Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Product
2.2. Seedling Origin and Cultivation
2.3. Phytophthora cinnamomi Cultivation and Inoculation
2.4. Response Variables
2.5. Data Analysis
3. Results
3.1. Survival of Oak Seedlings
3.2. Effects on Plant Growth
3.3. Effects on Plant Physiology
4. Discussion
4.1. Survival of Oak Seedlings
4.2. Plant Growth
4.3. Plant Physiology
4.4. Using Biological Fertilisers to Enhance Protection against P. cinnamomi
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Underwood, E.C.; Viers, J.H.; Klausmeyer, K.R.; Cox, R.L.; Shaw, M.R. Threats and Biodiversity in the Mediterranean Biome. Divers. Distrib. 2009, 15, 188–197. [Google Scholar] [CrossRef]
- Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F. Climatic Water Deficit, Tree Species Ranges, and Climate Change in Yosemite National Park. J. Biogeogr. 2010, 37, 936–950. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tubby, K.V.; Webber, J.F. Pests and Diseases Threatening Urban Trees under a Changing Climate. Forestry 2010, 83, 451–459. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on Climate Change: Agriculture and Possible Solution to Cope Future Climate Change Stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef]
- Tyler, C.M.; Kuhn, B.; Davis, F.W. Demography and Recruitment Limitations of Three Oak Species in California. Q. Rev. Biol. 2006, 81, 127–152. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Peláez, M.; Dirzo, R.; Fernandes, G.W.; Seminatore, M.; Perea, R. Spatio-Temporal Variation of Biotic and Abiotic Stress Agents Determines Seedling Survival in Assisted Oak Regeneration. J. Appl. Ecol. 2019, 56, 2663–2674. [Google Scholar] [CrossRef]
- Domínguez-Begines, J.; Ávila, J.M.; García, L.V.; Gómez-Aparicio, L. Soil-Borne Pathogens as Determinants of Regeneration Patterns at Community Level in Mediterranean Forests. New Phytol. 2020, 227, 588–600. [Google Scholar] [CrossRef]
- Corcobado, T.; Miranda-Torres, J.J.; Martín-García, J.; Jung, T.; Solla, A. Early Survival of Quercus ilex Subspecies from Different Populations after Infections and Co-Infections by Multiple Phytophthora Species. Plant Pathol. 2017, 66, 792–804. [Google Scholar] [CrossRef]
- Fensham, R.J.; Radford-Smith, J. Unprecedented Extinction of Tree Species by Fungal Disease. Biol. Conserv. 2021, 261, 109276. [Google Scholar] [CrossRef]
- Gomes Marques, I.; Solla, A.; David, T.S.; Rodríguez-González, P.M.; Garbelotto, M. Response of Two Riparian Woody Plants to Phytophthora Species and Drought. For. Ecol. Manag. 2022, 518, 120281. [Google Scholar] [CrossRef]
- Haavik, L.J.; Billings, S.A.; Guldin, J.M.; Stephen, F.M. Emergent Insects, Pathogens and Drought Shape Changing Patterns in Oak Decline in North America and Europe. For. Ecol. Manag. 2015, 354, 190–205. [Google Scholar] [CrossRef]
- Rodríguez-Calcerrada, J.; Sancho-Knapik, D.; Martin-StPaul, N.K.; Limousin, J.-M.; McDowell, N.G.; Gil-Pelegrín, E. Drought-Induced Oak Decline—Factors Involved, Physiological Dysfunctions, and Potential Attenuation by Forestry Practices. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Springer: Cham, Switzerland, 2017; pp. 419–451. [Google Scholar]
- San-Eufrasio, B.; Castillejo, M.Á.; Labella-Ortega, M.; Ruiz-Gómez, F.J.; Navarro-Cerrillo, R.M.; Tienda-Parrilla, M.; Jorrín-Novo, J.V.; Rey, M.D. Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined Phytophthora cinnamomi and Drought Stresses. Front. Plant Sci. 2021, 12, 1727. [Google Scholar] [CrossRef] [PubMed]
- Brasier, C.M. Phytophthora cinnamomi as a Contributory Factor in European Oak Declines. In Recent Advances in Studies on Oak Decline; Luisi, N., Lerario, P., Vannini, A.B., Eds.; Proc. Int. Cong. Selva di Fasano: Putignano, Italy, 1993; pp. 49–57. [Google Scholar]
- Rizzo, D.M.; Garbelotto, M. Sudden Oak Death Endangers Forests. Front. Ecol. Environ. 2003, 1, 197–204. [Google Scholar] [CrossRef]
- Jung, T.; Pérez-Sierra, A.; Durán, A.; Jung, M.H.; Balci, Y.; Scanu, B. Canker and Decline Diseases Caused by Soil- and Airborne Phytophthora Species in Forests and Woodlands. Persoonia Mol. Phylogeny Evol. Fungi 2018, 40, 182–220. [Google Scholar] [CrossRef]
- Branco, M.; Ramos, A.P. Coping with Pests and Diseases. In Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Aronson, J., Pereira, J.S., Pausas, J.G., Eds.; Island Press: Washington, DC, USA, 2012; pp. 103–113. [Google Scholar]
- Duque-Lazo, J.; Navarro-Cerrillo, R.M.; van Gils, H.; Groen, T.A. Forecasting Oak Decline Caused by Phytophthora cinnamomi in Andalusia: Identification of Priority Areas for Intervention. For. Ecol. Manag. 2018, 417, 122–136. [Google Scholar] [CrossRef]
- Martín-García, J.; Solla, A.; Corcobado, T.; Siasou, E.; Woodward, S. Influence of Temperature on Germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila Infested Soils. For. Pathol. 2015, 45, 215–223. [Google Scholar] [CrossRef]
- De Sampaio e Paiva Camilo-Alves, C.; da Clara, M.I.E.; de Almeida Ribeiro, N.M.C. Decline of Mediterranean Oak Trees and Its Association with Phytophthora cinnamomi: A Review. Eur. J. For. Res. 2013, 132, 411–432. [Google Scholar] [CrossRef]
- Hansen, E.M. Phytophthora Species Emerging as Pathogens of Forest Trees. Curr. For. Rep. 2015, 1, 16–24. [Google Scholar] [CrossRef]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 Oomycete Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Rodríguez-Molina, M.C.; Torres-Vila, L.M.; Blanco-Santos, A.; Palo Núñez, E.J.; Torres-Álvarez, E. Viability of Holm and Cork Oak Seedlings from Acorns Sown in Soils Naturally Infected with Phytophthora cinnamomi. For. Pathol. 2002, 32, 365–372. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gordon, C.; Llorens, L.; Nielsen, T.; Tietema, A.; Beier, C.; Bruna, P.; Emmett, B.; Estiarte, M.; Gorissen, A. Nonintrusive Field Experiments Show Different Plant Responses to Warming and Drought among Sites, Seasons, and Species in a North-South European Gradient. Ecosystems 2004, 7, 598–612. [Google Scholar] [CrossRef]
- Corcobado, T.; Cubera, E.; Juárez, E.; Moreno, G.; Solla, A. Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric. For. Meteorol. 2014, 192, 1–8. [Google Scholar] [CrossRef]
- Homet, P.; González, M.; Matías, L.; Godoy, O.; Pérez-Ramos, I.M.; García, L.V.; Gómez-Aparicio, L. Exploring Interactive Effects of Climate Change and Exotic Pathogens on Quercus Suber Performance: Damage Caused by Phytophthora Cinnamomi Varies across Contrasting Scenarios of Soil Moisture. Agric. For. Meteorol. 2019, 276–277, 107605. [Google Scholar] [CrossRef]
- Ruiz-Gómez, F.J.; Pérez-de-Luque, A.; Navarro-Cerrillo, R.M. The involvement of Phytophthora root rot and drought stress in holm oak decline: From ecophysiology to microbiome influence. Curr. For. Rep. 2019, 5, 251–266. [Google Scholar] [CrossRef]
- Jönsson, U. A Conceptual Model for the Development of Phytophthora Disease in Quercus robur. New Phytol. 2006, 171, 55–68. [Google Scholar] [CrossRef]
- Encinas-Valero, M.; Esteban, R.; Hereş, A.M.; Vivas, M.; Fakhet, D.; Aranjuelo, I.; Solla, A.; Moreno, G.; Yuste, J.C. Holm Oak Decline Is Determined by Shifts in Fine Root Phenotypic Plasticity in Response to Belowground Stress. New Phytol. 2022, 235, 2237–2251. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Bruns, C.; Butz, A.F.; Finckh, M.R. Effects of Fertilizers and Plant Strengtheners on the Susceptibility of Tomatoes to Single and Mixed Isolates of Phytophthora infestans. Eur. J. Plant Pathol. 2012, 133, 739–751. [Google Scholar] [CrossRef]
- Cocozza, C.; Abdeldaym, E.A.; Brunetti, G.; Nigro, F.; Traversa, A. Synergistic Effect of Organic and Inorganic Fertilization on the Soil Inoculum Density of the Soilborne Pathogens Verticillium dahliae and Phytophthora spp. under Open-Field Conditions. Chem. Biol. Technol. Agric. 2021, 8, 24. [Google Scholar] [CrossRef]
- Muryati, L.O.; Deni, E.; Pnaca, J.S.; Diah, S. Effect of Organic Fertilizers on Susceptibility of Potted Durian Seedlings to Phytophthora Diseases. J. Fruit Ornam. Plant Res. 2009, 17, 67–77. [Google Scholar]
- Pagán, I.; García-Arenal, F. Tolerance to Plant Pathogens: Theory and Experimental Evidence. Int. J. Mol. Sci. 2018, 19, 810. [Google Scholar] [CrossRef]
- Serrano, M.S.; Ríos, P.; González, M.; Romero, M.Á.; Fernández-Rebollo, P.; Sánchez, M.E. A Review of Integrated Control of Phytophthora Root Rot in Oak Rangeland Ecosystems. IOBC-WPRS Bull. 2017, 127, 139–146. [Google Scholar]
- López-Sánchez, A.; Perea, R. The Use of Biological Liquid Fertilizers against Oak Decline Associated with Phytophthora spp. New For. 2021, 52, 713–731. [Google Scholar] [CrossRef]
- Tschaplinski, T.J.; Blake, T.J. Effects of Root Restriction on Growth Correlations, Water Relations and Senescence of Alder Seedlings. Physiol. Plant. 1985, 64, 167–176. [Google Scholar] [CrossRef]
- Sapp, M.; Tyborski, N.; Linstädter, A.; López Sánchez, A.; Mansfeldt, T.; Waldhoff, G.; Bareth, G.; Bonkowski, M.; Rose, L.E. Site-Specific Distribution of Oak Rhizosphere-Associated Oomycetes Revealed by Cytochrome c Oxidase Subunit II Metabarcoding. Ecol. Evol. 2019, 9, 10567–10581. [Google Scholar] [CrossRef] [PubMed]
- Perea, R.; Miguel, A.S.; Martínez-Jauregui, M.; Valbuena-Carabaña, M.; Gil, L. Effects of Seed Quality and Seed Location on the Removal of Acorns and Beechnuts. Eur. J. For. Res. 2012, 131, 623–631. [Google Scholar] [CrossRef]
- Carbone, O. Essay of Biostimulants for the Management of Failed Areas in the Vineyards. Master’s Thesis, Università degli Studi di Torino, Turin, Italy, 2016. [Google Scholar]
- Ruiz-Gómez, F.J.; Pérez-de-Luque, A.; Sánchez-Cuesta, R.; Quero, J.L.; Cerrillo, R.M.N. Differences in the Response to Acute Drought and Phytophthora cinnamomi Rands Infection in Quercus ilex L. Seedlings. Forests 2018, 9, 634. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, Identification and Pathogenicity of Phytophthora Species from Declining Oak Stands. Eur. J. For. Pathol. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51(345), 659–668. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Random and Mixed Effects. In Modern Applied Statistics; Springer: New York, NY, USA, 2002; pp. 271–300. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach; Springer Verlag: New York, NY, USA, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression: Appendices. Robust Regres. R 2014, 2, 1–17. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. In R Package Version 1.43.17. Available online: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 26 May 2022).
- Arab, A.; Zamani, G.; Sayyari, M.; Asili, J. Effects of Chemical and Biological Fertilizers on Morpho-Physiological Traits of Marigold (Calendula officinalis L.). Eur. J. Med. Plants 2015, 8, 60–68. [Google Scholar] [CrossRef]
- Hassan, T.U.; Bano, A. Biofertilizer: A Novel Formulation for Improving Wheat Growth, Physiology and Yield. Pak. J. Bot. 2016, 48, 2233–2241. [Google Scholar]
- Choudhury, A.T.M.A.; Kennedy, I.R. Prospects and Potentials for Systems of Biological Nitrogen Fixation in Sustainable Rice Production. Biol. Fertil. Soils 2004, 39, 219–227. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Bareth, G.; Bolten, A.; Rose, L.E.; Mansfeldt, T.; Sapp, M.; Linstädter, A. Effects of Declining Oak Vitality on Ecosystem Multifunctionality: Lessons from a Spanish Oak Woodland. For. Ecol. Manag. 2021, 484, 118927. [Google Scholar] [CrossRef]
- Vivas, M.; Hernández, J.; Corcobado, T.; Cubera, E.; Solla, A. Transgenerational Induction of Resistance to Phytophthora cinnamomi in Holm Oak. Forests 2021, 12, 100. [Google Scholar] [CrossRef]
- Gómez, M.C.; González, M.; Gómez-Aparicio, L.; Serrano, M.S. Coexistent Mediterranean Woody Species as a Driving Factor of Phytophthora cinnamomi Infectivity and Survival. Ann. Appl. Biol. 2020, 177, 41–50. [Google Scholar] [CrossRef]
- Bunny, F.J.; Crombie, D.S.; Williams, M.R. Growth of Lesions of Phytophthora cinnamomi in Stems and Roots of Jarrah (Eucalyptus marginata) in Relation to Rainfall and Stand Density in Mediterranean Forest of Western Australia. Can. J. For. Res. 1995, 25, 961–969. [Google Scholar] [CrossRef]
- Scanu, B.; Linaldeddu, B.T.; Deidda, A.; Jung, T. Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, Including Two New Species, Phytophthora crassamura and P. ornamentata Sp. Nov. PLoS ONE 2015, 10, e0143234. [Google Scholar] [CrossRef]
- Dogbatse, J.A.; Arthur, A.; Awudzi, G.K.; Quaye, A.K.; Konlan, S.; Amaning, A.A. Effects of Organic and Inorganic Fertilizers on Growth and Nutrient Uptake by Young Cacao (Theobroma cacao L.). Int. J. Agron. 2021, 2021, 5516928. [Google Scholar] [CrossRef]
- Chemura, A. The Growth Response of Coffee (Coffea arabica L) Plants to Organic Manure, Inorganic Fertilizers and Integrated Soil Fertility Management under Different Irrigation Water Supply Levels. Int. J. Recycl. Org. Waste Agric. 2014, 3, 59. [Google Scholar] [CrossRef]
- Dresselhaus, T.; Hückelhoven, R. Biotic and Abiotic Stress Responses in Crop Plants. Agronomy 2018, 8, 267. [Google Scholar] [CrossRef]
- Solla, A.; García, L.; Pérez, A.; Cordero, A.; Cubera, E.; Moreno, G. Evaluating Potassium Phosphonate Injections for the Control of Quercus ilex Decline in SW Spain: Implications of Low Soil Contamination by Phytophthora cinnamomi and Low Soil Water Content on the Effectiveness of Treatments. Phytoparasitica 2009, 37, 303–316. [Google Scholar] [CrossRef]
- Maurel, M.; Robin, C.; Capron, G.; Desprez-Loustau, M.L. Effects of Root Damage Associated with Phytophthora cinnamomi on Water Relations, Biomass Accumulation, Mineral Nutrition and Vulnerability to Water Deficit of Five Oak and Chestnut Species. For. Pathol. 2001, 31, 353–369. [Google Scholar] [CrossRef]
- James, E.C.; Van Iersel, M.W. Fertilizer Concentration Affects Growth and Flowering of Subirrigated Petunias and Begonias. HortScience 2001, 36, 40–44. [Google Scholar] [CrossRef]
- Chang, K.H.; Wu, R.Y.; Chuang, K.C.; Hsieh, T.F.; Chung, R.S. Effects of Chemical and Organic Fertilizers on the Growth, Flower Quality and Nutrient Uptake of Anthurium andreanum, Cultivated for Cut Flower Production. Sci. Hortic. 2010, 125, 434–441. [Google Scholar] [CrossRef]
- Redondo, M.Á.; Pérez-Sierra, A.; Abad-Campos, P.; Torres, L.; Solla, A.; Reig-Armiñana, J.; García-Breijo, F. Histology of Quercus ilex Roots during Infection by Phytophthora cinnamomi. Trees 2015, 29, 1943–1957. [Google Scholar] [CrossRef]
- Ruiz Gómez, F.J.; Navarro-Cerrillo, R.M.; Sánchez-Cuesta, R.; Pérez-de-Luque, A. Histopathology of Infection and Colonization of Quercus ilex Fine Roots by Phytophthora cinnamomi. Plant Pathol. 2015, 64, 605–616. [Google Scholar] [CrossRef]
- Dawson, P. Impact of Root Infection by Phytophthora cinnamomi on the Water Relations of Two Eucalyptus Species That Differ in Susceptibility. Phytopathology 1984, 74, 486. [Google Scholar] [CrossRef]
- Oßwald, W.; Fleischmann, F.; Rigling, D.; Coelho, A.C.; Cravador, A.; Diez, J.; Dalio, R.J.; Horta Jung, M.; Pfanz, H.; Robin, C.; et al. Strategies of Attack and Defence in Woody Plant-Phytophthora Interactions. For. Pathol. 2014, 44, 169–190. [Google Scholar] [CrossRef]
- Zainuddin, N.; Keni, M.F.; Ibrahim, S.A.S.; Masri, M.M.M. Effect of Integrated Biofertilizers with Chemical Fertilizers on the Oil Palm Growth and Soil Microbial Diversity. Biocatal. Agric. Biotechnol. 2022, 39, 102237. [Google Scholar] [CrossRef]
- Bergstrand, K.J. Organic Fertilizers in Greenhouse Production Systems—A Review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
Model Type | Model | Response Variable (Group) 1 | Fixed Effect 2 | Random Effect | Sample Size (n) |
---|---|---|---|---|---|
Kaplan–Meier | I | Oak survival | ST × PI | 1|Mother Tree | 360 |
GLMMs | II | Morphology (biomass) | ST × PI | 1|Mother Tree | 36 |
GLMMs | III | Morphology (size) | ST × PI | 1|Mother Tree | 60 |
GLMMs | IV | Physiology | ST × PI | 1|Mother Tree | 60 |
Response Variable | Fixed Effects | Importance 2 | Levels | Coeff. | SE | z-Value | p |
---|---|---|---|---|---|---|---|
Root biomass 1 | Intercept | 0.576 | 0.050 | 11.440 | 0.001 *** | ||
LMF | Intercept | 26.743 | 2.056 | 12.633 | <0.001 *** | ||
Soil Treatment | 0.85 | Bio 12.5% | −7.089 | 3.235 | 2.142 | 0.032 * | |
Bio 25% | −4.570 | 2.942 | 1.511 | 0.031 * | |||
PI Infection | 0.60 | P. cinnamomi | −2.277 | 3.421 | 0.651 | 0.515 | |
ST × PI | 0.39 | B 12.5% × PI | 8.600 | 3.945 | 2.092 | 0.036 * | |
B 25% × PI | 6.700 | 3.945 | 1.630 | 0.003 ** | |||
FRMF | Intercept | 9.496 | 0.862 | 10.674 | <0.001 *** | ||
PI Infection | 0.40 | P. cinnamomi | −1.351 | 1.337 | 0.974 | 0.330 | |
R/S ratio | Intercept | 1.148 | 0.035 | 31.339 | <0.001 *** | ||
Soil Treatment | 0.72 | Bio 12.5% | 0.060 | 0.029 | 1.969 | 0.050 | |
Bio 25% | 0.031 | 0.036 | 0.833 | 0.405 | |||
PI Infection | 0.94 | P. cinnamomi | −0.049 | 0.028 | 1.717 | 0.086 | |
ST × PI | 0.23 | B 12.5% × PI | −0.011 | 0.051 | 0.211 | 0.833 | |
B 25% × PI | −0.079 | 0.051 | 1.473 | 0.141 | |||
FR/LB | Intercept | 9.229 | 0.669 | 13.800 | <0.001 *** | ||
Height (H) | Intercept | 20.209 | 1.196 | 16.539 | <0.001 *** | ||
Soil Treatment | 0.84 | Bio 12.5% | −2.205 | 1.595 | 1.353 | 0.176 | |
Bio 25% | −4.229 | 1.577 | 2.625 | 0.009 ** | |||
PI Infection | 0.33 | P. cinnamomi | −0.026 | 1.295 | 0.020 | 0.984 | |
Basal diameter (D) | Intercept | 4.510 | 0.161 | 27.413 | <0.001 *** | ||
PI Infection | 0.29 | P. cinnamomi | 0.251 | 0.265 | 0.926 | 0.354 | |
H/D ratio | Intercept | 4.907 | 0.404 | 11.947 | <0.001 *** | ||
Soil Treatment | 0.88 | Bio 12.5% | −0.817 | 0.454 | 1.762 | 0.078 | |
Bio 25% | −1.340 | 0.569 | 2.325 | 0.020 * | |||
PI Infection | 0.52 | P. cinnamomi | −1.077 | 0.497 | 2.116 | 0.034 * | |
ST × PI | 0.36 | B 12.5% × PI | 0.738 | 0.693 | 1.039 | 0.059 | |
B 25% × PI | 1.524 | 0.685 | 2.170 | 0.160 |
Variable | Fixed Effects | Importance 2 | Levels | Coeff. | SE | z-Value | p |
---|---|---|---|---|---|---|---|
Pn | Intercept | 8.476 | 0.615 | 13.543 | <0.001 *** | ||
P.c. Infection | 0.44 | P. cinnamomi | −1.045 | 0.941 | 1.087 | 0.277 | |
gs | Intercept | −1.834 | 0.109 | 16.521 | <0.001 *** | ||
Soil Treatment | 0.31 | Bio 12.5% | −0.263 | 0.18081 | 1.424 | 0.154 | |
Bio 25% | −0.180 | 0.18131 | 0.969 | 0.332 | |||
P.c. Infection | 0.32 | P. cinnamomi | −0.089 | 0.147 | 0.591 | 0.554 | |
Ci | Intercept | 284.927 | 5.609 | 50.063 | <0.001 *** | ||
P.c. Infection | 0.69 | P. cinnamomi | 13.514 | 7.137 | 1.854 | 0.064 | |
ETR | Intercept | 1.085 | 0.002 | 645.189 | <0.001 *** | ||
Soil Treatment | 0.96 | Bio 12.5% | −0.005 | 0.002 | 2.613 | 0.009 ** | |
Bio 25% | −0.006 | 0.002 | 2.878 | 0.004 ** | |||
P.c. Infection | 0.33 | P. cinnamomi | 0.001 | 0.002 | 0.305 | 0.761 | |
E | Intercept | 1.941 | 0.150 | 12.973 | 0.001 ** | ||
Pn/gs ratio | Intercept | 61.364 | 3.384 | 17.866 | <0.001 *** | ||
P.c. Infection | 0.63 | P. cinnamomi | −7.667 | 4.423 | 1.697 | 0.089 | |
Pn/E ratio | Intercept | 4.354 | 0.202 | 21.593 | 0.001 *** | ||
Ψ | Intercept | 3.004 | 0.095 | 31.700 | <0.001 *** | ||
Soil Treatment | 0.85 | Bio 12.5% | −0.216 | 0.095 | −2.270 | 0.023 * | |
Bio 25% | −0.232 | 0.096 | −2.413 | 0.016 * | |||
P.c. Infection | 0.97 | P. cinnamomi | 0.236 | 0.076 | 3.108 | 0.002 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Sánchez, A.; Capó, M.; Rodríguez-Calcerrada, J.; Peláez, M.; Solla, A.; Martín, J.A.; Perea, R. Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease. Forests 2022, 13, 1558. https://doi.org/10.3390/f13101558
López-Sánchez A, Capó M, Rodríguez-Calcerrada J, Peláez M, Solla A, Martín JA, Perea R. Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease. Forests. 2022; 13(10):1558. https://doi.org/10.3390/f13101558
Chicago/Turabian StyleLópez-Sánchez, Aida, Miquel Capó, Jesús Rodríguez-Calcerrada, Marta Peláez, Alejandro Solla, Juan A. Martín, and Ramón Perea. 2022. "Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease" Forests 13, no. 10: 1558. https://doi.org/10.3390/f13101558
APA StyleLópez-Sánchez, A., Capó, M., Rodríguez-Calcerrada, J., Peláez, M., Solla, A., Martín, J. A., & Perea, R. (2022). Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease. Forests, 13(10), 1558. https://doi.org/10.3390/f13101558