Eucalyptus Amplifolia and Corymbia Torelliana in the Southeastern USA: Genetic Improvement and Potential Uses
Abstract
:1. Introduction
2. Genetic Resources
3. Potential Uses
4. Research Needs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geary, T.F.; Meskimen, G.F.; Franklin, E.C. Growing Eucalypts in Florida for Industrial Wood Production; Tech. Rep. SE–23; USDA Forest Service Southeastern Forest Experiment Station General: Asheville, NC, USA, 1983.
- Rockwood, D.L.; Kellison, R.C.; Franklin, E.C.; Meskimen, G.F. Operational advanced generation improvement programs for minor species in the South. South. Coop. Ser. Bull. 1986, 309, 27–37. [Google Scholar]
- Kellison, R.; Lea, R.; Marsh, P. Introduction of Eucalyptus spp. into the United States with Special Emphasis on the Southern United States. Int. J. For. Res. 2013, 2013. Available online: https://www.hindawi.com/journals/ijfr/2013/189393 (accessed on 21 November 2021).
- Meskimen, G.F.; Rockwood, D.L.; Reddy, K.V. Development of Eucalyptus clones for a summer rainfall environment with periodic severe frosts. New For. 1987, 1, 197–205. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Peter, G.F. Eucalyptus and Corymbia Species for Mulchwood, Pulpwood, Energywood, Bioproducts, Windbreaks, and/or Phytoremediation, Florida Cooperative Extension Service Circular 1194; UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2018. [Google Scholar]
- Rockwood, D.L. History and Status of Eucalyptus Improvement in Florida. Int. J. For. Res. 2012, 2012. Available online: http://www.hindawi.com/journals/ijfr/2012/607879/s (accessed on 21 November 2021).
- Rockwood, D.L. History and status of Eucalyptus improvement in Florida: 2020. In New Perspectives in Agriculture and Crop Science; Naik, A., Ayeni, L.S., Eds.; New Perspectives in Agriculture and Crop Science |B P International (bookpi.org); Book Publisher International: Chinsurah, India, 2020; Volume 3. [Google Scholar]
- Rockwood, D.L.; Reddy, K.V.; Warrag, E.I.; Comer, C.W. Development of Eucalyptus amplifolia for woody biomass production. Aust. For. Res. 1987, 17, 173–1178. [Google Scholar]
- Rockwood, D.L.; Pathak, N.N.; Satapathy, P.C.; Warrag, E.E. Genetic improvement of Eucalyptus amplifolia for frost-frequent areas. Aust. For. 1991, 54, 212–218. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Dinus, R.J.; Kramer, J.M. Genetic variation for rooting, growth, frost hardiness, and wood, fiber, and pulping properties in Florida-grown Eucalyptus amplifolia. In Proceedings of the 22nd Southern Forest Tree Improvement Conference, Atlanta, GA, USA, 14–17 June 1993. [Google Scholar]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide Release 4.1 Structural Specification; VSN International Ltd.: Hemel Hempstead, UK, 2014. [Google Scholar]
- Rockwood, D.L.; Winandy, J.E. Resin and Pressing Requirements for Making MDF from Florida-Grown Eucalyptus Grandis, E. Amplifolia, Corymbia Torelliana, and Cottonwood. In Proceedings of the Forest Products Society 62nd International Convention, St. Louis, MO, USA, 22–24 June 2008; p. 14. [Google Scholar]
- Setsuo, I.; Mendes, L.M.; Saldanha, L.K.; dos Santos, J.C. Use of Eucalyptus wood for oriented strand board (OSB) manufacturing. Cerne 2004, 10, 46–52. [Google Scholar]
- Campos, C.I.; Lahr, F.A.R. Production and characterization of MDF using eucalyptus fibers and castor oil-based polyurethane resin. J. Mater. Res. 2004, 7, 421–425. [Google Scholar] [CrossRef]
- Ashori, A.; Tabarsa, T.; Azizi, K.; Mirzabeygi, R. Woodwool cement board using mixture of eucalypt and poplar. Ind. Crops Prod. 2011, 34, 1146–1149. [Google Scholar] [CrossRef]
- Segrest, S.A.; Rockwood, D.L.; Stricker, J.A.; Green, A.E.S. Biomass Cofiring with Coal at Lakeland Utilities; Southeastern Regional Biomass Energy Program Publication: Muscle Shoals, AL, USA, 1998. [Google Scholar]
- Martin-Sampedro, R.; Eugenio, M.E.; Revilla, R.; Martin, J.A.; Villar, J.C. Integration of Kraft pulping on a forest biorefinery by the addition of steam explosion pretreatment. BioResources 2011, 6, 513–528. [Google Scholar] [CrossRef]
- Soberg, M.U.S. EcoGen Plans 60 MW Florida Biomass Power Plant. Biomass Power & Thermal. Available online: http://biomassmagazine.com/articles/5828/u-s-ecogen-plans-60-mw-florida-biomass-power-plant (accessed on 10 September 2011).
- Rockwood, D.L.; Ellis, M.F.; Liu, R.; Zhao, F.; Fabbro, K.W.; He, Z.; Derbowka, D.R. Forest Trees for Biochar and Carbon Sequestration: Production and Benefits. In Applications of Biochar for Environmental Safety; Abdelhafez, A., Abbas, M., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.Y.; Winandy, J.E. Energy product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Squillace, A.E. Increasing Alcohol Production from Wood by Utilizing Genetic Variation in Wood Characteristics. In Proceedings of the TAPPI Annual Meeting, St. Paul, MN, USA, 21–25 June 1981; pp. 307–316. [Google Scholar]
- Reddy, K.V.; Rockwood, D.L.; Comer, C.W.; Meskimen, G.F. Genetic improvement of Eucalyptus grandis for biomass production in Florida. Biomass Energy Dev. 1985, 103–110. [Google Scholar]
- Rockwood, D.L.; Comer, C.W.; Conde, L.F. Final Report: Energy and Chemicals from Woody Species in Florida; Tech. Rep. ORNL/Sub/81 9050/1; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1983. [Google Scholar]
- Rockwood, D.L.; Dippon, D.R.; Lesney, M.S. Woody Species for Biomass Production in Florida; Final Report ORNL/Sub/81 9050/7; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1988. [Google Scholar]
- Rockwood, D.L.; Comer, C.W.; Dippon, D.R.; Huffman, J.B.; Riekerk, H.; Wang, S. Current status of woody biomass production research in Florida. Soil Crop Sci. Soc. Fla. 1983, 42, 19–27. [Google Scholar]
- Dippon, D.R.; Rockwood, D.L.; Comer, C.W. Cost sensitivity analyses of Eucalyptus woody biomass systems. Biomass Energy Dev. 1958, 143–156. [Google Scholar]
- Rockwood, D.L. Development of woody biomass cultural systems for Florida. Biomass Energy Dev. 1985, 85–94. [Google Scholar]
- Rockwood, D.L.; Pisano, S.M.; McConnell, W.V. Superior Cottonwood and Eucalyptus Clones for Biomass Production in Waste Bioremediation Systems. In Proceedings of the 7th National Bioenergy Conference, Nashville, TN, USA, 15–20 September 1996; pp. 254–261. [Google Scholar]
- Rockwood, D.L.; Carter, D.R.; Langholtz, M.H.; Stricker, J.A. Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA. Biomass Bioenergy 2006, 30, 728–734. [Google Scholar] [CrossRef]
- Langholtz, M.; Carter, D.R.; Rockwood, D.L.; Alavalapati, J.R.R. The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. J. For. Econ. 2007, 12, 237–249. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Carter, D.R.; Stricker, J.A. Commercial Tree Crops on Phosphate Mined Lands; Florida Institute of Phosphate Research, FIPR Publication: Bartow, FL, USA, 2008. [Google Scholar]
- Clemson, A.A. Honey, and pollen plants of N.S.W. 64. Cabbage gum (Eucalyptus amplifolia). Australas. Beekeeper 1980, 81, 176–179. [Google Scholar]
- Tamang, B.; Andreu, M.G.; Rockwood, D.L. Sustaining farm productivity through windbreaks. APA News 2008, 33, 7–9. [Google Scholar]
- Andreu, M.G.; Tamang, B.; Friedman, M.H.; Rockwood, D.L. The Benefits of Windbreaks for Florida Growers; Tech. Rep. FOR192; UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Andreu, M.G.; Tamang, B.; Rockwood, D.L.; Friedman, M.H. Potential Woody Species and Species Attributes for Windbreaks in Florida; Tech. Rep. FOR224; UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Tamang, B.; Andreu, M.G.; Friedman, M.H.; Rockwood, D.L. Windbreak Designs and Planting for Florida Agricultural Fields; Tech. Rep. FOR227; UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Tamang, B.; Andreu, M.G.; Friedman, M.H.; Rockwood, D.L. Management of Field Windbreaks; Tech. Rep. FOR288; UF/IFAS Extension, University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Tamang, B.; Andreu, M.G.; Rockwood, D.L. Microclimate patterns on the leeside of single-row tree windbreaks during different weather conditions in Florida farms: Implications for improved crop production. Agrofor. Syst. 2010, 79, 111–122. [Google Scholar] [CrossRef]
- Campoe, O.C.; Stape, J.L.; Laclau, J.-P.; Marsden, C.; Nouvellon, Y. Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity in Sao Paulo, Brazil. Tree Physiol. 2012, 32, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Tamang, B.; Andreu, M.G.; Staudhammer, C.L.; Rockwood, D.L.; Jose, S. Equations for estimating aboveground biomass of cadaghi (Corymbia torelliana) trees in farm windbreaks. Agrofor. Syst. 2012, 86, 255–266. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Naidu, C.V.; Carter, D.R.; Rahmani, M.; Spriggs, T.A.; Lin, C.; Alker, G.R.; Isebrands, J.G.; Segrest, S.A. Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? In New Vistas in Agroforestry, a Compendium for the 1st World Congress of Agroforestry; Nair, P.K.R., Rao, M.R., Buck, L.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 51–63. [Google Scholar]
- Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R. Woody Biomass Production in Wastewater Recycling Systems; Tech. Rep. 91327; Southeastern Regional Biomass Energy Program Publication: Muscle Shoals, AL, USA, 1995. [Google Scholar]
- Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R. Woody biomass production in waste recycling systems. In Proceedings of the 6th National Bioenergy Conference, Reno, NV, USA, 2–6 October 1994; pp. 351–358. [Google Scholar]
- Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.; Leavell, A. Stormwater remediation by tree crops in Florida. In Proceedings of the 4th Biennial Stormwater Research Conference, Clearwater, FL, USA, 18–20 October 1995; pp. 309–319. [Google Scholar]
- Rockwood, D.L.; Ma, L.Q.; Alker, G.R.; Tu, C.; Cardellino, R.W. Phytoremediation of Contaminated Sites Using Woody Biomass; Tech. Rep.; The Florida Center for Solid and Hazardous Waste Management: Tallahassee, FL, USA, 2001. [Google Scholar]
- Abichou, T.; Musagasa, J.; Yuan, L.; Chanton, J.; Tawfiq, K.; Rockwood, D.; Licht, L. Field Performance of Alternative Landfill Covers Vegetated with Cottonwood and Eucalyptus Trees. Int. J. Phytoremediat. 2012, 14, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.; Becker, B.; Ozores-Hampton, M. Municipal Solid Waste Compost Benefits on Short Rotation Woody Crops. Compos. Sci. Util. 2012, 20, 67–72. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Isebrands, J.G.; Minogue, P.J. Phytoremediation trees for biofuel. In Biofuel Crops; Singh, B., Ed.; CABI: Wallingford, UK, 2012; Chapter 22. [Google Scholar]
- Summer, K.; Reichelt-Brushett, A. Trace element contaminant uptake in phytocap vegetation and implications for koala habitat, Lismore, Australia. Environ. Sci. Pollut. Res. 2018, 25, 24281–24292. [Google Scholar] [CrossRef] [PubMed]
- Minogue, P.J.; Miwa, M.; Rockwood, D.L.; Mackowiak, C.L. Removal of Nitrogen and Phosphorus Byeucalyptusandpopulusat a Tertiary Treated Municipal Wastewater Sprayfield. Int. J. Phytoremediat. 2012, 14, 1010–1023. [Google Scholar] [CrossRef]
- Tamang, B.; Rockwood, D.L.; Langholtz, M.; Maehr, E.; Becker, B.; Segrest, S. Fast-growing trees for cogongrass (Imperata cylindrica) suppression and enhanced colonization of understory plant species on a phosphate-mine clay settling area. Ecol. Eng. 2008, 32, 329–336. [Google Scholar] [CrossRef]
Generation | Name—Orchard Type | Year(s) | Base Population | Orchard | ||
---|---|---|---|---|---|---|
Trees | Accessions | Trees | Accessions | |||
E. amplifolia | ||||||
1 | AO92—SSO | 1992 | 1685 | 109 | 139 | 106 |
2 | AO99—SSO | 1999 | 1638 | 59 | 40 | 22 |
2 | AO03—SSO | 2003 | >294 | 45 | 45 | 24 |
2 | AO10—SSO | 2010 | 605 | 44 | >6 | >6 |
2 | AO13—CSO | 2013–2016 | 508 | 48 | 38 | 21 |
C. torelliana | ||||||
1 | TO08—SSO | 2008 | 960 | 29 | 69 | 25 |
2 | TO12—SSO | 2012 | 2040 | 66 | 83 | 47 |
Species | Selected | Tested | Commercialized |
---|---|---|---|
E. amplifolia | 115 | 35 | 1 |
C. torelliana | 4 | 0 | 0 |
Trait | No. of Accessions | Mean | Maximum | Minimum |
---|---|---|---|---|
E. amplifolia (407 accessions) | ||||
Tree Basal Area (+) | 320 | 1.1 | 32.4 | −36.1 |
Plot Basal Area (+) | 56 | 0.7 | 31.7 | −35.9 |
Stem Quality (−) | 308 | −0.4 | −30.9 | 258 |
Freeze Resilience (−) | 117 | 0.6 | −19.1 | 27.2 |
Chalcid Resistance (−) | 56 | −4.4 | −44.3 | 74.2 |
C. torelliana (303 accessions) | ||||
Tree Basal Area (+) | 296 | 1.7 | 12.1 | −10.7 |
Flowering (+) | 155 | 0.1 | 9.9 | −7.4 |
Stem Quality (−) | 300 | 3.7 | −11.8 | 26.8 |
Freeze Resilience (−) | 194 | −26.8 | −87.6 | 132.2 |
Pest Resistance (−) | 69 | 1.8 | −20.1 | 31.3 |
Property | C. torelliana | E. amplifolia | Polchar Biochar |
---|---|---|---|
Recalcitrant Carbon * (%) | 71.6 | 70.8 | 67.6 |
pH | 10.4 | 11.1 | 8.2 |
EC (mmhos/cm) | 1.76 | 3.88 | 3.33 |
Water Holding (mL/100 g) | 78.8 | 69.0 | 43.4 |
Carbonate Value (%) | 2.5 | 16.7 | - |
Genotype | No. of Trees | Specific Gravity | Moisture Content | Fines | pH | Fiber Length |
---|---|---|---|---|---|---|
8.3-year-old E. amplifolia | ||||||
4 progenies | 4 | 508 | 108 | 59.5 | 3.97 | |
4836 | 1 | 527 | 107 | 53.1 | 3.89 | - |
4843 | 1 | 469 | 115 | 53.5 | 3.89 | - |
4853 | 1 | 506 | 109 | 70.7 | - | - |
4875 | 1 | 529 | 88 | 60.5 | 4.11 | 0.502 |
15-year-old C. torelliana | ||||||
4 trees | 4 | 526 | 101 | 50.0 | 4.20 | |
? | 1 | 526 | 80 | 48.6 | 4.17 | - |
? | 1 | 610 | 98 | 52.6 | 4.20 | - |
? | 1 | 555 | 94 | 37.1 | 4.23 | 0.472 |
? | 1 | 411 | 131 | 61.5 | 4.21 | - |
E. grandis Cultivars | C. torelliana Progenies | |||
---|---|---|---|---|
2-3 | 3-2 | 2-3 | 3-2 | |
Height | 6.0 | 4.9 | 5.8 | 5.7 |
DBH | 8.2 | 7.2 | 6.4 | 6.7 |
Sequestration Above Ground | 0.83 | 0.51 | 0.64 | 0.68 |
Sequestration Below Ground | 0.09 | 0.05 | 0.13 | 0.14 |
Total Sequestration | 0.92 | 0.56 | 0.77 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rockwood, D.L.; Huber, D.A.; Crawford, M.A.; Rucks, P.C.; Lamb, E.; Fabbro, K.W.; Minogue, P.J.; Jump, R.; Hodge, G.R. Eucalyptus Amplifolia and Corymbia Torelliana in the Southeastern USA: Genetic Improvement and Potential Uses. Forests 2022, 13, 75. https://doi.org/10.3390/f13010075
Rockwood DL, Huber DA, Crawford MA, Rucks PC, Lamb E, Fabbro KW, Minogue PJ, Jump R, Hodge GR. Eucalyptus Amplifolia and Corymbia Torelliana in the Southeastern USA: Genetic Improvement and Potential Uses. Forests. 2022; 13(1):75. https://doi.org/10.3390/f13010075
Chicago/Turabian StyleRockwood, Donald L., Dudley A. Huber, Mark A. Crawford, Phillip C. Rucks, Elizabeth Lamb, Kyle W. Fabbro, Patrick J. Minogue, Romeo Jump, and Gary R. Hodge. 2022. "Eucalyptus Amplifolia and Corymbia Torelliana in the Southeastern USA: Genetic Improvement and Potential Uses" Forests 13, no. 1: 75. https://doi.org/10.3390/f13010075
APA StyleRockwood, D. L., Huber, D. A., Crawford, M. A., Rucks, P. C., Lamb, E., Fabbro, K. W., Minogue, P. J., Jump, R., & Hodge, G. R. (2022). Eucalyptus Amplifolia and Corymbia Torelliana in the Southeastern USA: Genetic Improvement and Potential Uses. Forests, 13(1), 75. https://doi.org/10.3390/f13010075