Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compression Test
2.3. Numerical Study
3. Results and Discussions
3.1. The Statistical Information of the Cell Geometry
3.2. Convergence of the MCS FE Analysis
3.3. Simulation and Experimental Results
3.4. The Parameter Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gindl, W.; Müller, U.; Teischinger, A. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA J. 2003, 24, 117–128. [Google Scholar] [CrossRef]
- Price, A.T. A Mathematical discussion on the structure of wood in relation to its elastic properties. Philos. Trans. R. Soc. Lond. 1929, 659, 1–62. [Google Scholar] [CrossRef]
- Mishnaevsky, L., Jr.; Qing, H. Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Comp. Mater. Sci. 2008, 44, 363–370. [Google Scholar] [CrossRef]
- Thelandersson, S.; Larsen, H.J. Timber Engineering; John Wiley & Sons: West Sussex, UK, 2003. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon Press: New York, NY, USA, 1988. [Google Scholar]
- Bodig, J. The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Prod. J. 1965, 15, 197–202. [Google Scholar]
- Tabarsa, T.; Chui, Y.H. Characterizing microscopic behavior of wood under transverse compression. Part II. Effect of species and loading direction. Wood Fiber Sci. 2001, 33, 223–232. [Google Scholar] [CrossRef]
- Forest Products Laboratory. Wood Handbook-Wood as an Engineering Material; General Technical Report FPL-GTR-113; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999. [Google Scholar]
- ANSI/APA. Standard for Performance-Rated Cross-Laminated Timber (PRG 320); APA-The Engineered Wood Association: Tacoma, WA, USA, 2018. [Google Scholar]
- Kanaya, N.; Yamada, T. The relation between the elastic modulus and the porosity of wood. Wood Res.-Slovak. 1964, 33, 47–55. [Google Scholar]
- Gillis, P.P. Orthotropic elastic constants of wood. Wood Sci. Technol. 1972, 6, 138–156. [Google Scholar] [CrossRef]
- Koponen, S.; Toratti, T.; Kanerva, P. Modelling elastic and shrinkage properties of wood based on cell structure. Wood Sci. Technol. 1991, 25, 25–32. [Google Scholar] [CrossRef]
- Gibson, L.J.; Easterling, K.E.; Ashby, M.F. The structure and mechanics of cork. Proc. R. Soc. Lond. A Math. Phys. Sci. 1981, 377, 99–117. [Google Scholar] [CrossRef]
- Easterling, K.E.; Harrysson, R.; Gibson, L.J.; Ashby, M.F. On the mechanics of balsa and other woods. Proc. R. Soc. Lond. A Math. Phys. Sci. 1982, 383, 31–41. [Google Scholar] [CrossRef]
- Ando, K.; Onda, H. Mechanism for deformation of wood as a honeycomb structure I: Effect of anatomy on the initial deformation process during radial compression. J. Wood Sci. 1999, 45, 120–126. [Google Scholar] [CrossRef]
- Ando, K.; Onda, H. Mechanism for deformation of wood as a honeycomb structure II: First buckling mechanism of cell walls under radial compression using the generalized cell model. J. Wood Sci. 1999, 45, 250–253. [Google Scholar] [CrossRef]
- Watanabe, U.; Norimoto, M.; Ohgama, T.; Fujita, M. Tangential Young’s modulus of coniferous early wood investigated using cell models. Holzforschung 1999, 53, 209–214. [Google Scholar] [CrossRef]
- Watanabe, U.; Norimoto, M.; Morooka, T. Cell wall thickness and tangential Young’s modulus in coniferous early wood. J. Wood Sci. 2000, 46, 109–114. [Google Scholar] [CrossRef]
- Watanabe, U.; Fujita, M.; Norimoto, M. Transverse Young’s moduli and cell shapes in coniferous early wood. Holzforschung 2002, 56, 1–6. [Google Scholar] [CrossRef]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef] [PubMed]
- Maaβ, M.H.; Saleh, S.; Militz, H.; Volkert, C.A. The Structural origins of wood cell wall toughness. Adv. Mater. 2020, 32, 1907693. [Google Scholar] [CrossRef] [Green Version]
- Toumpanaki, E.; Shah, D.U.; Eichhorn, S.J. Beyond what meets the eye: Imaging and imagining wood mechanical–structural properties. Adv. Mater. 2021, 33, 2001613. [Google Scholar] [CrossRef]
- Hofstetter, K.; Gamstedt, E.K. Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004–2008: Wood machining–micromechanics and fracture. Holzforschung 2009, 63, 130–138. [Google Scholar] [CrossRef]
- De Magistris, F.; Salmén, L. Finite Element modelling of wood cell deformation transverse to the fibre axis. Nord. Pulp. Pap. Res. J. 2008, 23, 240–246. [Google Scholar] [CrossRef]
- Fortino, S.; Hradil, P.; Salmén, L.; De Magistris, F. A 3D micromechanical study of deformation curves and cell wall stress-es in wood under transverse loading. J. Mater. Sci. 2015, 50, 482–492. [Google Scholar] [CrossRef]
- Persson, K. Micromechanical Modelling of Wood and Fibre Properties. Ph.D. Thesis, Lund University, Lund, Sweden, 2000. [Google Scholar]
- Nairn, J.A. Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci. 2006, 38, 576–591. [Google Scholar] [CrossRef]
- Meng, Q.; Fu, F.; Wang, J.; He, T.; Jiang, X.; Zhang, Y.; Yin, Y.; Li, N.; Guo, J. Ray traits of juvenile wood and mature wood: Pinus massonia and Cunninghamia lanceolata. Forests 2021, 12, 1277. [Google Scholar] [CrossRef]
- Wang, D. Wood Fracture Mechanisms under Longitudinal Tensile and Bend Loading. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2020. [Google Scholar]
- Profillidis, V.A.; Botzoris, G.N. Modeling of Transport Demand: Analyzing, Calculating, and Forecasting Transport Demand, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
Location | Directions | Normal | Lognormal | Weibull | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | D | p | MeanL | SDL | D | p | Shape | Scale | D | p | ||
Earlywood | R | 2.566 | 0.835 | 0.0758 | 0.185 | 0.889 | 0.333 | 0.0587 | 0.475 | 3.266 | 2.861 | 0.0653 | 0.340 |
T | 2.433 | 0.527 | 0.0676 | 0.055 | 0.865 | 0.221 | 0.0545 | 0.677 | 4.831 | 2.645 | 0.0828 | 0.182 | |
Latewood | R | 7.239 | 1.183 | 0.0640 | 0.437 | 1.966 | 0.168 | 0.0762 | 0.235 | 6.931 | 7.742 | 0.0585 | 0.556 |
T | 7.372 | 1.485 | 0.0690 | 0.206 | 1.977 | 0.205 | 0.0434 | 0.759 | 5.316 | 7.984 | 0.0796 | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Shen, Y.; Fu, F.; Guo, J.; Ren, H. Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis. Forests 2022, 13, 32. https://doi.org/10.3390/f13010032
Wu G, Shen Y, Fu F, Guo J, Ren H. Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis. Forests. 2022; 13(1):32. https://doi.org/10.3390/f13010032
Chicago/Turabian StyleWu, Guofang, Yinlan Shen, Feng Fu, Juan Guo, and Haiqing Ren. 2022. "Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis" Forests 13, no. 1: 32. https://doi.org/10.3390/f13010032
APA StyleWu, G., Shen, Y., Fu, F., Guo, J., & Ren, H. (2022). Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis. Forests, 13(1), 32. https://doi.org/10.3390/f13010032