The Approach in Selecting the Best Genetic Resistance against Invasive Aphid for Indigenous Tropical Pinus merkusii Jungh. et de Vriese in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. The Trial Design
2.3. Data Assessment
2.4. Data Analysis
2.4.1. Analyses of Variance
2.4.2. Genetic Parameter
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nugroho, P.; Numata, S.; Aprilianto, N.A. Perceived Forest-based Ecosystem Services and Attitudes Toward Forest Rehabilitation: A Case Study in the Upstream of Central Java, Indonesia. J. Ilmu Kehutan. 2020, 14, 185–197. [Google Scholar] [CrossRef]
- Hardiyanto, E.; Danarto, S. Ex situ Conservation of Pinus merkusii in Java, Indonesia. In Situ and Ex Situ Conservation of Commercial Tropical Trees; ITTO Project PD 16/96 Rev.4(F); ITTO: Yogyakarta, Indonesia, 2001; pp. 263–269. [Google Scholar]
- Siregar, U.; Diputra, I. Diversity of Pinus merkusii Jungh. et de Vriese of Tapanuli Strain based on Microsatellite Markers. J. Silvikultur Trop. 2013, 4, 88–99. [Google Scholar] [CrossRef]
- Iskandar, T. Penilaian Kesehatan Kebun Benih Semai Pinus Merkusii Dengan Metode Fhm (Forest Health Monitoring) Di KPH Sumedang-Health Assessment for Seedling Seed Orchard of Pinus merkusii Using FHM (Forest Health Monitoring) Method in KPH Sumedang. J. Silvikultur Trop. 2018, 9, 99–108. [Google Scholar] [CrossRef]
- Sumantoro, P. Musyafa Serangan Hama Kutu Lilin (Pineus boerneri Annand.) pada Tanaman Uji Keturunan Pinus merkusii generasi II Umur 9 Tahun di Tampomas Sumedang. Ph.D. Thesis, Gadjah Mada University, Yogyakarta, Indonesia, 2012. [Google Scholar]
- Invasive Species Compend. Cabi Pineus Boerneri (Pine Woolly Aphid). 2022. Available online: https://www.cabi.org/isc/datasheet/41319 (accessed on 18 January 2022).
- Chilima, C.Z.; Leather, S.R. Within-tree and seasonal distribution of the pine woolly aphid Pineus boerneri on Pinus kesiya trees. Agric. For. Entomol. 2001, 44, 139–145. [Google Scholar] [CrossRef]
- Measey, M. Indonesia: A Vulnerable Country in the Face of Climate Change. Glob. Major. E-J. 2010, 1, 46–56. [Google Scholar]
- The Other Half of Climate Change: Why Indonesia Must Adapt to Protect its Poorest People; UNDP: Jakarta, Indonesia, 2007.
- Syaukat, Y. The Impact Of Climate Change On Food Production And Security and Its Adaptation Programs in Indonesia. J. ISSAAS 2011, 17, 40–51. [Google Scholar]
- Xiao, F.; Ouyang, H.; Zhang, Q.; Fu, B.; Zhang, Z. Forest ecosystem health assessment and analysis in China. J. Geogr. Sci. 2004, 1, 18–24. [Google Scholar] [CrossRef]
- Avia, L.Q. Change in rainfall per-decades over Java Island, Indonesia. In Proceedings of the 8th International Symposium for Sustainable Humanosphere, Medan, Indonesia, 18–19 October 2018. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.; Feng, C.; Wan, P.M.; Chang, K.T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- Rachmatsyah, O.; Siregar, U.J.; Haneda, N.F.; Nandika, D.; Hidayat, P. Distribution of pine woolly adelgids infestation on pinus merkusii plantation in Java. J. Manaj. Hutan Trop. 2012, 18, 191–197. [Google Scholar] [CrossRef]
- Anggraeni, I. Penyakit Karat Tumor Pada Sengon Dan Hama Cabuk Lilin Pada Pinus; Badan Litbang Kehutanan Kementerian Kehutanan Republik Indonesia: Bogor, Indonesia, 2012. [Google Scholar]
- Rodas, C.A.; Serna, R.; Bolaños, M.D.; Granados, G.M.; Michael, J.; Hurley, B.P. Biology, incidence and host susceptibility of Pineus boerneri (Hemiptera: Adelgidae) in Colombian pine plantations. South. For. A J. For. Sci. 2015, 77, 165–171. [Google Scholar] [CrossRef]
- Munster-Swendsen, M. The Effect of Precipitation on Radial Increment in Norway Spruce (Picea abies Karst) and on the Dynamics of a Lepidopteran Pest Insect. J. Appl. Ecol. 1984, 24, 563–571. [Google Scholar] [CrossRef]
- Powers, J.S.; Sollins, P.; Harmon, M.E.; Jones, J.A. Plant-pest interactions in time and space: A Douglas-fir bark beetle outbreak as a case study. Landsc. Ecol. 1999, 14, 105–120. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; González-Moreno, P.; Ruiz-Gómez, F.J.; Sánchez-Cuesta, R.; Gazol, A.; Camarero, J.J. AntonioGazol Drought stress and pests increase defoliation and mortality rates in vulnerable Abies pinsapo forests. For. Ecol. Manage. 2022, 504, 119824. [Google Scholar] [CrossRef]
- Birkett, M.A.; Pickett, J.A. Prospects of genetic engineering for robust insect resistance. Curr. Opin. Plant Biol. 2014, 19, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Horikoshi, R.; Goto, K.; Mitomi, M.; Oyama, K.; Sunazuka, T.; Omura, S. Identification of pyripyropene A as a promising insecticidal compound in a microbial metabolite screening. J. Antibiot. 2017, 70, 272–276. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, J.; Cui, J. The Relationships Between the Level of Lignin, a Secondary Metabolite in Soybean Plant, and Aphid Resistance in Soybeans. Plant Prot. 1993, 19, 8–9. [Google Scholar]
- Batyrshina, Z.S.; Yaakov, B.; Shavit, R.; Singh, A.; Tzin, V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC Plant Biol. 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verpoorte, R.; Memelink, J. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 2002, 13, 181–187. [Google Scholar] [CrossRef]
- Purwanto; Handarto; Cahyono, L.R. Mulyono Evaluasi Uji Keturunan Pinus merkusii Tahan Hama Kutu Lilin. Bul. Penelit. Hutan Lestari Produktif. 2017, 20, 8–12. [Google Scholar]
- Purwanto; Baskorowati, L.; Hendrati, R.L.; Susanto, M.; Mashudi; Setiadi, D.; Nurtjahjaningsih, I.L.G.; Pudjiono, S.; Kurniawan, A.; Wirabuana, P.Y.A.P. Evaluation of Aphid Resistance and Oleoresion Production in Indigenous Tropical Pine (Pinus merkusii Jungh. Et de Vriese). Under review. Forests 2022, in press. [Google Scholar]
- Wiliams, E.R.; Matheson, C.A.; Harwood, C. Experimental Design and Analysis for Tree Improvement, 2nd ed.; CSIRO Publishing: Collingwood, VIC, Australia, 2002. [Google Scholar]
- Shelbourne, C. Genetic gains from different kinds of breeding population and seed or plant production population. S. Afr. For. J. 1992, 160, 49–65. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Z.; Fan, H.; Liu, Y. Genetic Variation and Correlation among Resin Yield, Growth, and Morphologic Traits of Pinus massoniana. Silvae Genet. 2013, 62, 38–44. [Google Scholar] [CrossRef]
- Pswarayi; Barnes, R.D.; Birks, J.S.; Kanowski, P. Genetic parameter estimates for production and quality traits of Pinus elliottii Engelm. var. elliottii in Zimbabwe. AGRIS 1998, 45, 216–222. [Google Scholar]
- Westbrook, J.W.; Resende, M.F., Jr.; Munoz, P.; Walker, A.R.; Wegrzyn, J.L.; Nelson, C.D.; Neale, D.B.; Kirst, M.; Huber, D.A.; Gezan, S.A.; et al. Association genetics of oleoresin flow in loblolly pine: Discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytol. 2013, 199, 89–100. [Google Scholar] [CrossRef]
- Woolaston, R.; Kanowski, P.; Nikles, D. Genetic Parameter Estimates for Pinus caribaea var. hondurensis in Coastal Quensland, Australia. Silvae Genet. 1990, 39, 21–28. [Google Scholar]
- Muslimin, I. Korelasi genetik Pertumbuhan dan Produksi Getah Pada Uji Keturunan Pinus merkusii Di KPH Banyumas Barat (Genetic Correlation of Growth and Resin Yield in Progeny Test Pinus merkusii Jungh. et de Vriese at KPH Banyumas Barat). J. Penelit Kehutan Sumatrana 2017, 1, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Roberds, J.H.; Strom, B.L.; Hain, F.P.; Gwaze, D.P.; Mckeand, S.E.; Lott, L.H. Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Can. J. For. Res. 2009, 33, 2469–2476. [Google Scholar] [CrossRef]
- Nugrahanto, G.; Na’iem, M.; Indrioko, S.; Faridah, E.; Widiyatno, W. Widiyatno Pemuliaan Pinus Bocor Getah: Korelasi Genetik Produksi Getah Pada Tiga Sub Galur Uji Keturunan Pinus Merkusii Di Kph Banyumas Barat. AgriEnvi. J. Ilmu Pertan. 2020, 14, 78–88. [Google Scholar]
- Santos, W.; Cristina, D.; Souza, L.; Luiz, M.; De Moraes, T.; Aguiar, V. De Genetic variation of wood and resin production in Pinus caribaea var. hondurensis Barret & Gol- fari. Silvae Genet. 2016, 65, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Lieutier, F. Changing Forest Communities: Role Of Tree Resistance To Insects In Insect Invasions and Introductions. In Invasive Forest Insects, Introduced Forest Trees, and Altered Ecosystems; Paine, T.D., Ed.; Springer Science+Business Media B.V.: Berlin/Heidelberg, Germany, 2008; pp. 15–51. [Google Scholar]
- Larson, E.R.; Peak, P. Influences of the biophysical environment on blister rust and mountain pine beetle, and their interactions, in whitebark pine forests Mountains. J. Biogeogr. 2011, 38, 453–470. [Google Scholar] [CrossRef]
- Ott, D.S.; Alvin, D.Y.; Wallin, K.F. Genetic Variation of Lodgepole Pine, Pinus contorta var. latifolia, Chemical and Physical Defenses that Affect Mountain Pine Beetle, Dendroctonus ponderosae, Attack and Tree Mortality. J. Chem. Ecol. 2011, 37, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Zobel, B.J.; Talbert, J. Applied Forest Tree Improvement; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Prasetia, R. Potensi Getah Pertanaman Uji Keturunan Pinus merkusii Jungh. et de Vriese Materi Introduksi Genetik Asal Aceh di RPH Sumberjati, BKPH Sempolan, KPH Jember. Bachelor’s Thesis, Gadjah Mada University, Yogyakarta, Indonesia, 2008. [Google Scholar]
- Shimizu, J.Y.; Spir, I.H.Z. Selection of slash pine on breeding values for high resin production Seleção de Pinus elliottii pelo valor genético para alta produção de resina. Bol. Pesqui. Florest. 1999, 38, 103–117. [Google Scholar]
- Strom, B.L.; Goyer, R.A.; Ingram, L.L., Jr.; Boyd, G.D.L.; Lott, L.H. Oleoresin characteristics of progeny of loblolly pines that escaped attack by the southern pine beetle. For. Ecol. Manage. 2002, 158, 169–178. [Google Scholar] [CrossRef]
- Dalin, P.; Bjorkman, C. Native Insects Colonizing Introduced Tree Species—Patterns And Potential Risks. In Invasive Forest Insects, Introduced Forest Trees, and Altered Ecosystems; Paine, T.D., Ed.; Springer Science Business Media B.V.: Berlin/Heidelberg, Germany, 2008; pp. 63–77. [Google Scholar]
- Schoonhoven, L.M.; Van Loon, B.; van Loon, J.J.; Dicke, M. Insect–Plant Biology; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
Source of Variation | df | Sum of Square | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Diameter | |||||
Block | 7 | 150.98 | 21.57 | 2.16 | 0.0366 * |
Family | 33 | 688.85 | 20.87 | 2.09 | 0.0005 ** |
Blockxfam | 223 | 2536.29 | 11.37 | 1.14 | 0.1267 ns |
Error | 450 | 4494.47 | 9.99 | ||
Aphid resistance | |||||
Block | 7 | 61.83 | 8.83 | 28.29 | <0.0001 ** |
Family | 33 | 19.23 | 0.58 | 1.87 | 0.0030 ** |
Blockxfam | 223 | 114.83 | 0.51 | 1.65 | <0.0001 ** |
Error | 450 | 140.50 | 0.31 | ||
East oleoresin | |||||
Block | 7 | 463.02 | 66.14 | 3.94 | 0.0006 ** |
Family | 33 | 915.75 | 27.75 | 1.65 | 0.0234 * |
Blockxfam | 161 | 3422.20 | 21.25 | 1.26 | 0.0739 ns |
Error | 147 | 2470.42 | 16.80 | ||
West oleoresin | |||||
Block | 7 | 1178.03 | 168.29 | 8.41 | <0.0001 ** |
Family | 33 | 947.29 | 28.70 | 1.43 | 0.0764 ns |
Blockxfam | 163 | 3832.76 | 23.51 | 1.18 | 0.1585 ns |
Error | 149 | 2981.67 | 20.01 |
Trait | Genetic Parameter | ||||||
---|---|---|---|---|---|---|---|
Mean | σ2f | σ2rxf | σ2e | CV (%) | h2i | h2f | |
Diameter | 14.32 | 0.4329 | 0.6296 | 9.9167 | 17.44 | 0.16 | 0.53 |
Aphid resistance | 3.51 | 0.2894 | 2.8731 | 19.4070 | 15.16 | 0.07 | 0.29 |
East oleoresin | 6.57 | 0.0069 | 0.0559 | 0.3297 | 23.69 | 0.14 | 0.42 |
West oleoresin | 6.82 | 0.6873 | 3.6941 | 15.6168 | 24.50 | 0.05 | 0.23 |
Genetic Correlations | Diameter | Aphid Resistance | Eastern Oleoresin | Western Oleoresin |
---|---|---|---|---|
Diameter | - | 0.66 | −0.29 | −0.50 |
Aphid resistance | - | 0.40 | −0.46 | |
Eastern oleoresin | - | 1.13 | ||
Western oleoresin | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskorowati, L.; Purwanto; Hendrati, R.L.; Setiahadi, R.; Susanto, M.; Nurtjahjaningsih, I.L.G.; Mashudi; Kurniawan, A.; Pudjiono, S.; Setiadi, D.; et al. The Approach in Selecting the Best Genetic Resistance against Invasive Aphid for Indigenous Tropical Pinus merkusii Jungh. et de Vriese in Indonesia. Forests 2022, 13, 451. https://doi.org/10.3390/f13030451
Baskorowati L, Purwanto, Hendrati RL, Setiahadi R, Susanto M, Nurtjahjaningsih ILG, Mashudi, Kurniawan A, Pudjiono S, Setiadi D, et al. The Approach in Selecting the Best Genetic Resistance against Invasive Aphid for Indigenous Tropical Pinus merkusii Jungh. et de Vriese in Indonesia. Forests. 2022; 13(3):451. https://doi.org/10.3390/f13030451
Chicago/Turabian StyleBaskorowati, Liliana, Purwanto, Rina Laksmi Hendrati, Rahmanta Setiahadi, Mudji Susanto, Ida Luh Gede Nurtjahjaningsih, Mashudi, Agus Kurniawan, Sugeng Pudjiono, Dedi Setiadi, and et al. 2022. "The Approach in Selecting the Best Genetic Resistance against Invasive Aphid for Indigenous Tropical Pinus merkusii Jungh. et de Vriese in Indonesia" Forests 13, no. 3: 451. https://doi.org/10.3390/f13030451