What Happens to Wood after a Tree Is Attacked by a Bark Beetle?
Abstract
:1. Introduction
2. Structure of Wood from Beetle-Attacked Trees
3. Physical Properties of Wood from Beetle-Attacked Trees
4. Mechanical Properties of Wood from Beetle-Attacked Trees
5. Future Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schroeder, M.; Cocoş, D. Performance of the tree-killing bark beetles Ips typographus and Pityogenes chalcographus in non-indigenous lodgepole pine and their historical host Norway spruce. Agric. For. Entomol. 2018, 20, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Mageroy, M.H.; Christiansen, E.; Långström, B.; Borg-Karlson, A.-K.; Solheim, H.; Björklund, N.; Zhao, T.; Schmidt, A.; Fossdal, C.G.; Krokene, P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. Plant. Cell Environ. 2020, 43, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hroššo, B.; Mezei, P.; Potterf, M.; Majdák, A.; Blaženec, M.; Korolyova, N.; Jakuš, R. Drivers of Spruce Bark Beetle (Ips typographus) Infestations on Downed Trees after Severe Windthrow. Forests 2020, 11, 1290. [Google Scholar] [CrossRef]
- Hulcr, J.; Ubik, K.; Vrkoc, J. The role of semiochemicals in tritrophic interactions between the spruce bark beetle Ips typographus, its predators and infested spruce. J. Appl. Entomol. 2006, 130, 275–283. [Google Scholar] [CrossRef]
- Blažytė-Čereškienė, L.; Apšegaitė, V.; Radžiutė, S.; Mozūraitis, R.; Būda, V.; Pečiulytė, D. Electrophysiological and behavioural responses of Ips typographus (L.) to trans-4-thujanol—A host tree volatile compound. Ann. For. Sci. 2016, 73, 247–256. [Google Scholar] [CrossRef]
- Tittiger, C.; Blomquist, G.J. Pheromone Production in Pine Bark Beetles. Adv. Insect Phys. 2016, 50, 235–263. [Google Scholar] [CrossRef]
- Keeling, C.I.; Tittiger, C.; MacLean, M.; Blomquist, G.J. Pheromone production in bark beetles. In Insect Pheromone Biochemistry and Molecular Biology, 2nd ed.; Blomquist, G.J., Vogt, R., Eds.; Academic Press: London, UK, 2020; pp. 123–162. [Google Scholar]
- Šramel, N.; Kavčič, A.; Kolšek, M.; de Groot, M. Estimating the most effective and economical pheromone for monitoring the European spruce bark beetle. J. Appl. Entomol. 2021, 145, 312–325. [Google Scholar] [CrossRef]
- Mezei, P.; Jakuš, R.; Pennerstorfer, J.; Havašová, M.; Skvarenina, J.; Ferenčík, J.; Slivinsky, J.; Bičárová, S.; Bilčík, D.; Blazenec, M.; et al. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus. An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agric. For. Meteorol. 2017, 242, 85–95. [Google Scholar] [CrossRef]
- Kamińska, A.; Lisiewicz, M.; Kraszewski, B.; Stereńczak, K. Habitat and stand factors related to spatial dynamics of Norway spruce dieback driven by Ips typographus (L.) in the Białowieża Forest District. For. Ecol. Manag. 2020, 476, 118432. [Google Scholar] [CrossRef]
- Li, H.; Li, T. Bark beetle larval dynamics carved in the egg gallery: A study of mathematically reconstructing bark beetle tunnel maps. Adv. Differ. Equ. 2019, 513. [Google Scholar] [CrossRef]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.-C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.-J.; Seidl, R.; Svoboda, M.; et al. Living With Bark Beetles: Impacts, Outlook and Management Options; From Science to Policy 8; European Forest Institute: Sarjanr, Finland, 2019; 50p, Available online: https://efi.int/sites/default/files/files/publication-bank/2019/efi_fstp_8_2019.pdf (accessed on 10 July 2021).
- Marini, L.; Lindelöw, Å.; Jönsson, A.M.; Wulff, S.; Schroeder, L.M. Population dynamics of the spruce bark beetle: A long-term study. Oikos 2013, 122, 1768–1776. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Hsiang, T.; Patynek, P.; Stereńczak, K.; Olejarski, I.; Oszako, T. Health Assessment and Genetic Structure of Monumental Norway Spruce Trees during A Bark Beetle (Ips typographus L.) Outbreak in the Białowieża Forest District, Poland. Forests 2020, 11, 647. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Patynek, P.; Stereńczak, K.; Oszako, T. Decay of monumental spruces in the Forest Districts of Białowieża and Hajnówka, and its genetic and social consequences. In Nature as a Cultural Challenge. Local Communities towards Protected Areas; Sadowski, R.R., Ed.; UKSW: Warsaw, Poland; IBL: Raszyn, Poland, 2020; pp. 35–60. [Google Scholar]
- Furniss, M.M.; Solheim, H.; Christiansen, E. Transmission of Blue-Stain Fungi by Ips typographus (Coleoptera: Scolytidae) in Norway Spruce. Ann. Entomol. Soc. Am. 1990, 83, 712–716. [Google Scholar] [CrossRef]
- Lowell, E.C.; Rapp, V.A.; Haynes, R.W.; Cray, C. Effects of Fire, Insect, and Pathogen Damage on Wood Quality of Dead and Dying Western Conifers; General Technical Report PNW-GTR-816; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2010; p. 73. [CrossRef]
- Jelonek, T.; Klimek, K.; Kopaczyk, J.; Wieruszewski, M.; Arasimowicz-Jelonek, M.; Tomczak, A.; Grzywiński, W. Influence of the Tree Decay Duration on Mechanical Stability of Norway Spruce Wood (Picea abies (L.) Karst.). Forests 2020, 11, 980. [Google Scholar] [CrossRef]
- Kržišnik, D.; Lesar, B.; Thaler, N.; Humar, M. Performance of bark beetle damaged Norway spruce wood against water and fungal decay. BioResources 2018, 13, 3473–3486. [Google Scholar] [CrossRef]
- Konôpková, A.; Vedernikov, K.E.; Zagrebin, E.A.; Islamova, N.A.; Grigoriev, R.A.; Húdoková, H.; Petek, A.; Kmet’, J.; Petrík, P.; Pashkova, A.S.; et al. Impact of the European bark beetle Ips typographus on biochemical and growth properties of wood and needles in Siberian spruce Picea obovate. Lesnicky Casopis 2020, 66, 243–254. [Google Scholar]
- Hood, S.; Sala, A.; Heyerdahl, E.K.; Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 2015, 96, 1846–1855. [Google Scholar] [CrossRef] [Green Version]
- Siegert, C.M.; Clay, N.A.; Tang, J.D.; Garrigues, L.G.; Riggins, J.J. Indirect effects of bark beetle-generated dead wood on biogeochemical and decomposition processes in a pine forest. Oecologia 2018, 188, 1209–1226. [Google Scholar] [CrossRef] [PubMed]
- Little, N.S.; McConnell, T.E.; Irby, N.E.; Shi, S.Q.; Riggins, J.J. Surface free energy of blue-stained southern pine sapwood from bark beetle-attacked trees. Wood Fiber Sci. 2013, 45, 206–214. [Google Scholar]
- Howell, A.; Beagle, E.; Belmont, E. Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion with Sub-Bituminous Coal. J. Energy Resour. Technol. 2018, 140, 042002. [Google Scholar] [CrossRef] [Green Version]
- Repe, A.; Bojović, S.; Jurc, M.; Roux, J. Pathogenicity of ophiostomatoid fungi on Picea abies in Slovenia. For. Pathol. 2015, 45, 290–297. [Google Scholar] [CrossRef]
- Chang, R.; Duong, T.A.; Taerum, S.J.; Wingfield, M.J.; Zhou, X.; Yin, M.; de Beer, Z.W. Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus, including 11 new species from China. Persoonia 2019, 42, 50–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löwe, R.; Sedmíková, M.; Natov, P.; Jankovský, M.; Hejcmanová, P.; Dvořák, J. Differences in Timber Volume Estimates Using Various Algorithms Available in the Control and Information Systems of Harvesters. Forests 2019, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, A. EXFOR Database Ips typographus. In GISD: Global Invasive Species Database 2021. Species profile Ips typographus; IUCN: Gland, Switzerland, 2006; p. 15. Available online: http://www.iucngisd.org/gisd/species.php?sc=1441 (accessed on 5 July 2021).
- Anderbrant, O. Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecol. Entomol. 1990, 15, 1–8. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Treu, A.; Larsson-Brelid, P. Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung 2016, 70, 331–339. [Google Scholar] [CrossRef]
- Reinprecht, L. Wood Deterioration, Protection and Maintenance, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 376. [Google Scholar] [CrossRef]
- Schirp, A.; Farrell, R.; Kreber, B.; Singh, A. Advances in understanding the ability of sapstaining fungi to produce cell wall-degrading enzymes. Wood Fiber Sci. 2007, 35, 434–444. [Google Scholar]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Lewinsohn, E.; Gijzen, M.; Croteau, R. Defense Mechanisms of Conifers. Plant Physiol. 1991, 96, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Hudgins, J.W.; Franceschi, V.R. Methyl Jasmonate-Induced Ethylene Production Is Responsible for Conifer Phloem Defense Responses and Reprogramming of Stem Cambial Zone for Traumatic Resin Duct Formation. Plant Physiol. 2004, 135, 2134–2149. [Google Scholar] [CrossRef] [Green Version]
- Pánek, M.; Reinprecht, L.; Mamoňová, M. Trichoderma viride for Improving Spruce Wood Impregnability. BioResources 2013, 8, 1731–1746. [Google Scholar] [CrossRef] [Green Version]
- Aniszewska, M.; Gendek, A.; Hýsek, Š.; Malaťák, J.; Velebil, J.; Tamelová, B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials 2020, 13, 5660. [Google Scholar] [CrossRef] [PubMed]
- Barontini, M.; Crognale, S.; Scarfone, A.; Gallo, P.; Gallucci, F.; Petruccioli, M.; Pesciaroli, L.; Pari, L. Airborne fungi in biofuel wood chip storage sites. Int. Biodeterior. Biodegrad. 2014, 90, 17–22. [Google Scholar] [CrossRef]
- Pánek, M.; Šimůnková, K.; Novák, D.; Dvořák, O.; Schönfelder, O.; Šedivka, P.; Kobetičová, K. Caffeine and TiO2 Nanoparticles Treatment of Spruce and Beech Wood for Increasing Transparent Coating Resistance against UV-Radiation and Mould Attacks. Coatings 2020, 10, 1141. [Google Scholar] [CrossRef]
- Kromoser, B.; Ritt, M.; Spitzer, A.; Stangl, R.; Idam, F. Design Concept for a Greened Timber Truss Bridge in City Area. Sustainability 2020, 12, 3218. [Google Scholar] [CrossRef] [Green Version]
- Babiak, M.; Gaff, M.; Sikora, A.; Hýsek, Š. Modulus of elasticity in three- and four-point bending of wood. Compos. Struct. 2018, 204, 454–465. [Google Scholar] [CrossRef]
- Humar, M.; Balzano, A.; Kržišnik, D.; Lesar, B. Assessment of Wooden Foundation Piles after 125 Years of Service. Forests 2021, 12, 143. [Google Scholar] [CrossRef]
- Zobel, B.J.; Buijtenen, J.P. Wood Variation: Its Causes and Control, 1st ed.; Springer: Berlin, Germany, 1989; p. 363. [Google Scholar]
- Reinprecht, L. Strength of Deteriorated Wood in Relation to Its Structure; VPA 2/1992, Monograph; Technical University of Zvolen: Zvolen, Slovakia, 1992; 76p. [Google Scholar]
- Wilcox, W.W. Review of Literature on the Effects of Early Stages of Decay on Wood Strength. Wood Fiber Sci. 1977, 9, 252–257. [Google Scholar]
- Marais, B.N.; Brischke, C.; Militz, H.; Peters, J.H.; Reinhardt, L. Studies into Fungal Decay of Wood in Ground Contact—Part 1: The Influence of Water-Holding Capacity, Moisture Content, and Temperature of Soil Substrates on Fungal Decay of Selected Timbers. Forests 2020, 11, 1284. [Google Scholar] [CrossRef]
- Crespo, J.; Aira, J.R.; Vázquez, C.; Guaita, M. Comparative analysis of the elastic constants measured via conventional, ultrasound, and 3-D digital image correlation methods in Eucalyptus globulus labill. BioResources 2017, 12, 3728–3743. [Google Scholar] [CrossRef] [Green Version]
- Vega, A.; González, L.; Fernández, I.; González, P. Grading and mechanical characterization of small-diameter round chestnut (Castanea sativa Mill.) timber from thinning operations. Wood Mater. Sci. Eng. 2019, 14, 81–87. [Google Scholar] [CrossRef]
- Llana, D.F.; Íñiguez-González, G.; Arriaga, F.; Wang, X. Time-of-flight adjustment procedure for acoustic measurements in structural timber. BioResources 2016, 11, 3303–3317. [Google Scholar] [CrossRef] [Green Version]
- Llana, D.F.; Íñiguez-González, G.; Díez, M.R.; Arriaga, F. Nondestructive testing used on timber in Spain: A literature review. Maderas. Ciencia Tecnología 2020, 22, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Broda, M.; Carmen-Mihaela, P. Natural decay of archaeological oak wood versus artificial degradation processes—An FT-IR spectroscopy and X-ray diffraction study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zeng, F.; Chen, Z.; Chen, S.; Lei, Y. Improvement of wood decay resistance by salicylic acid/silica microcapsule: Effects on the salicylic leaching, microscopic structure and decay resistance. Int. Biodeterior. Biodegrad. 2021, 156, 105134. [Google Scholar] [CrossRef]
- Akcay, C.; Yalcin, M. Morphological and chemical analysis of Hylotrupes bajulus (old house borer) larvae-damaged wood and its FTIR characterization. Cellulose 2021, 28, 1295–1310. [Google Scholar] [CrossRef]
- Durmaz, S.; Özgenç, Ö.; Boyacı, I.H.; Yıldız, Ü.C.; Erişir, E. Examination of the chemical changes in spruce wood degraded by brown-rot fungi using FT-IR and FT-Raman spectroscopy. Vib. Spectrosc. 2016, 85, 202–207. [Google Scholar] [CrossRef]
- Belt, T.; Altgen, M.; Mäkelä, M.; Hänninen, T.; Rautkari, L. Cellular level chemical changes in Scots pine heartwood during incipient brown rot decay. Sci. Rep. 2019, 9, 5188. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Hu, C.; Lin, X.; Gu, J.; Yun, H.; Zhang, W. Resistance to Growth of Molds for Wood Modified with Hydrophobic Hybrid Silica Gel Containing Copper Amine Complexes. Materials 2021, 14, 577. [Google Scholar] [CrossRef] [PubMed]
- Yves Beaudelaire, K.G.; Zhuang, B.; Aladejana, J.T.; Li, D.; Hou, X.; Xie, Y. Influence of Mesoporous Inorganic Al–B–P Amphiprotic Surfactant Material Resistances of Wood against Brown and White-Rot Fungi (Part 1). Coatings 2020, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Beagle, E.; Belmont, E. Technoeconomic assessment of beetle kill biomass co-firing in existing coal fired power plants in the Western United States. Energy Policy 2016, 97, 429–438. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Blue-Stained | Control | Specification | References |
---|---|---|---|---|
Modulus of elasticity (GPa) | 7.269 | 10.679 | Norway spruce, 3 years decayed | [21] |
Modulus of rupture (MPa) | 68.93 | 89.85 | Norway spruce, 3 years decayed | [21] |
Contact angle with water (°), time of contact 1 s | 58.6 | 72.9 | Norway spruce | [22] |
Modulus of elasticity (GPa) | 9.055 | 10.79 | Norway spruce | [22] |
Dynamic contact angle with water (°) | 51.1 | 47 | Southern pine, air dried | [26] |
Dynamic contact angle with water (°) | 40 | 45.4 | Southern pine, kiln dried | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hýsek, Š.; Löwe, R.; Turčáni, M. What Happens to Wood after a Tree Is Attacked by a Bark Beetle? Forests 2021, 12, 1163. https://doi.org/10.3390/f12091163
Hýsek Š, Löwe R, Turčáni M. What Happens to Wood after a Tree Is Attacked by a Bark Beetle? Forests. 2021; 12(9):1163. https://doi.org/10.3390/f12091163
Chicago/Turabian StyleHýsek, Štěpán, Radim Löwe, and Marek Turčáni. 2021. "What Happens to Wood after a Tree Is Attacked by a Bark Beetle?" Forests 12, no. 9: 1163. https://doi.org/10.3390/f12091163
APA StyleHýsek, Š., Löwe, R., & Turčáni, M. (2021). What Happens to Wood after a Tree Is Attacked by a Bark Beetle? Forests, 12(9), 1163. https://doi.org/10.3390/f12091163