,9,18-trihydroxyoctanedioic acid, methyl ester | 0.99 ± 0.96 | 1.86 ± 1.65 |
16-hydroxyhexanedioic acid, methyl ester | 1.23 ± 0.89 | 0.95 ± 0.69 |
Saturated ω-hydroxyacids | 19.34 ± 0.95 | 18.81 ± 8.44 |
16-hydroxyhexadecanoic acid, methyl ester | 3.08 ± 1.11 | 2.65 ± 0.61 |
16-hydroxydecanoic acid | 0.12 ± 0.11 | 0.12 ± 0.10 |
20-hydroxyeicosanoic acid, methyl ester | 1.08 ± 0.61 | 0.79 ± 0.29 |
20-hydroxyeicosanoic acid | 0.03 ± 0.03 | 1.95 ± 4.36 |
22-hydroxydocosanoic acid, methyl ester | 8.96 ± 1.22 | 8.72 ± 5.00 |
22-hydroxydocosanoic acid | 0.46 ± 0.51 | 0.57 ± 0.48 |
24-hydroxytetracosanoic acid, methyl ester | 5.28 ± 1.63 | 3.75 ± 2.27 |
24-hydroxytetracosanoic acid | 0.32 ± 0.30 | 0.26 ± 0.24 |
Substituted ω-hydroxyacids | 27.46 ± 4.05 | 30.55 ± 7.86 |
18-hydroxy-9-octadecenoic acid, methyl ester | 13.70 ± 1.72 | 13.76 ± 1.42 |
9,10-epoxy-18-hydroxyoctadecanoic acid | 0.05 ± 0.07 | 0.07 ± 0.07 |
9,10,18-trihydroxyoctadecanoic acid, methyl ester | 9.14 ± 0.70 | 14.93 ± 6.63 |
9,10-epoxy-18-hydroxyoctadecanoic acid, methyl ester | 4.57 ± 3.11 | 1.79 ± 1.07 |
Sterols | 0.01 ± 0.02 | 0.03 ± 0.04 |
β-sitosterol | 0.01 ± 0.02 | 0.03 ± 0.04 |
Terpenes/Terpenoids | 0.02 ± 0.02 | 0.03 ± 0.03 |
dehydroabietic acid | 0.02 ± 0.02 | 0.03 ± 0.03 |
Aromatics/Phenolics | 8.96 ± 1.50 | 6.98 ± 1.33 |
4-methoxybutanoic acid | 0.04 ± 0.02 | 0.01 ± 0.02 |
4-hydroxy-benzoic acid, methyl ester | 0.03 ± 0.02 | 0.03 ± 0.03 |
3,5-bis(1,1-dimethylethyl)-4-hydroxy-benzoic acid, ethyl ester | 0.32 ± 0.16 | 0.13 ± 0.06 |
2,5-dihydroxypyrazine | 0.05 ± 0.01 | 0.02 ± 0.03 |
3,4-dihydroxybenzoic acid, methyl ester | 0.25 ± 0.43 | 0.04 ± 0.05 |
vanillic Acid | 0.07 ± 0.01 | 0.07 ± 0.03 |
isovanillic acid | 0.27 ± 0.09 | 0.29 ± 0.35 |
coniferyl aldehyde | 0.07 ± 0.03 | 0.04 ± 0.05 |
3,5-dimethoxy-4-hydroxybenzoic acid | 0.02 ± 0.01 | 0.03 ± 0.02 |
2,5-dimethoxymandelic acid | 0.06 ± 0.02 | 0.07 ± 0.05 |
ferulic acid, methyl ester | 4.25 ± 1.40 | 4.64 ± 0.94 |
ferulic acid | 3.53 ± 0.64 | 1.60 ± 0.67 |
Identified | 98.79 ± 0.51 | 93.77 ± 3.59 |
Non-identified | 1.21 ± 0.51 | 6.23 ± 3.59 |
Total | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, V.; Ferreira, J.P.A.; Miranda, I.; Quilhó, T.; Pereira, H. Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests 2021, 12, 1160. https://doi.org/10.3390/f12091160
Sousa V, Ferreira JPA, Miranda I, Quilhó T, Pereira H. Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests. 2021; 12(9):1160. https://doi.org/10.3390/f12091160
Chicago/Turabian StyleSousa, Vicelina, Joana P. A. Ferreira, Isabel Miranda, Teresa Quilhó, and Helena Pereira. 2021. "Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization" Forests 12, no. 9: 1160. https://doi.org/10.3390/f12091160
APA StyleSousa, V., Ferreira, J. P. A., Miranda, I., Quilhó, T., & Pereira, H. (2021). Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests, 12(9), 1160. https://doi.org/10.3390/f12091160