Two Centuries of Drought History in the Center of Chihuahua, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dendrochronological Data
2.2. Climatic Variables
2.3. Standardized Precipitation–Evapotranspiration Index
2.4. Statistical Analysis
2.5. Influence between Ocean–Atmosphere Phenomena and Reconstructed SPEI
3. Results
3.1. Tree Ring Chronologies and Association between Climatic Variables
3.2. Association between the Regional Tree Ring Chronology and SPEI
3.3. Reconstruction of SPEI and Multi-Taper Method of Spectral Analysis
3.4. Influence between Ocean–Atmosphere Phenomena and Reconstructed SPEI
4. Discussion
4.1. Dendrochronological Association
4.2. Tree-Ring Chronology and Climatic Variables
4.3. SPEI and Relationship with Climate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ault, T.R. On the essentials of drought in a changing climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef]
- Schubert, S.; Gutzler, D.; Wang, H. A US CLIVAR project to assess and compare the responses of global climate models to drought related SST forcing patterns: Overview and results. J. Clim. 2009, 22, 5251–5272. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Met. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; López-Moreno, J.; Beguería, S.; García-Ruiz, J.M.; Cuadra, J.M. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J. Hydrol. 2010, 386, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Van Der, G.; Beguería, S.; Azorin-Molina, C.; López-Moreno, J.L. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 426, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Jiang, P.; Liu, H.; Wu, X.; Wang, H. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A.D. 1820 and links to westerly circulation. Roy. Meteor. Soc. 2016, 37, 2863–2872. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; Kenawy, A.E. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. J. Hydrom. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, B.; Jáuregui, E.; Díaz-Sandoval, R.; García-Acosta, V.; Cordero, G. Historical droughts in central Mexico and their relation with El Niño. Clim. Chan. 2005, 44, 709–716. [Google Scholar] [CrossRef]
- Mendoza, B.; García-Acosta, V.; Velasco, V.; Jáuregui, E.; Díaz-Sandoval, R. Frequency and duration of historical droughts from the 16th to the 19th centuries in the Mexican Maya lands, Yucatan Peninsula. Clim. Chan. 2007, 83, 151–168. [Google Scholar] [CrossRef]
- Jaiswal, R.S.; Siva, M.; Lakshmi, K.T.; Rasheed, M. Climatology of the subtropical high-pressure belt. In Proceedings of the SPIE 11859, Remote Sensing of Clouds and the Atmosphere XXVI, Madrid, Spain, 13–18 September 1993. [Google Scholar] [CrossRef]
- Linares, M. La sequía en la cuenca del río Bravo: Principios de política [Drought in the Rio Grande Basin: Policy principles]. G. Ecol. 2004, 70, 57–66. [Google Scholar]
- Stahle, D.; D’Arrigo, P.; Krusic, M.; Cleaveland, K.; Cook, E.; Allan, R.; Cole, J.; Dunbar, R.; Therrell, M.; Gay, D.; et al. Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull. Am. Meteor. Soc. 1998, 79, 2137–2152. [Google Scholar] [CrossRef]
- Woodhouse, C.; Stahle, D.; Villanueva, J. Rio Grande and Rio Conchos water supply variability over the past 500 years. Clim. Res. 2012, 51, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Torbenson, C.A.; Howard, I.M.; Griffin, D.; Villanueva-Diaz, J.; Cook, B.I.; Willimas, A.P.; Watson, E.; et al. Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America. J. Clim. 2020, 33, 3173–3194. [Google Scholar] [CrossRef]
- Tae-Woong, K.; Valdés, J.; Aparicio, J. Frequency and Spatial Characteristics of Droughts in the Conchos River Basin, Mexico. Wat. Intern. 2009, 27, 420–430. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Cerano, J.; Fulé, P.; Cortés, C.; Vázquez, L.; Yocom, L.; Ruíz-Corral, J.A. Four centuries of reconstructed hydroclimatic variability for northwestern Chihuahua, Mexico, based on tree rings. Investig. Geog. 2015, 87, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geoph. Res. 2012, 117, 1–27. [Google Scholar] [CrossRef]
- Espinoza, G.; Arctur, D.; Teng, W.; Maidment, D.; García, I.; Comair, G. Studying soil moisture at national level through statistical analysis of NASA data. J. Hydroinf. 2016, 18, 277–287. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Acuña, R.; Torbenson, M.C.; et al. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Alemán, C.; Pompa-García, M.; Acosta-Hernández, A.C.; Zúñiga-Vásquez, J.M.; Camarero, J.J. Earlywood and Latewood Widths of Picea chihuahuana Show Contrasting Sensitivity to Seasonal Climate. Forests 2017, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Constante-García, V.; Villanueva-Díaz, J.; Cerano-Paredes, J.; Cornejo-Oviedo, E.H.; Valencia-Manzo, S. Dendrochronology of Pinus Cembroides zucc. and seasonal precipitation reconstruction for southeastern Coahuila. Cienc. For. Mex. 2009, 34, 17–39. [Google Scholar]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Correa-Díaz, A.; Estrada-Ávalos, J.; Trucios-Caciano, R.; Estrada-Arellano, J.R.; Cardoza-Martínez, G.F.; Garza-Martínez, M.A. Dendroclimatic reconstruction of precipitation and temperature for the Mayo River basin in northwestern Mexico. Trees 2022, 36, 835–847. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Cerano-Paredes, J.; Gómez-Guerrero, A.; Castruita-Esparza, L.U.; Stahle, D.W.; Ruiz-Corral, J.A. Reconstructed volumes in dams of the Valle del Yaqui with annual rings of conifers. Rev. Mex. Cienc. Agrícolas 2014, 5, 1977–1991. [Google Scholar]
- Villanueva-Díaz, J.; Cerano-Paredes, J.; Rosales-Mata, S.; Arrocena-López, J.C.; Stahle, D.W.; Ruiz-Corral, J.A.; Martínez-Sifuentes, A.R. Hydro-climatic variability reconstructed from tree rings for the upper watershed of the Mezquital River, Durango. Rev. Mex. Cienc. Agrícolas 2014, 5, 1897–1912. [Google Scholar]
- González-Elizondo, M.; González-Elizondo, M.S.; Villanueva-Díaz, J.; Cerano-Paredes, J. Evaluación del potencial dendroclimático de Pinus lumholtzii B.L. Rob. & Fernald. Rev. Mex. Cienc. For. 2017, 8, 28–54. [Google Scholar]
- García, E. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). ‘Climas’ (clasificación de Koppen, modificado por García). Escala 1:1,000,000. México [National Commission for the Knowledge and Use of Biodiversity (CONABIO). ‘Climates’ (Koppen classification, modified by García). Scale 1:1,000,000. Mexico]. 1998. Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 11 December 2021).
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Portal de Geoinformación. Carta Temática de Edafología Escala 1:100,000. México [Geoinformation Portal. Thematic Map of Edaphology Scale 1:100,000. Mexico. 2001. Available online: http://www.biodiversidad.gob.mx:9999/media/1/planeta/cites/files/CONABIO_NDF_caoba.pdf (accessed on 18 November 2021).
- National Oceanic and Atmospheric Administration. Tree Ring Data from the International Tree-Ring Data Bank (ITRDB); NOAA/NCDC Paleoclimatology Program. 2003. Available online: https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring (accessed on 3 October 2021).
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Cook, E.R. The decomposition of tree-ring series for environmental studies. Tree Ring Bull. 1987, 43, 37–59. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Mérian, P.; Pierrat, J.C.; Lebourgeois, F. Effect of sampling effort on the regional chronology statistics and climate-growth relationships estimation. Dendrochronologia 2013, 31, 58–67. [Google Scholar] [CrossRef]
- Mocko, D. NASA/GSFC/HSL, NLDAS Primary Forcing Data L4 Monthly 0.125 × 0.125 Degree V002; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2012. [Google Scholar] [CrossRef]
- Serrano-Barrios, L.; Vicente-Serrano, S.M.; Flores-Magdaleno, H.; Tijerina-Chávez, L.; Vázquez-Soto, D. Variabilidad espacio-temporal de las sequías en la cuenca pacífico norte de México (1961–2010). C. Investig. Geog. 2016, 42, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Biondi, F.; Waikul, K. Dendroclim2002: AC++ program for statistical calibration of climate signals in tree-ring chronologies. Comp. Geosc. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Royal Netherlands Meteorological Institute. KNMI Climate Explorer. 2015. Available online: https://climexp.knmi.nl/start.cgi (accessed on 25 October 2021).
- Cook, E.R.; Meko, D.; Stahle, D.; Cleaveland, M. Drought reconstructions for the Continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Lees, J. Robust estimation of background noise and signal detection in climatic time series. Clim. Chang. 1996, 33, 409–445. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. Measuring the strength of ENSO—how does 1997/98 rank? Weather 1998, 53, 315–324. [Google Scholar] [CrossRef]
- Endfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and it’s relation to rainfall and river flows in the continental U.S. Geoph. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Mantua, J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oce. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Woodhouse, C.; Gray, S.T.; Meko, D.M. Updated streamflow reconstructions for the Upper Colorado River basin. Wat. Res. 2006, 42, W05415. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Gómez, A.; Cerano, J.; Rosales, S.; Estrada, J.; Castruita, L.; Martínez, A. The streamflow variability of the Acaponeta River inferred from tree-ring series of conifers. Tecnol. Y Cienc. Agua 2017, 8, 55–74. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Castruita-Esparza, L.U.; Martínez-Sifuentes, A.R.; Loera-Chaparro, R.; Estrada-Ávalos, J. Chihuahua southwestern hydroclimatic variability inferred with coniferous growth rings. Rev. Chapter Ser. Cie. For. Amb. 2020, 26, 373–389. [Google Scholar] [CrossRef]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Carlón-Allende, T.; Estrada-Ávalos, J. 243 years of reconstructed streamflow volume and identification of extreme hydroclimatic events in the Conchos river basin, Chihuahua, Mexico. Trees 2020, 34, 1347–1361. [Google Scholar] [CrossRef]
- Díaz, S.; Therrell, M.D.; Stahle, D.W.; Cleaveland, M.K. Chihuahua winter-spring precipitation reconstructed from tree-rings 1647–1992. Clim. Res. 2002, 22, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Estrada-Ávalos, J. Runoff reconstruction and climatic influence with tree rings, in the Mayo river basin, Sonora, Mexico. iForest 2020, 13, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.; Meko, D.M.; Touchan, R.; Leaveitt, S.W.; Woodhouse, C.A. Latewood chronology development for summer-moisture reconstruction in the US, Southwest. Tree-Ring Res. 2001, 67, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Meko, D.C.; Stockton, W.; Bogges, W.R. The tree–ring record of severe sustained drought. Wat. Res. 1996, 31, 789–801. [Google Scholar] [CrossRef]
- Daniels, L.D.; Veblen, T.T. Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. J. Veg. Sci. 2009, 14, 733–742. [Google Scholar] [CrossRef]
- Carlón-Allende, T.; Villanueva-Díaz, J.; Mendoza, M.E.; Pérez-Salicrup, D.R. Climatic signal in earlywood and latewood in conifer forests in the Monarch Butterfly Biosphere Reserve, Mexico. Tree-Ring Res. 2018, 74, 63–75. [Google Scholar] [CrossRef]
- Carlón-Allende, T.; Villanueva-Díaz, J.; Soto-Castro, G.; Mendoza, M.E.; Macías, J.L. Allende, T.C.; Díaz, J.V.; Castro, G.S.; Mendoza, M.E.; Macías, J.L. Tree rings as indicators of climatic variation in the Trans-Mexican Volcanic Belt, central Mexico. Ecol. Indic. 2021, 120, 106920. [Google Scholar] [CrossRef]
- Girardin, M.P.; Guo, X.J.; Bernier, P.Y.; Raulier, F.; Gauthier, S. Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences 2012, 9, 2523–2536. [Google Scholar] [CrossRef] [Green Version]
- Cox, B. The biogeographic regions reconsidered. J. Biogeogr. 2001, 18, 511–523. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Stahle, D.W.; Therrell, M.D.; Beramendi-Orosco, L.; Estrada-Ávalos, J.; Martínez-Sifuentes, A.R.; Astudillo-Sánchez, C.C.; Cervantes-Martínez, R.; Cerano-Paredes, J. The climatic response of baldcypress (Taxodium mucronatum Ten.) in San Luis Potosi, Mexico. Trees 2020, 34, 623–635. [Google Scholar] [CrossRef]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Endfield, G.H.; Fernández-Tejeda, I. Decades of Drought, Years of Hunger: Archival Investigations of Multiple Year Droughts in Late Colonial Chihuahua. Clim. Chan. 2006, 75, 391–419. [Google Scholar] [CrossRef]
- Méndez, M.; Magaña, V. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Stahle, D.W.; Faulstich, C.C.; Touchan, R.; Castro, C.L.; Leavitt, S.W. North American monsoon precipitation reconstructed from tree-ring latewood. Geoph. Res. Lett. 2013, 40, 954–958. [Google Scholar] [CrossRef]
- Ortega-Gaucín, D. Caracterización de las sequías hidrológicas en la cuenca del río Bravo, México. Terra Latinoam. 2013, 31, 167–180. [Google Scholar]
- Molina-Pérez, I.; Cerano-Paredes, J.; Rosales-Mata, S.; Villanueva-Díaz, J.; Cervantes-Martínez, R.; Esquivel-Arriaga, G.; Cornejo-Oviedo, E. Historical fire fruequency (1779–2013) in pine-oak forests in the community on Charcos, Mezquital, Durango. Rev. Chap. Ser. Cie. For. Amb. 2016, 23, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Ayres, M.P.; Lombardero, M.J. Assessing de consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar] [CrossRef]
- Ortiz-Gómez, R.; Cardona-Díaz, J.; Ortiz-Robles, F.; Alvarado-Medellin, P. Characterization of droughts by comparing three multiscale indices in Zacatecas, Mexico. Tecnol. Y Cienc. Agua 2018, 9, 47–73. [Google Scholar] [CrossRef]
- Cerano-Paredes, J.; Esquivel, G.; Sánchez, I. Analysis of meteorological droughts in the Yaqui River Basin, Mexico and its relationship with ENSO. Bol. Asoc. Geó. Esp. 2020, 86, 1–40. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F.; Reyes, J. PDO-ENSO effects in the climate of Mexico. Am. Meteor. Soci. 2006, 19, 6433–6438. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Site | Site Code | Extension (Years) | Species 1 | Series Intercorrelation | Chronology Type 2 |
---|---|---|---|---|---|---|
1 | Majalca | MAJ | 1750–2013 (264) | Pce | 0.65 | RW, EW, LW |
2 | Basagochi | CAC | 1809–2013 (205) | Pme | 0.69 | RW, EW, LW |
3 | Ranchito San Juanito | RAN | 1770–2013 (244) | Pch | 0.54 | RW, EW, LW |
4 | Baburiachi | BAB | 1889–2012 (124) | Par | 0.60 | RW, EW, LW |
5 | Barranca del Cobre | COB | 1745–2014 (270) | Pme | 0.64 | RW, EW, LW |
6 | Arareco | ARA | 1874–2014 (141) | Par | 0.50 | RW, EW, LW |
7 | El Tule Gpe. Y Calvo | ELT | 1830–2013 (184) | Pdu | 0.54 | RW, EW, LW |
8 | Guachochi | GUA | 1806–2017 (212) | Plu | 0.62 | RW, EW, LW |
9 | Los Pilares | LPI | 1725–2015 (291) | Pme | 0.69 | RW, EW, LW |
Period | ||
---|---|---|
Statistic | Calibration (1951–1980) | Verification (1981–2009) |
Explained variance | 0.62 * | 0.77 * |
Reduction of error | 0.54 * | 0.70 * |
t-value | 3.47 * | 5.78 * |
Signs test | 8 * | 5 * |
First negative difference | 6 * | 7 * |
Efficiency coefficient | 0.54 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Estrada-Ávalos, J.; Trucíos-Caciano, R.; Carlón-Allende, T.; Castruita-Esparza, L.U. Two Centuries of Drought History in the Center of Chihuahua, Mexico. Forests 2022, 13, 921. https://doi.org/10.3390/f13060921
Martínez-Sifuentes AR, Villanueva-Díaz J, Estrada-Ávalos J, Trucíos-Caciano R, Carlón-Allende T, Castruita-Esparza LU. Two Centuries of Drought History in the Center of Chihuahua, Mexico. Forests. 2022; 13(6):921. https://doi.org/10.3390/f13060921
Chicago/Turabian StyleMartínez-Sifuentes, Aldo Rafael, José Villanueva-Díaz, Juan Estrada-Ávalos, Ramón Trucíos-Caciano, Teodoro Carlón-Allende, and Luis Ubaldo Castruita-Esparza. 2022. "Two Centuries of Drought History in the Center of Chihuahua, Mexico" Forests 13, no. 6: 921. https://doi.org/10.3390/f13060921
APA StyleMartínez-Sifuentes, A. R., Villanueva-Díaz, J., Estrada-Ávalos, J., Trucíos-Caciano, R., Carlón-Allende, T., & Castruita-Esparza, L. U. (2022). Two Centuries of Drought History in the Center of Chihuahua, Mexico. Forests, 13(6), 921. https://doi.org/10.3390/f13060921