Applying Digital Image Correlation (DIC) Techniques to Characterise Plywood According to UNE-EN 314 Standards: Bonding Quality Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bonding Quality Tests
2.2. Types of Pre-Treatment
2.3. DIC Device
2.4. Test Equipment
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. 15 mm Panel, Class 3 (Outdoor), with Pre-Treatment A
4.2. 15 mm Panel, Class 3 (Outdoor), with Pre-Treatment B
4.3. 18 mm Panel, Class 3 (Outdoor), with Pre-Treatment A
4.4. Interpretation of DIC Results in the Bonding Quality Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DIC | Digital image correlation |
RMv,med | Mean apparent cohesive wood failure percentage value |
fv | Shear fracture stress (N/mm2) |
F | Test piece failure load (N) |
l1 | Length of the shear area (mm) |
b1 | Width of the shear area (mm) |
fv,med | Mean shear stress value (N/mm2) |
fv,min | Minimum shear stress value (N/mm2) |
εy | Normal strain |
εxy | Tangential strain |
References
- Food and Agriculture Organization of the United Nations. FAO Yearbook of Forest Products 2019; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- García Esteban, L.; Guindeo Casasús, A.; Peraza Oramas, C.; de Palacios de Palacios, P. La Madera y su Tecnología; Mundi, P., de Salazar, F.C.V., Eds.; AITIM: Madrid, Spain, 2010. [Google Scholar]
- Hermoso Prieto, E. Caracterización Mecánica de la Madera. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2001. [Google Scholar]
- EN 314-1; European Standard. Plywood. Bonding Quality. Part 1: Test Methods. European Committee of Standardization (CEN): Brussels, Belgium, 2004.
- EN 314-2; European Standard. Plywood—Bonding Quality—Part 2: Requirements. European Committee of Standardization (CEN): Brussels, Belgium, 1993.
- EN 636:2012+A1:2015; European Standard. Plywood—Specifications. European Committee of Standardization (CEN): Brussels, Belgium, 2015.
- EN 326-1; European Standard. Wood-Based Panels—Sampling, Cuttizng and Inspection—Part 1: Sampling and Cutting of Test Pieces and Expression of Test Results. European Committee of Standardization (CEN): Brussels, Belgium, 1994.
- EN 12369-2; European Standard. Wood-Based Panels—Characteristic Values for Structural Design—Part 2: Plywood. European Committee of Standardization (CEN): Brussels, Belgium, 2011.
- EN 322:1994; European Standard. Wood-Based Panels—Determination of Moisture Content. European Committee of Standardization (CEN): Brussels, Belgium, 1993.
- EN 323:1994; European Standard. Wood-Based Panels—Determination of Density. European Committee of Standardization (CEN): Brussels, Belgium, 1993.
- Pan, B.; Qian, K.; Xie, H.M.; Asundi, A. Two dimensional digital image correlation for in plane displacement and strain measurement. A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar]
- Sutton, M.A.; Wolters, W.J.; Peters, W.H.; Ranson, W.F.; McNeill, S.R. Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1983, 1, 133–139. [Google Scholar]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 427–431. [Google Scholar]
- Kang, H.Y.; Muszynski, L.; Milota, M.R.; Kang, C.W.; Matsumura, J. Preliminary optical measurement of non-uniform drying strains and check formation in drying wood. J. Fac. Agric. Kyushu Univ. 2001, 56, 313–316. [Google Scholar]
- Kang, H.Y.; Kang, S.G.; Kang, C.W.; Matsumura, J. Measurement of strain distributions in white oak boards during drying using a digital image correlation method. J. Fac. Agric. Kyushu Univ. 2013, 58, 55–59. [Google Scholar]
- Peng, M.; Ho, Y.C.; Wang, W.C.; Chui, Y.H.; Gong, M. Measurement of wood shrinkage in jack pine using three dimensional digital image correlation (DIC). Holzforschung 2012, 66, 639–643. [Google Scholar]
- Lanvermann, C.; Wittel, F.K.; Niemz, P. Full-field moisture induced deformation in Norway spruce intra-ring variation of transverse swelling. Eur. J. Wood Wood Prod. 2014, 72, 43–52. [Google Scholar]
- García, R.A.; Rosero-Alvarado, J.; Hernández, R.E. Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation. Wood Sci. Technol. 2020, 54, 139–159. [Google Scholar] [CrossRef]
- Oscarsson, J.; Olsson, A.; Enquist, B. Strain fields around knots in Norway spruce specimens exposed to tensile forces. Wood Sci. Technol. 2012, 46, 593–610. [Google Scholar]
- Villarino, A.; López-Rebollo, J.; Antón, N. Analysis of mechanical behavior through digital image correlation and reliability of Pinus halepensis Mill. Forests 2020, 11, 1232. [Google Scholar]
- Li, W.Z.; Liu, C.H.; Wang, X.Z.; Shi, J.T.; Mei, C.T.; Van den Bulcke, J.; Van Acker, J. Understanding the impact of wood type and moisture on the bonding strength of glued wood. Wood Mater. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetry. Geometry from Images and Laser Scans; De Gruyter: Berlin, Germany, 2007. [Google Scholar]
- Lerma García, J.L. Fotogrametría Moderna: Analítica y Digital; Universidad Politécnica de Valencia Serv. Publ.: Valencia, Spain, 2002. [Google Scholar]
- Schenk, T. Digital Photogrammetry; Backgrounds, Fundamentals Automatic Orientation Procedures; TerraScience: Laurelville, OH, USA, 1999; Volume 1. [Google Scholar]
- Gasvik, K.J. Optical Metrology; Willey: Chichester, UK, 1995. [Google Scholar]
- Schwider, J. Advanced Evaluation Techniques in Interferometry. Prog. Opt. 1990, 28, 271–359. [Google Scholar]
- GOM. ARAMIS User Manual RevA—Software; GOM: Braunschweig, Germany, 2009. [Google Scholar]
- Sutton, M.A.; Orteu, J.J.; Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements—Basic Concepts, Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Castillo, E. Extreme Value Theory in Engineering; Academic Press INC: San Diego, CA, USA, 1988. [Google Scholar]
- Castillo, E.; Hadi, A.S.; Balakrishnan, N.; Sarabia, J.M. Extreme Value and Related Models with Applications in Engineering and Science; Wiley: New York, NY, USA, 2005. [Google Scholar]
Panel Type | Humidity (%) | Density (kg/m3) |
---|---|---|
15 mm panel, class 3 (outdoor) | 11.46 | 711.71 |
18 mm panel, class 1 (indoor) | 11.68 | 748.33 |
Panel Type | Pre-Treatment Performed | Total Number of Pieces Tested | Number of Rejected Tests | Number of Valid Tests | |
---|---|---|---|---|---|
No Fracture | Exceed Time | ||||
15 mm panel, class 3 (outdoor) | A | 22 | 0 | 12 | 10 |
B | 23 | 1 | 11 | 11 | |
18 mm panel, class 1 (indoor) | A | 28 | 6 | 9 | 13 |
Total | 73 | 7 | 32 | 34 |
Test Piece | Dimension (mm) | Test Time (s) Load | Load F (N) Failure | Apparent Cohesive Wood Failure Percentage (%) | (N/mm2) | |
---|---|---|---|---|---|---|
l1 | b1 | |||||
P27 | 26.00 | 26.27 | 31 | 1477.74 | 40 | 2.16 |
P28 | 26.38 | 26.06 | 27 | 1277.78 | 70 | 1.86 |
P30 | 25.88 | 25.95 | 33 | 1337.57 | 40 | 1.99 |
P31 | 26.06 | 25.62 | 23 | 1238.84 | 80 | 1.86 |
P32 | 24.62 | 25.40 | 20 | 1116.64 | 70 | 1.80 |
P41 | 26.18 | 25.80 | 27 | 1542.74 | 90 | 2.16 |
P42 | 26.34 | 25.52 | 20 | 1207.03 | 20 | 1.80 |
P47 | 26.20 | 26.18 | 23 | 1483.19 | 70 | 2.16 |
P49 | 26.00 | 26.42 | 36 | 1630.77 | 90 | 2.30 |
P50 | 24.52 | 25.26 | 28 | 1191.48 | 90 | 1.92 |
P72 | 25.84 | 26.55 | 25 | 1411.08 | 50 | 2.06 |
P24 | 24.46 | 25.28 | 15 | 1073.73 | 30 | 1.74 |
P25 | 26.13 | 25.70 | 45 | 1599.18 | 60 | 2.38 |
P26 | 25.77 | 26.60 | 66 | 1776.28 | 30 | 2.59 |
P29 | 25.94 | 26.59 | 51 | 1635.11 | 50 | 2.37 |
P43 | 26.52 | 25.53 | 17 | 1077.34 | 10 | 1.59 |
P44 | 26.35 | 25.52 | 17 | 1063.08 | 30 | 1.58 |
P45 | 24.24 | 25.10 | 15 | 1008.99 | 50 | 1.66 |
P46 | 25.11 | 25.60 | 19 | 1266.28 | 20 | 1.97 |
P48 | 26.35 | 25.46 | 17 | 1098.83 | 20 | 1.64 |
P71 | 25.88 | 25.44 | 18 | 1223.13 | 20 | 1.86 |
P73 | 25.30 | 25.47 | 15 | 898.44 | 10 | 1.39 |
Pre-Treatment | Panel Type | fv,med (N) | fv,med (N) | σ | C.V. (%) | RMv,med (%) | ||
---|---|---|---|---|---|---|---|---|
Valid Tests | All Tests | Valid Tests | All Tests | |||||
A | 15 mm panel, class 3 (outdoor) | 2.02 | 1.95 | 1.78 | 0.20 | 9.95 | 60 | 55.5 |
Test Piece | (%) | Test Piece | (%) | ||
---|---|---|---|---|---|
P27 | 40 | | P24 | 30 | |
P28 | 70 | | P25 | 60 | |
P30 | 40 | | P26 | 30 | |
P31 | 80 | | P29 | 50 | |
P32 | 70 | | P43 | 10 | |
P41 | 90 | | P44 | 30 | |
P42 | 20 | | P45 | 50 | |
P46 | 70 | | P48 | 20 | |
P47 | 90 | | P49 | 20 | |
P50 | 90 | | P71 | 20 | |
P72 | 50 | | P73 | 10 | |
Test Piece | Dimension (mm) | Test Time (s) | Load F (N) | Apparent Cohesive Wood Failure Percentage (%) | (N/mm2) | |
---|---|---|---|---|---|---|
l1 | b1 | |||||
P3 | 25.63 | 25.40 | 31 | 779.54 | 20 | 1.20 |
P4 | 25.85 | 25.43 | 29 | 796.19 | 10 | 1.21 |
P7 | 24.10 | 25.34 | 31 | 753.49 | 10 | 1.17 |
P9 | 26.83 | 25.62 | 33 | 969.14 | 20 | 1.41 |
P10 | 25.62 | 25.41 | 20 | 755.69 | 20 | 1.16 |
P13 | 26.43 | 25.87 | 21 | 1098.28 | 50 | 1.61 |
P14 | 25.83 | 26.62 | 24 | 1278.65 | 50 | 1.86 |
P15 | 26.07 | 25.52 | 21 | 913.88 | 20 | 1.37 |
P16 | 25.62 | 25.56 | 30 | 1053.08 | 100 | 1.60 |
P20 | 26.66 | 25.73 | 32 | 1187.60 | 90 | 1.73 |
P21 | 26.28 | 25.48 | 24 | 1234.26 | 100 | 1.84 |
P1 | 25.93 | 25.64 | 69 | 854.57 | 20 | 1.29 |
P2 | 25.82 | 25.51 | 198 | 879.90 | 100 | 1.34 |
P5 | 26.11 | 25.54 | 44 | 1020.58 | 10 | 1.53 |
P6 | 25.96 | 26.01 | 72 | 964.84 | 30 | 1.43 |
P8 | 25.96 | 26.60 | 128 | 1462.03 | 50 | 2.12 |
P11 | 26.30 | 26.13 | 121 | 1361.62 | 30 | 1.98 |
P17 | 25.83 | 26.25 | 49 | 1141.48 | 60 | 1.68 |
P18 | 26.04 | 26.17 | 67 | 1485.37 | 30 | 2.10 |
P19 | 25.78 | 26.57 | 82 | 1443.62 | 40 | 1.77 |
P22 | 25.96 | 26.74 | 47 | 1430.23 | 30 | 2.06 |
P23 | 25.61 | 25.55 | 16 | 986.83 | 10 | 1.51 |
P12 | No fracture |
Pre-Treatment | Panel Type | Fv,med (N) | Fv,med (N) | σ | C.V. (%) | RMv,med (%) | ||
---|---|---|---|---|---|---|---|---|
Valid Tests | All Tests | Valid Tests | All Tests | |||||
B | 15 mm panel, class 3 (outdoor) | 1.47 | 1.61 | 1.16 | 0.26 | 17.95 | 40.91 | 42.27 |
Test Piece | (%) | Test Piece | (%) | ||
---|---|---|---|---|---|
P3 | 20 | | P1 | 20 | |
P4 | 10 | | P2 | 100 | |
P7 | 10 | | P5 | 10 | |
P9 | 20 | | P6 | 30 | |
P10 | 20 | | P8 | 50 | |
P13 | 50 | | P11 | 30 | |
P14 | 50 | | P17 | 60 | |
P15 | 20 | | P18 | 30 | |
P16 | 100 | | P19 | 40 | |
P20 | 90 | | P22 | 30 | |
P21 | 100 | | P23 | 10 | |
Test Piece | Dimension (mm) | Test Time (s) | Load F (N) | Apparent Cohesive Wood Failure Percentage (%) | (N/mm2) | |
---|---|---|---|---|---|---|
l1 | b1 | |||||
P33 | 25.43 | 25.53 | 22 | 1273.88 | 90 | 1.96 |
P36 | 25.92 | 25.36 | 30 | 2147.73 | 100 | 3.27 |
P38 | 25.98 | 25.81 | 36 | 1899.72 | 100 | 2.83 |
P39 | 26.09 | 25.78 | 34 | 2014.62 | 90 | 3.00 |
P51 | 25.33 | 25.37 | 20 | 1358.08 | 100 | 2.11 |
P55 | 25.80 | 25.48 | 20 | 1660.82 | 100 | 2.53 |
P56 | 25.97 | 25.62 | 34 | 1700.75 | 100 | 2.55 |
P58 | 25.89 | 25.34 | 39 | 1809.26 | 90 | 2.76 |
P60 | 25.61 | 25.32 | 31 | 1937.87 | 100 | 2.99 |
P63 | 26.02 | 26.61 | 21 | 1995.52 | 100 | 2.88 |
P64 | 25.80 | 25.44 | 24 | 1972.62 | 100 | 3.01 |
P65 | 25.50 | 25.42 | 39 | 1839.77 | 100 | 2.84 |
P70 | 25.51 | 25.18 | 32 | 2099.87 | 100 | 3.27 |
P37 | 26.02 | 25.84 | 57 | 2093.97 | 100 | 3.11 |
P40 | 25.82 | 25.22 | 57 | 2038.77 | 90 | 3.13 |
P57 | 25.62 | 25.49 | 41 | 1715.17 | 100 | 2.63 |
P59 | 26.82 | 25.50 | 45 | 1923.09 | 90 | 2.81 |
P61 | 25.50 | 25.70 | 140 | 1529.93 | 100 | 2.30 |
P62 | 25.79 | 25.18 | 46 | 1640.42 | 100 | 2.56 |
P67 | 25.95 | 25.60 | 17 | 1851.92 | 100 | 2.88 |
P68 | 25.32 | 25.26 | 51 | 2190.62 | 100 | 3.34 |
P69 | 25.46 | 25.17 | 52 | 2259.43 | 100 | 3.48 |
P34 | No fracture | |||||
P35 | No fracture | |||||
P52 | No fracture | |||||
P53 | No fracture | |||||
P54 | No fracture | |||||
P66 | No fracture |
Pre-Treatment | Panel Type | fv,med (N) | fv,med (N) | σ | C.V. (%) | RMv,med (%) | ||
---|---|---|---|---|---|---|---|---|
Valid Tests | All Tests | Valid Tests | All Tests | |||||
A | Class 1 panel | 2.77 | 2.84 | 1.96 | 0.39 | 14.22 | 97.69 | 97.72 |
Test Piece | (%) | Test Piece | (%) | ||
---|---|---|---|---|---|
P36 | 100 | | P65 | 100 | |
P38 | 100 | | P70 | 100 | |
P39 | 90 | | P37 | 100 | |
P51 | 100 | | P40 | 90 | |
P56 | 100 | | P57 | 100 | |
P58 | 90 | | P59 | 90 | |
P60 | 100 | | P61 | 100 | |
P63 | 100 | | P62 | 100 | |
P64 | 100 | | P67 | 100 | |
P68 | 100 | | |||
P69 | 100 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández Zúñiga, E.; García Esteban, L.; García Fernández, F.; de Palacios, P.; García-Iruela, A.; García, I.; Lozano, M.; Fernández Canteli, A. Applying Digital Image Correlation (DIC) Techniques to Characterise Plywood According to UNE-EN 314 Standards: Bonding Quality Tests. Forests 2022, 13, 2135. https://doi.org/10.3390/f13122135
Fernández Zúñiga E, García Esteban L, García Fernández F, de Palacios P, García-Iruela A, García I, Lozano M, Fernández Canteli A. Applying Digital Image Correlation (DIC) Techniques to Characterise Plywood According to UNE-EN 314 Standards: Bonding Quality Tests. Forests. 2022; 13(12):2135. https://doi.org/10.3390/f13122135
Chicago/Turabian StyleFernández Zúñiga, Elena, Luis García Esteban, Francisco García Fernández, Paloma de Palacios, Alberto García-Iruela, Ismael García, Miguel Lozano, and Alfonso Fernández Canteli. 2022. "Applying Digital Image Correlation (DIC) Techniques to Characterise Plywood According to UNE-EN 314 Standards: Bonding Quality Tests" Forests 13, no. 12: 2135. https://doi.org/10.3390/f13122135
APA StyleFernández Zúñiga, E., García Esteban, L., García Fernández, F., de Palacios, P., García-Iruela, A., García, I., Lozano, M., & Fernández Canteli, A. (2022). Applying Digital Image Correlation (DIC) Techniques to Characterise Plywood According to UNE-EN 314 Standards: Bonding Quality Tests. Forests, 13(12), 2135. https://doi.org/10.3390/f13122135