NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow
2.3. Multispectral Processing
2.4. Comparative Procedure for the Pre- and Post-Fire NDVI Values
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix C.1. Metadata of the Generated RGB and Multispectral Ortho-Mosaics
Appendix C.2. ODM Quality Report- Processed with ODM Version 2.8.0
Date | 08/03/2022 at 02:37:07 |
Area Covered | 0.004659 km2 |
Processing Time | 6.0 m:9.0 s |
Capture Start | 04/03/2022 at 09:11:40 |
Capture End | 04/03/2022 at 09:14:58 |
Reconstructed Images | 36 over 36 shots (100.0%) |
Reconstructed Points (Sparse) | 22,092 over 22,610 points (97.7%) |
Reconstructed Points (Dense) | 457,645 points |
Average Ground Sampling Distance (GSD) | 2.9 cm |
Detected Features | 10,262 features |
Reconstructed Features | 1521 features |
Geographic Reference | GPS |
GPS errors | 0.91 m |
Date | 08/03/2022 at 03:35:55 |
Area Covered | 0.004511 km2 |
Processing Time | 34.0 m:42.0 s |
Capture Start | 04/03/2022 at 13:35:25 |
Capture End | 04/03/2022 at 13:39:07 |
Reconstructed Images | 36, over 36 shots (100.0%) |
Reconstructed Points (Sparse) | 19621, over 19,993 points (98.1%) |
Reconstructed Points (Dense) | 465,442 points |
Average Ground Sampling Distance (GSD) | 2.8 cm |
Detected Features | 10,321 features |
Reconstructed Features | 1,576 features |
Geographic Reference | GPS |
GPS errors | 0.84 m |
References
- Furnas, B.J.; Goldstein, B.R.; Figura, P.J. Intermediate fire severity diversity promotes richness of forest carnivores in California. Divers. Distrib. 2022, 28, 493–505. [Google Scholar] [CrossRef]
- Turner, M.G.; Braziunas, K.H.; Hansen, W.D.; Hoecker, T.J.; Rammer, W.; Ratajczak, Z.; Westerling, A.L.; Seidl, R. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. Ecol. Monogr. 2022, 92, e01485. [Google Scholar] [CrossRef]
- Mansoor, S.; Farooq, I.; Kachroo, M.M.; Mahmoud, A.E.D.; Fawzy, M.; Popescu, S.M.; Alymeni, M.N.; Sonne, C.; Rinklebe, J.; Ahmad, P. Elevation in wildfire frequencies with respect to the climate change. J. Environ. Manag. 2022, 301, 113769. [Google Scholar] [CrossRef]
- Larson, A.J.; Jeronimo, S.M.; Hessburg, P.F.; Lutz, J.A.; Povak, N.A.; Cansler, C.A.; Kane, V.R.; Churchill, D.J. Tamm Review: Ecological principles to guide post-fire forest landscape management in the Inland Pacific and Northern Rocky Mountain regions. For. Ecol. Manag. 2022, 504, 119680. [Google Scholar] [CrossRef]
- Cardille, J.A.; Perez, E.; Crowley, M.A.; Wulder, M.A.; White, J.C.; Hermosilla, T. Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sens. Environ. 2022, 268, 112741. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. Agric. For. 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Wilder, B.A.; Lancaster, J.T.; Cafferata, P.H.; Coe, D.B.; Swanson, B.J.; Lindsay, D.N.; Short, W.R.; Kinoshita, A.M. An analytical solution for rapidly predicting post-fire peak streamflow for small watersheds in southern California. Hydrol. Process. 2021, 35, e13976. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. Catena 2022, 218, 106564. [Google Scholar] [CrossRef]
- Cadena, Z.D.A.; Flores, G.J.G.; Lomeli, Z.M.E.; Flores, R.A.G. Does the severity of a forest fire modify the composition, diversity and structure of temperate forests in Jalisco? Rev. Chapingo Ser. Cienc. For. 2022, 28, 1341. [Google Scholar] [CrossRef]
- Harris, R.C.; Kennedy, L.M.; Pingel, T.J.; Thomas, V.A. Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest. Remote Sens. 2022, 14, 1341. [Google Scholar] [CrossRef]
- Jurado, J.M.; Ortega, L.; Cubillas, J.J.; Feito, F.R. Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees. Remote Sens. 2020, 12, 1106. [Google Scholar] [CrossRef] [Green Version]
- Näsi, R.; Honkavaara, E.; Lyytikäinen, S.P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Vijanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef] [Green Version]
- Touhami, I.; Moutahir, H.; Assoul, D.; Bergaoui, K.; Aouinti, H.; Bellot, J.; Andreu, J.M. Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia. Acta Oecol. 2022, 114, 103804. [Google Scholar] [CrossRef]
- Zelený, J.; Mercado, B.D.; Müller, F. Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. Sci. Total Environ. 2021, 796, 148994. [Google Scholar] [CrossRef]
- Spruce, J.P.; Hicke, J.A.; Hargrove, W.W.; Grulke, N.E.; Meddens, A.J.H. Use of MODIS NDVI Products to Map Tree Mortality Levels in Forests Affected by Mountain Pine Beetle Outbreaks. Forests 2019, 10, 811. [Google Scholar] [CrossRef] [Green Version]
- Kahaer, Y.; Shi, Q.; Shi, H.; Peng, L.; Abudureyimu, A.; Wan, Y.; Li, H.; Zhang, W.; Yang, N. What Is the Effect of Quantitative Inversion of Photosynthetic Pigment Content in Populus euphratica Oliv. Individual Tree Canopy Based on Multispectral UAV Images? Forests 2022, 13, 542. [Google Scholar] [CrossRef]
- Talucci, A.C.; Forbath, E.; Kropp, H.; Alexander, H.D.; DeMarco, J.; Paulson, A.K.; Loranty, M.M. Evaluating post-fire vegetation recovery in Cajander Larch Forests in Northeastern Siberia using UAV derived vegetation indices. Remote Sens. 2020, 12, 2970. [Google Scholar] [CrossRef]
- Pompa, G.M.; Hevia, A.; Camarero, J.J. Minimum and maximum wood density as proxies of water availability in two Mexican pine species coexisting in a seasonally dry area. Trees 2021, 35, 597–607. [Google Scholar] [CrossRef]
- Molina, J.R.; Ortega, M.; Rodriguez, S.F. Scorch height and volume modeling in prescribed fires: Effects of canopy gaps in Pinus pinaster stands in Southern Europe. For. Ecol. Manag. 2022, 506, 119979. [Google Scholar] [CrossRef]
- Gowravaram, S.; Chao, H.; Zhao, T.; Parsons, S.; Hu, X.; Xin, M.; Flanagan, H.; Tian, P. Prescribed grass fire evolution mapping and rate of spread measurement using orthorectified thermal imagery from a fixed-wing UAS. Int. J. Remote Sens. 2022, 43, 2357–2376. [Google Scholar] [CrossRef]
- Schwarm, K.; Nair, A.P.; Wei, C.; Spearrin, R.M.; Ozen, E.; Gonzalez, E.; Kriesel, J. Three-dimensional real-time mapping of CO and CO2 concentrations in active forest burns with a UAV spectrometer. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2291. [Google Scholar] [CrossRef]
- Carrà, B.G.; Bombino, G.; Lucas, B.M.E.; Plaza, A.P.A.; D’Agostino, D.; Zema, D.A. Prescribed fire and soil mulching with fern in Mediterranean forests: Effects on surface runoff and erosion. Ecol. Eng. 2022, 176, 106537. [Google Scholar] [CrossRef]
- González, E.M.S.; González, E.M.; Tena, F.J.A.; Ruacho, G.L.; López, E.I.L. Vegetación de la sierra madre occidental, México: Una síntesis. Acta Botánica Mex. 2012, 100, 351–403. [Google Scholar] [CrossRef] [Green Version]
- García, G.S.A.; Narváez, F.R.; Olivas, G.J.M.; Hernández, S.J. Diversidad y estructura vertical del bosque de pino-encino en Guadalupe y Calvo, Chihuahua. Rev. Mex. de Cienc. For. 2019, 10, 41–63. [Google Scholar] [CrossRef] [Green Version]
- Cruz, P.C.; Juárez, W.S.; Santiago, D.M.; Santiago, O.L.C.; Silva, E.R.P.; Calderón, O.A.A. Combustibles forestales y susceptibilidad a incendios de un bosque templado en la mixteca alta, Oaxaca, México. For. Veracruzana 2018, 20, 9–14. [Google Scholar]
- DJI P4 Multispectral Specs. Available online: https://www.dji.com/p4-multispectral/specs (accessed on 27 August 2022).
- OpenDroneMap/ODM. Available online: https://github.com/OpenDroneMap/ODM (accessed on 22 August 2022).
- Dallal, G.E.; Wilkinson, L. An analytic approximation to the distribution of Lilliefors’s test statistic for normality. Am. Stat. 1986, 40, 294–296. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R Package 2014, 27, 9. [Google Scholar]
- Gaddis, G.M.; Gaddis, M.L. Introduction to biostatistics: Part 5, Statistical inference techniques for hypothesis testing with nonparametric data. Ann. Emerg. Med. 1990, 19, 1054–1059. [Google Scholar] [CrossRef]
- Pusev, R.; Gavrilov, I. Package “normtest”. Tests for Normality. 2014. Available online: https://dspace.spbu.ru/bitstream/11701/1021/1/normtest%20manual.pdf (accessed on 9 October 2022).
- Carvajal, R.F.; Marques da Silva, J.R.; Agüera, V.F.; Martínez, C.P.; Serrano, J.; Moral, F.J. Evaluation of fire severity indices based on pre-and post-fire multispectral imagery sensed from UAV. Remote Sens. 2019, 11, 993. [Google Scholar] [CrossRef] [Green Version]
- Pérez, R.L.A.; Quintano, C.; Marcos, E.; Suarez, S.S.; Calvo, L.; Fernández, M.A. Evaluation of prescribed fires from unmanned aerial vehicles (UAVs) imagery and machine learning algorithms. Remote Sens. 2020, 12, 1295. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Abrams, M.D.; Ellsworth, D.S.; Kruger, E.L.; Tabone, T.J. Fire affects ecophysiology and community dynamics of central Wisconsin oak forest regeneration. Ecology 1990, 71, 2179–2190. [Google Scholar] [CrossRef]
- Wallin, K.F.; Kolb, T.E.; Skov, K.R.; Wagner, M.R. Effects of crown scorch on ponderosa pine resistance to bark beetles in northern Arizona. Environ. Entomol. 2003, 32, 652–661. [Google Scholar] [CrossRef]
- Valor, T.; González, O.J.R.; Piqué, M. Assessing the impact of prescribed burning on the growth of European pines. For. Ecol. Manag. 2015, 343, 101–109. [Google Scholar] [CrossRef]
- Valor, T.; Ormeño, E.; Casals, P. Temporal effects of prescribed burning on terpene production in Mediterranean pines. Tree Physiol. 2017, 37, 1622–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonanomi, G.; Idbella, M.; Abd, E.A.M.; Motti, R.; Ippolito, F.; Santorufo, L.; Adamo, P.; Agrelli, D.; De Marco, A.; Maisto, G.; et al. Impact of prescribed burning, mowing and abandonment on a Mediterranean grassland: A 5-year multi-kingdom comparison. Sci. Total Environ. 2022, 834, 155442. [Google Scholar] [CrossRef]
- D. O. de la Federación, Norma Oficial Mexicana NOM-015-Semarnat/Sagarpa-2007. Que establece las especificaciones técnicas de métodos de uso del fuego en los terrenos forestales y en los terrenos de uso agropecuario, 2009, 1–15. Available online: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-015-semarnat-sagarpa-2007 (accessed on 10 September 2022).
- Kerns, B.K.; Day, M.A. Prescribed fire regimes subtly alter ponderosa pine forest plant community structure. Ecosphere 2018, 9, e02529. [Google Scholar] [CrossRef] [Green Version]
- Trejo, R.; Arturo, D. Incendios de Vegetación. Su Ecología, Manejo e Historia; Colegio de Postgraduados, Universidad Autónoma Chapingo: Guadalajara, Jalisco, México, 2014; p. 891. [Google Scholar]
- Westlind, D.J.; Kerns, B.K. Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances. For. Ecol. Manag. 2021, 480, 118645. [Google Scholar] [CrossRef]
- Scott, K.; Setterfield, S.A.; Douglas, M.M.; Parr, C.L.; Schatz, J.O.N.; Andersen, A.N. Does long-term fire exclusion in an Australian tropical savanna result in a biome shift? A test using the reintroduction of fire. Austral Ecol. 2012, 37, 693–711. [Google Scholar] [CrossRef]
- Harper, A.R.; Doerr, S.H.; Santin, C.; Froyd, C.A.; Sinnadurai, P. Prescribed fire and its impacts on ecosystem services in the UK. Sci. Total Environ. 2018, 624, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.E.; Aguirre, C.O.A.; Treviño, G.E.J.; Alanís, R.E.; Corral, R.J.J. Efecto de tratamientos silvícolas en la diversidad y estructura forestal en bosques templados bajo manejo en Durango, México. Madera Y Bosques 2021, 27, 1–14. [Google Scholar] [CrossRef]
- De Moura, M.L.; Galvão, L.S. Smoke effects on NDVI determination of savannah vegetation types. Int. J. Remote Sens. 2003, 24, 4225–4231. [Google Scholar] [CrossRef]
- Kobayashi, H.; Dye, D.G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 2005, 97, 519–525. [Google Scholar] [CrossRef]
- Moran, C.J.; Hoff, V.; Parsons, R.A.; Queen, L.P.; Seielstad, C.A. Mapping Fine-Scale Crown Scorch in 3D with Remotely Piloted Aircraft Systems. Fire 2022, 5, 59. [Google Scholar] [CrossRef]
- Ramos, R.M.P.; Albán, V.D.O.; Jiménez, G.A.; Mero, J.O.F.; Ganchozo, Q.M.T. Planificación de una quema prescrita en una plantación de Tectona grandis Linn F. Rev. Cuba. de Cienc. For. 2018, 6, 184–194. [Google Scholar]
- Zhitao, Z.; Lan, Y.; Pute, W.; Wenting, H. Model of soybean NDVI change based on time series. Int. J. Agric. Biol. Eng. 2014, 7, 64–70. [Google Scholar]
- Sakamoto, T.; Shibayama, M.; Takada, E.; Inoue, A.; Morita, K.; Takahashi, W.; Miura, S.; Kimura, A. Detecting seasonal changes in crop community structure using day and night digital images. Photogramm. Eng. Remote Sens. 2010, 76, 713–726. [Google Scholar] [CrossRef]
- Maurya, A.K.; Singh, D.; Singh, K.P. Development of fusion approach for estimation of vegetation fraction cover with drone and sentinel-2 data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7448–7451. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
Genus | Variable | n | min | q1 | Average | Median | q3 | max | SD | SE |
---|---|---|---|---|---|---|---|---|---|---|
Arbutus | DBH | 12 | 5.89 | 9.79 | 11.05 | 10.43 | 12.30 | 18.14 | 3.07 | 0.89 |
TH | 12 | 3.80 | 4.08 | 4.67 | 4.55 | 5.00 | 6.00 | 0.66 | 0.19 | |
Juniperus | DBH | 73 | 2.55 | 3.98 | 7.41 | 7.48 | 10.19 | 13.85 | 3.35 | 0.39 |
TH | 73 | 1.10 | 2.60 | 3.55 | 3.50 | 4.30 | 6.00 | 1.08 | 0.13 | |
Pinus | DBH | 115 | 3.66 | 8.59 | 12.27 | 11.46 | 14.40 | 36.77 | 5.22 | 0.49 |
TH | 115 | 2.00 | 4.50 | 6.05 | 5.70 | 7.00 | 12.00 | 2.07 | 0.19 | |
Quercus | DBH | 35 | 3.50 | 5.89 | 10.96 | 9.23 | 12.49 | 54.11 | 8.74 | 1.48 |
TH | 35 | 1.50 | 4.00 | 5.32 | 5.50 | 6.25 | 10.00 | 1.78 | 0.30 |
Area | Variable | Method | p-Value (α = 0.05) | Chi-Squared |
---|---|---|---|---|
Burned area | NDVI | Lilliefors (Kolmogorov–Smirnov) | 2.20 × 10−16 | 1.80 × 103 |
NDVI per date | Kruskal–Wallis | 2.20 × 10−16 | ||
Pre-/post-fire | Paired comparisons using the Wilcoxon test | 2.00 × 10−16 | ||
Adjacent control area | NDVI | Lilliefors (Kolmogorov–Smirnov) | 2.20 × 10−16 | 1.81 × 103 |
NDVI per date | Kruskal–Wallis | 2.20 × 10−16 | ||
Pre-/post-fire | Paired comparisons using the Wilcoxon test | 2.20 × 10−16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pompa-García, M.; Martínez-Rivas, J.A.; Valdez-Cepeda, R.D.; Aguirre-Salado, C.A.; Rodríguez-Trejo, D.A.; Miranda-Aragón, L.; Rodríguez-Flores, F.d.J.; Vega-Nieva, D.J. NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand. Forests 2022, 13, 1901. https://doi.org/10.3390/f13111901
Pompa-García M, Martínez-Rivas JA, Valdez-Cepeda RD, Aguirre-Salado CA, Rodríguez-Trejo DA, Miranda-Aragón L, Rodríguez-Flores FdJ, Vega-Nieva DJ. NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand. Forests. 2022; 13(11):1901. https://doi.org/10.3390/f13111901
Chicago/Turabian StylePompa-García, Marín, José Alexis Martínez-Rivas, Ricardo David Valdez-Cepeda, Carlos Arturo Aguirre-Salado, Dante Arturo Rodríguez-Trejo, Liliana Miranda-Aragón, Felipa de Jesús Rodríguez-Flores, and Daniel José Vega-Nieva. 2022. "NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand" Forests 13, no. 11: 1901. https://doi.org/10.3390/f13111901