Optimizing Somatic Embryogenesis Initiation, Maturation and Preculturing for Cryopreservation in Picea pungens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initiation of Embryogenic Tissues
2.2. Maturation of Somatic Embryos
2.3. Cryopreservation of Embryogenic Tissues
2.4. Data Analysis
3. Results
3.1. Initiation of Embryogenic Tissue
3.2. Somatic Embryo Maturation
3.3. Cryopreservation
4. Discussion
4.1. Initiation of Embryogenic Tissues
4.2. Maturation of Embryogenic Tissues
4.3. Cryopreservation of Embryogenic Tissues
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, J.; Chen, S.G.; Qin, C.Y.; Li, Q.M.; Cai, J.F.; Sun, C.B.; Wang, W.M.; Weng, Y.H. Somatic embryogenesis in mature zygotic embryos of Picea pungens. Sci. Rep. 2021, 11, 19072. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S. Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Ann. For. Sci. 2002, 59, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Afele, J.C.; Senaratna, T.; McKersie, B.D.; Saxena, P.K. Somatic embryogenesis and plant regeneration from zygotic embryo culture in blue spruce (Picea pungens Engelmann). Plant Cell Rep. 1992, 11, 299–303. [Google Scholar]
- Sun, J.S.; Jia, G.X. Somatic embryogenesis of Picea pungens Engelmann. J. Beijing For. Univ. 2010, 32, 44–51, (In Chinese with English Abstract). [Google Scholar]
- Hazubska-Przybyl, T.; Bojarczuk, K. Somatic embryogenesis of selected spruce species (Picea abies, Picea omorika, Picea pungens ‘Glauca’ and Picea breweriana). Acta Soc. Bot. Pol. Pol. 2008, 77, 189–199. [Google Scholar] [CrossRef]
- Adams, G.W.; Doiron, M.G.; Park, Y.S.; Bonga, J.M.; Charest, P.J. Commercialization potential of somatic embryogenesis in black spruce tree improvement. For. Chron. 1994, 70, 593–598. [Google Scholar] [CrossRef]
- Högberg, K.A.; Ekberg, I.; Norell, L.; von Arnold, S. Integration of somatic embryogenesis in a tree breeding programme: A case study with Picea abies. Can. J. For. Res. 1998, 28, 1536–2545. [Google Scholar] [CrossRef]
- Tikkinen, M.; Varis, S.; Aronen, T. Development of somatic embryo maturation and growing techniques of Norway spruce emblings towards large-scale field testing. Forests 2018, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Lelu-Walter, M.A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar] [CrossRef]
- Salaj, T.; Matusova, R.; Salaj, J. Conifer somatic embryogenesis an efficient plant regeneration system for theoretical studies and mass propagation. Dendrobiology 2015, 74, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Varis, S.; Ahola, S.; Jaakola, L.; Aronen, T. Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce. Cryobiology 2017, 76, 8–17. [Google Scholar] [CrossRef]
- Kartha, K.; Fowke, L.C.; Leung, N.L.; Caswell, K.L.; Hakman, I. Induction of somatic embryogenesis and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 1988, 132, 529–539. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Ward, C.; Cheliak, W.M. Cryopreservation and plant-regeneration from embryogenic cultures of larch (larix eurolepis) and black spruce (Picea mariana). J. Exp. Bot. 1992, 43, 73–79. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Park, Y.S.; Overton, C.; MacEacheron, I.; Bonga, J.M. Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell. Dev. Biol. Plant 2001, 37, 392–399. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas fir and sugar pine. Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- SAS institute Inc. SAS/STAT 13.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Filonova, L.; Bozhkov, P.; von Arnold, S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot. 2000, 51, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.L.; Gui, Y.; Guo, Z.C. Somatic embryogenesis of Picea species. Chin. Bull. Bot. 1999, 16, 59–66. [Google Scholar]
- von Arnold, S.; Hakman, I. Effect of sucrose on initiation of embryogenic callus cultures from mature zygotic embryos of Picea abies. (L.) Karst. (Norway spruce). J. Plant Physiol. 1986, 122, 261–265. [Google Scholar] [CrossRef]
- Montalbán, I.; Diego, N.D.; Moncaleán, P. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed provenance screening, zygotic embryo staging and media adjustments. Acta Physiol. Plant 2012, 34, 451–460. [Google Scholar] [CrossRef]
- von Arnold, S. Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.). J. Plant Physiol. 1987, 128, 233–244. [Google Scholar] [CrossRef]
- Tremblay, F.M. Somatic embryogenesis and plantlet regeneration from embryos isolated from stored seeds of Picea glauca. Can. J. Bot. 1990, 68, 236–242. [Google Scholar] [CrossRef]
- Julia, D.; David, C.; Ulrika, E. Analysis of nitrogen utilization capability during the proliferation and maturation phases of Norway spruce (Picea abies (L.) H. Karst.) somatic embryogenesis. Forests 2018, 9, 288. [Google Scholar]
- Takeda, T.; Inose, H.; Matsuoka, H. Stimulation of somatic embryogenesis in carrot cells by the addition of calcium. Biochem. Eng. J. 2003, 14, 143–148. [Google Scholar] [CrossRef]
- Attree, S.; Moore, D.; Sawhney, V.K.; Fowke, L.C. Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 1991, 68, 519–525. [Google Scholar] [CrossRef]
- Nørgaard, J.V. Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci. 1997, 124, 211–221. [Google Scholar] [CrossRef]
- Kong, L. Factors Affecting White Spruce Somatic Embryogenesis and Embryo Conversion. Ph.D. Dissertation, University of Calgary, Calgary, AB, Canada, 1994. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Kalemba, E.M.; Ratajczak, E.; Bojarczuk, K. Effects of abscisic acid and an carbohydrate on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiol. Plant 2016, 38, 59. [Google Scholar] [CrossRef] [Green Version]
- von Arnold, S.; Hakman, I. Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J. Plant Physiol. 1988, 132, 164–169. [Google Scholar] [CrossRef]
- Peng, C.; Gao, F.; Wang, H.; Shen, H.L.; Yang, L. Optimization of maturation process for somatic embryo production and cryopreservation of embryogenic tissue in Pinus koraiensis. Plant Cell Tissue Organ Cult. 2020, 144, 185–194. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Bernier-Cardou, M.; Klimaszewska, K. Clonal plant production from self-and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Organ Cult. 2008, 92, 31–45. [Google Scholar] [CrossRef]
- von Arnold, S.; Sabala, I.; Bozhkov Picea Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Attree, S.M.; Budimir, S.; Fowke, L.C. Somatic embryogenesis and plantlet regeneration from cultured shoots and cotyledons of seedlings from stored seeds of black and white spruce. Can. J. Bot. 1990, 68, 30–34. [Google Scholar] [CrossRef]
- Harry, I.S.; Thorpe, T.A. Somatic embryogenesis and plantlet regeneration from mature zygotic embryos of red spruce. Bot. Gaz. 1991, 152, 446–452. [Google Scholar] [CrossRef]
- Park, Y.S.; Pond, S.E.; Bonga, J.M. Initiation of somatic embryogenesis in white spruce (Picea glauca): Genetic control, culture treatment effects, and implications for tree breeding. Theor. Appl. Genet. 1993, 86, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.H.; Park, Y.S.; Krasowski, M.J.; Mullin, T.J. Allocation of varietal testing efforts for implementing conifer multi-varietal forestry using white spruce as a model species. Ann. For. Sci. 2011, 68, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Touchell, D.H.; Chiang, V.L.; Tsai, C.J. Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep. 2002, 21, 118–124. [Google Scholar]
- Fenning, T.; O’Donnell, M.; Connolly, T. An assessment of somatic embryogenesis and cryopreservation methods with a wide range of Sitka spruce breeding material from the UK. Plant Cell Tissue Organ Cult. 2017, 131, 483–497. [Google Scholar] [CrossRef]
- Cyr, D.R.; Lazaroff, W.R.; Grimes, S.M.; Quan, G.; Bethune, T.D.; Dunstan, D.I.; Roberts, D.R. Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep. 1994, 13, 574–577. [Google Scholar] [CrossRef]
- Finkle, B.J.; Zavala, M.E.; Ulrich, J.M. Cryoprotective compounds in the viable freezing of plant tissues. In Cryopreservation of Plant Cells and Organs; Kanha, K.K., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 75–113. [Google Scholar]
- Ford, C.S.; Jones, N.B.; van Staden, J. Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep. 2000, 19, 610–615. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Bernier-Cardou, M.; Klimaszewska, K. Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep. 2006, 25, 767–776. [Google Scholar] [CrossRef]
- Bomal, C.; Tremblay, F.M. Dried Cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann. Bot. 2000, 86, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Gale, S.; John, A.; Harding, K.; Benson, E.E. Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: A comparison of vitrification protocols. CryoLetters 2008, 29, 135–144. [Google Scholar] [PubMed]
Experiment | Basal Medium and Supplements | Treatment and Level |
---|---|---|
Initiation | ||
Standard | mLV, sucrose 10 g/L, acid hydrolyzed casein 0.8 g/L, L-glutamine 0.5 g/L, Gelrite 4 g/L, 6-BA 2.0 mg/L, 2,4-D 4.0 mg/L | |
Exp. 1.1 | Same as the standard but varying 2,4-D | 2.4-D: 0, 2.0, 4.0, 6.0 mg/L |
Exp. 1.2 | Same as the standard but varying 6-BA | 6-BA: 0, 1.0, 2.0, 3.0, 4.0 mg/L |
Exp. 1.3 | Same as standard but varying sucrose | Sucrose: 5, 10, 20, 30 g/L |
Maturation | ||
Standard | mLV, sucrose 30 g/L, acid hydrolyzed casein 0.8 mg/L, L-glutamine 0.5 g/L, Gelrite 6 g/L, active carbon 1 g/L, ABA 13.22 mg/L | |
Exp. 2.1 | Same as standard but varying basal medium | Basal medium: DCR, mLV, 1/2 MS |
Exp. 2.2 | Same as the standard but varying carbohydrate type and concentration | Carbohydrate: sucrose, glucose, maltose Concentrations: 15, 30, 45, 60 g/L |
Exp. 2.3 | Same as the standard but varying Gelrite | Gelrite: 4, 6, 8, 10 g/L |
Exp. 2.4 | Same as the standard but varying ABA | ABA: 0, 10, 20, 30, 40 mg/L |
Exp. 2.5 | Same as the standard | Cell density: 50, 80, 110, 140, 170 mg/dish |
Cryopreservation | ||
Standard | Proliferation medium *, sorbitol 0.4 mol/L, preculture period 18 h, DMSO 7.5% | |
Exp. 3.1 | Same as the standard but varying sorbitol and preculture period | Sorbitol: 0, 0.2, 0.4, 0.8 mg/L Preculture period: 0, 12, 18, 24, 36 h |
Exp. 3.2 | Same as the standard but varying DMSO | DMSO: 0, 5, 7.5, 10, 15% |
Experiment | Source of Variation | df | F | Pr > F |
---|---|---|---|---|
Exp. 1.1 | 2,4-D | 3 | 191.33 | <0.0001 |
Provenance | 2 | 6.73 | 0.0345 | |
2,4-D X Provenance | 6 | 3.29 | 0.7718 | |
Exp. 1.2 | 6-BA | 4 | 151.73 | <0.0001 |
Provenance | 2 | 11.96 | 0.0025 | |
6-BA X Provenance | 8 | 9.74 | 0.2836 | |
Exp. 1.3 | Sucrose | 3 | 32.19 | <0.0001 |
Provenance | 2 | 22.63 | <0.0001 | |
Sucrose X Provenance | 8 | 8.13 | 0.2288 |
Provenance | Exp. 1.1 | Exp. 1.2 | Exp. 1.3 |
---|---|---|---|
F1 | 0.32 (0.03) a | 0.39 (0.02) a | 0.20 (0.02) b |
F2 | 0.22 (0.03) b | 0.32 (0.03) ab | 0.34 (0.02) a |
F3 | 0.31 (0.03) a | 0.27 (0.02) b | 0.33 (0.02) a |
Experiment | Source of Variation | NDf * | DDf * | F | Pr > F |
---|---|---|---|---|---|
Exp. 2.1 | Basal medium | 2 | 45 | 5.37 | 0.0081 |
Clone | 2 | 45 | 8.25 | 0.0009 | |
Basal medium * Clone | 4 | 45 | 0.51 | 0.7257 | |
Exp. 2.2 | Carbohydrate type (CT) | 2 | 186 | 1.92 | 0.1500 |
Clone | 2 | 186 | 3.12 | 0.0466 | |
Concentration within a CT | 9 | 186 | 5.93 | 0.0002 | |
CT * Clone | 4 | 186 | 3.03 | 0.0021 | |
Exp. 2.3 | Gelrite | 3 | 59 | 3.43 | 0.0228 |
Clone | 2 | 59 | 43.44 | <0.0001 | |
Gelrite * Clone | 6 | 59 | 6.66 | 0.0001 | |
Exp. 2.4 | ABA | 4 | 60 | 6.69 | 0.0002 |
Clone | 2 | 60 | 7.66 | 0.0011 | |
ABA * Clone | 8 | 60 | 4.48 | 0.0003 | |
Exp. 2.5 | Density | 4 | 75 | 1.74 | 0.1506 |
Clone | 2 | 75 | 55.25 | <0.0001 | |
Density * Clone | 8 | 75 | 3.24 | 0.0032 | |
Exp. 3.1 | Preculture period (PP) | 4 | 80 | 20.17 | <0.0001 |
Sorbitol | 3 | 80 | 48.96 | <0.0001 | |
PP * Sorbitol | 12 | 80 | 6.38 | <0.0001 | |
Exp. 3.2 | DMSO | 4 | 20 | 4.34 | 0.0109 |
Clone Line | Exp. 2.1 | Exp. 2.2 | Exp. 2.3 | Exp. 2.4 | Exp. 2.5 |
---|---|---|---|---|---|
1–9 | 383.43 (51.14) b | 244.97 (23.99) a | 189.91 (27.19) b | 388.06 (39.44) a | 216.23 (42.32) b |
2–22 | 461.05 (61.46) b | 231.77 (26.49) a | 313.4 (44.71) a | 135.34 (13.58) b | 52.65 (15.77) c |
2–23 | 799.90 (106.47) a | 253.13 (29.40) a | 414.66 (59.16) a | 456.69 (45.24) a | 558.68 (55.02) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Gao, F.; Qin, C.; Chen, S.; Cai, J.; Sun, C.; Weng, Y.; Tao, J. Optimizing Somatic Embryogenesis Initiation, Maturation and Preculturing for Cryopreservation in Picea pungens. Forests 2022, 13, 2097. https://doi.org/10.3390/f13122097
Cao X, Gao F, Qin C, Chen S, Cai J, Sun C, Weng Y, Tao J. Optimizing Somatic Embryogenesis Initiation, Maturation and Preculturing for Cryopreservation in Picea pungens. Forests. 2022; 13(12):2097. https://doi.org/10.3390/f13122097
Chicago/Turabian StyleCao, Xi, Fang Gao, Caiyun Qin, Shigang Chen, Jufeng Cai, Changbin Sun, Yuhui Weng, and Jing Tao. 2022. "Optimizing Somatic Embryogenesis Initiation, Maturation and Preculturing for Cryopreservation in Picea pungens" Forests 13, no. 12: 2097. https://doi.org/10.3390/f13122097
APA StyleCao, X., Gao, F., Qin, C., Chen, S., Cai, J., Sun, C., Weng, Y., & Tao, J. (2022). Optimizing Somatic Embryogenesis Initiation, Maturation and Preculturing for Cryopreservation in Picea pungens. Forests, 13(12), 2097. https://doi.org/10.3390/f13122097