Cultivation Potential and Uses of Paulownia Wood: A Review
Abstract
:1. Introduction
Botanical Description
2. Cultivation
2.1. Reproduction
2.2. Hybrids
2.3. Growth Conditions
2.4. Diseases
3. Paulownia Wood Properties and Uses
3.1. Wood Structure
3.2. Wood Properties
3.3. Traditional Uses of Paulownia Wood
3.4. Pulp Industry
3.5. Energy Goals
3.6. Other Modern Uses
4. Summary
Funding
Conflicts of Interest
References
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How Can Solid Biomass Contribute to the EU’s Renewable Energy Targets in 2020, 2030 and What Are the GHG Drivers and Safeguards in Energy- and Forestry Sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Jamil, K.; Liu, D.; Gul, R.F.; Hussain, Z.; Mohsin, M.; Qin, G.; Khan, F.U. Do Remittance and Renewable Energy Affect CO2 Emissions? An Empirical Evidence from Selected G-20 Countries. Energy Environ. 2021. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Güngör, H.; Adebayo, T.S. Consumption-Based Carbon Emissions, Renewable Energy Consumption, Financial Development and Economic Growth in Chile. Bus. Strategy Environ. 2022, 31, 1123–1137. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Effect of Institutional Quality and Renewable Energy Consumption on CO2 Emissions−an Empirical Investigation for Developing Countries. Environ. Sci. Pollut. Res. 2021, 28, 15485–15503. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M. Economic Trends in the Transition into a Circular Bioeconomy. J. Risk Financ. Manag. 2022, 15, 44. [Google Scholar] [CrossRef]
- Hamdan, H.Z.; Houri, A.F. CO2 Sequestration by Propagation of the Fast-Growing Azolla Spp. Environ. Sci. Pollut. Res. 2022, 29, 16912–16924. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Konkol, M.; Kowalski, R.; Rój, E.; Warmiński, K.; Krzyżaniak, M.; Gil, Ł.; Stolarski, M.J. Characterization of Bioactive Compounds in the Biomass of Black Locust, Poplar and Willow. Trees 2019, 33, 1235–1263. [Google Scholar] [CrossRef] [Green Version]
- Ols, C.; Bontemps, J.-D. Pure and Even-Aged Forestry of Fast-Growing Conifers under Climate Change: On the Need for a Silvicultural Paradigm Shift. Environ. Res. Lett. 2021, 16, 024030. [Google Scholar] [CrossRef]
- Abreu, M.; Reis, A.; Moura, P.; Fernando, A.L.; Luís, A.; Quental, L.; Patinha, P.; Gírio, F. Evaluation of the Potential of Biomass to Energy in Portugal—Conclusions from the CONVERTE Project. Energies 2020, 13, 937. [Google Scholar] [CrossRef] [Green Version]
- Berdón Berdón, J.; Montero Calvo, A.J.; Royano Barroso, L.; Parralejo Alcobendas, A.I.; González Cortés, J. Study of Paulownia’s Biomass Production in Mérida (Badajoz), Southwestern Spain. Environ. Ecol. Res 2017, 5, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Dubova, O.; Voitovych, O.; Boika, O. Paulownia Tomentosa–New Species for the Industrial Landscaping. Curr. Trends Nat. Sci. 2019, 8, 19–24. [Google Scholar]
- Magar, L.B.; Khadka, S.; Joshi, J.R.R.; Pokharel, U.; Rana, N.; Thapa, P.; Sharma, K.R.S.R.; Khadka, U.; Marasini, B.P.; Parajuli, N. Total Biomass Carbon Sequestration Ability under the Changing Climatic Condition by Paulownia tomentosa Steud. Int. J. Appl. Sci. Biotechnol. 2018, 6, 220–226. [Google Scholar] [CrossRef]
- Yavorov, N.; Petrin, S.; Valchev, I.; Nenkova, S. Potential of Fast Growing Poplar, Willow and Paulownia for Bioenergy Production. Bulg. Chem. Commun. 2015, 47, 5–9. [Google Scholar]
- Gyuleva, V. Project ‘Establishment of geographical plantations of Paulownia elongata hybrids in Bulgaria’—contract No37 with State Agency of Forests (2007-2010). News Bulg. Acad. Sci. 2008, 12, 2–4. [Google Scholar]
- Woods, V.B. Paulownia as a Novel Biomass Crop for Northern Ireland? Occasional publication No. 7; Global Research Unit AFBI Hillsborough, Agri-Food and Biosciences Institute: Hillsborough, UK, 2008.
- Muthuri, C.W.; Ong, C.K.; Black, C.R.; Mati, B.M.; Ngumi, V.W.; van Noordwijk, M. Modelling the Effects of Leafing Phenology on Growth and Water Use by Selected Agroforestry Tree Species in Semi-Arid Kenya. Land Use Water Resour. Res. 2004, 4, 1–11. [Google Scholar] [CrossRef]
- Kirkham, T.; Fay, M.F. 645. Paulownia Kawakamii. Curtis’s Bot. Mag. 2009, 26, 111–119. [Google Scholar] [CrossRef]
- Olmstead, R.G.; Pamphilis, C.W.; de Wolfe, A.D.; Young, N.D.; Elisons, W.J.; Reeves, P.A. Disintegration of the Scrophulariaceae. Am. J. Bot. 2001, 88, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Icka, P.; Damo, R.; Icka, E. Paulownia tomentosa, a Fast Growing Timber. Ann. Valahia Univ. Targoviste Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Christenhusz, M.J.M.; Fay, M.F.; Chase, M.W. Plants of the World: An Illustrated Encyclopedia of Vascular Plants. Richmond; Kew Publishing, The University of Chicago Press: Chicago, IL, USA, 2017; p. 581. [Google Scholar]
- Nagata, T.; DuVal, A.; Schmull, M.; Tchernaja, T.A.; Crane, P.R. Paulownia tomentosa: A Chinese Plant in Japan. Curtis’s Bot. Mag. 2013, 30, 261–274. [Google Scholar] [CrossRef]
- Innes, R.J. Paulownia tomentosa. In: Fire Effects Information System (Online). US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 2009. Available online: https://www.fs.fed.us/database/feis/plants/tree/pautom/all.html (accessed on 22 April 2022).
- Zhu, Z.-H.; Chao, C.-J.; Lu, X.-Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization; Asian Network for Biological Sciences and International Development Research Centre: Beijing, China, 1986. [Google Scholar]
- Wu, L.; Wang, B.; Qiao, J.; Zhou, H.; Wen, R.; Xue, J.; Li, Z. Effects of Trunk-Extension Pruning at Different Intensities on the Growth and Trunk Form of Paulownia tortunei. For. Ecol. Manag. 2014, 327, 128–135. [Google Scholar] [CrossRef]
- Huseinovic, S.; Osmanović, Z.; Bektić, S.; Ahmetbegović, S. Paulownia elongata Sy Hu in Function of Improving the Quality of the Environment. Period. Eng. Nat. Sci. 2017, 5, 117–123. Available online: http://pen.ius.edu.ba/index.php/pen/article/view/83 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Stuepp, C.A.; Zuffellato-Ribas, K.C.; Koehler, H.S.; Wendling, I. Rooting mini-cuttings of Paulownia fortunei var. mikado derived from clonal mini-garden. Rev. Árvore 2015, 39, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Temirov, J.; Shukurova, G.; Klichov, I. Study on the Influence of Stimulants on the Rooting of the Paulownia (Paulownia) and Tulip (Liriodendron tulipifera) Trees during the Propagation by Cuttings. IOP Conf. Ser. Earth Environ. Sci. 2021, 939, 012059. [Google Scholar] [CrossRef]
- Bergmann, B.A.; Whetten, R. In Vitro Rooting and Early Greenhouse Growth of Micropropagated Paulownia elongata Shoots. New For. 1998, 15, 127–138. [Google Scholar] [CrossRef]
- Gyuleva, V. Micropropagation of Hybryd Paulownia from Long-Term Preserved Seeds. Silva Balcan. 2010, 11, 45–58. [Google Scholar]
- Magar, L.B.; Shrestha, N.; Khadka, S.; Joshi, J.R.; Acharya, J.; Gyanwali, G.C.; Marasini, B.P.; Rajbahak, S.; Parajuli, N. Challenges and Opportunity of in Vitro Propagation of Paulownia tomentosa Steud for Commercial Production in Nepal. Int. J. Appl. Sci. Biotechnol. 2016, 4, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Luca, R.; Crisan, M.; Botau, D. The Role of Nitrobenzoic Acid Derivatives on Callus Induction and Plant Regeneration in Paulownia Shan Tong. Bull. UASVM Anim. Sci. Biotechnol. 2016, 73, 2. [Google Scholar] [CrossRef] [Green Version]
- Pożoga, M.; Olewnicki, D.; Jabłońska, L. In Vitro Propagation Protocols and Variable Cost Comparison in Commercial Production for Paulownia tomentosa × Paulownia fortunei Hybrid as a Renewable Energy Source. Appl. Sci. 2019, 9, 2272. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, M.E.; Awad, A.A.; Majrashi, A.; Esadek, O.A.A.; El-Saadony, M.T.; Saad, A.M.; Gendy, A.S. In Vitro Study on the Effect of Cytokines and Auxins Addition to Growth Medium on the Micropropagation and Rooting of Paulownia Species (Paulownia Hybrid and Paulownia tomentosa). Saudi J. Biol. Sci. 2021, 29, 1598–1603. [Google Scholar] [CrossRef]
- Saiju, H.K.; Bajracharya, A.; Rajbahak, B.; Ghimire, S. Comparative Study of Growth Statistics of Two Species of Paulownia and Optimization of Rooting Methods. Nepal J. Biotechnol. 2018, 6, 11–15. Available online: https://www.nepjol.info/index.php/NJB/article/download/22330/19016 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Filipova, L.; Matskevych, V.; Karpuk, L.; Andriievsky, V.; Vrublevsky, A.; Pavlichenko, A.; Krupa, N. Features of Pavlovnia Plants Post-Septic Adaptation. In Proceedings of the Multidisciplinary Conference for Young Researchers, Bila Tserkva, Ukraine, 22 November 2019; Available online: http://193.138.93.8/handle/BNAU/3293 (accessed on 22 April 2022).
- Filipova, L.; Matskevych, V.; Karpuk, L.; Stadnyk, A.; Andriievsky, V.; Vrublevsky, A.; Krupa, N.; Pavlichenko, A. Features of Rooting Paulownia in Vitro. Egypt. J. Chem. 2019, 62, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.B. An Investigation into the Suitability of Paulownia as an Agroforestry Species for UK & NW European Farming Systems. Master’s Thesis, Department of Agriculture & Business Management, Scotland’s Rural College, Edinburgh, UK, 2016. [Google Scholar] [CrossRef]
- Snow, W.A. Ornamental, Crop, or Invasive? The History of the Empress Tree (Paulownia) in the USA. For. Trees Livelihoods 2015, 24, 85–96. [Google Scholar] [CrossRef]
- Chongpinitchai, A.R.; Williams, R.A. The Response of the Invasive Princess Tree (Paulownia tomentosa) to Wildland Fire and Other Disturbances in an Appalachian Hardwood Forest. Glob. Ecol. Conserv. 2021, 29, e01734. [Google Scholar] [CrossRef]
- Essl, F. From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 2007, 79, 377–389. [Google Scholar]
- Pergl, J.; Sádlo, J.; Petrusek, A.; Laštůuvka, Z.; Musil, J.; Perglova, I.; Šanda, R.; Šefrová, H.; Šíma, J.; Vohralik, V. Black, Grey and Watch Lists of Alien Species in the Czech Republic Based on Environmental Impacts and Management Strategy. NeoBiota 2016, 28, 1. [Google Scholar] [CrossRef]
- Jakubowski, M.; Tomczak, A.; Jelonek, T.; Grzywiński, W. The use of wood and the possibility of planting trees of the Paulownia genus. Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 2018, 17, 291–297. [Google Scholar]
- García-Morote, F.A.; López-Serrano, F.R.; Martínez-García, E.; Andrés-Abellán, M.; Dadi, T.; Candel, D.; Rubio, E.; Lucas-Borja, M.E. Stem Biomass Production of Paulownia elongata × P. fortunei under Low Irrigation in a Semi-Arid Environment. Forests 2014, 5, 2505–2520. [Google Scholar] [CrossRef] [Green Version]
- San, H.P.; Long, L.K.; Zhang, C.Z.; Hui, T.C.; Seng, W.Y.; Lin, F.S.; Hun, A.T.; Fong, W.K. Anatomical Features, Fiber Morphological, Physical and Mechanical Properties of Three Years Old New Hybrid Paulownia: Green Paulownia. Res. J. For. 2016, 10, 30–35. [Google Scholar] [CrossRef]
- Ayan, S.; Sıvacıoğlu, A.; Bilir, N. Growth Variation of Paulownia Sieb. and Zucc. Species and Origins at the Nursery Stage in Kastamonu-Turkey. J. Environ. Biol. 2006, 27, 499–504. [Google Scholar] [PubMed]
- Kadlec, J.; Novosadová, K.; Pokornỳ, R. Preliminary Results from a Plantation of Semi-Arid Hybrid of Paulownia Clone in Vitro 112® under Conditions of the Czech Republic from the First Two Years. Balt. For. 2021, 27. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Bocanegra, J.A.J.; Torres, F.P.; Pleguezuelo, C.R.R.; Martínez, J.R.F. Biomass Yield Potential of Paulownia Trees in a Semi-Arid Mediterranean Environment (S Spain). Int. J. Renew. Energy Res. IJRER 2013, 3, 789–793. [Google Scholar]
- Luca, R.; Camen, D.; Danci, M.; Petolescu, C. Research Regarding the Influence of Culture Conditions upon the Main Physiological Indices at Paulownia Shan Tong. J. Hortic. For. Biotechnol. 2014, 18, 74–77. [Google Scholar]
- Sedlar, T.; Šefc, B.; Drvodelić, D.; Jambreković, B.; Kučinić, M.; Ištok, I. Physical Properties of Juvenile Wood of Two Paulownia Hybrids. Drv. Ind. Znan. Časopis Pitanja Drv. Tehnol. 2020, 71, 179–184. [Google Scholar] [CrossRef]
- Olave, R.; Forbes, G.; Muñoz, F.; Lyons, G. Survival, Early Growth and Chemical Characteristics of Paulownia Trees for Potential Biomass Production in a Cool Temperate Climate. Ir. For. 2015, 72, 42–57. [Google Scholar]
- Wang, W.Y.; Pai, R.C.; Lai, C.C.; Lin, T.P. Molecular Evidence for the Hybrid Origin of Paulownia taiwaniana Based on RAPD Markers and RFLP of Chloroplast DNA. Theoret. Appl. Genet. 1994, 89, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Duan, J.M.; Zhang, P.; Cheng, Y.Q.; Wu, J.W.; Wang, G.Z. Microsatellite Markers in Paulownia kawakamii (Scrophulariaceae) and Cross-Amplification in Other Paulownia Species. Genet. Mol. Res. 2013, 12, 3750–3754. [Google Scholar] [CrossRef] [PubMed]
- Navroodi, I.H. Comparison of Growth and Wood Production of Populus deltoides and Paulownia fortunei in Guilan Province (Iran). Ind. J. Sci. Technol. 2013, 6, 84–88. [Google Scholar] [CrossRef]
- Janjić, Z.; Janjić, M. Paulownia, Characteristics and Perspectives of Its Exploitation. Innov. Woodwork. Ind. Eng. Des. 2019, 16, 34–41. [Google Scholar]
- Sage, R.F.; Sultmanis, S. Why Are There No C4 Forests? J. Plant Physiol. 2016, 203, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Georgieva, T.; Markovska, Y. A possible role of C4 photosynthetic enzymes in tolerance of two paulownia hybrid lines to salinity. Annu. L’université Sofia 2016, 101, 132–140. [Google Scholar]
- Wang, J.; Wang, H.; Deng, T.; Liu, Z.; Wang, X. Time-Coursed Transcriptome Analysis Identifies Key Expressional Regulation in Growth Cessation and Dormancy Induced by Short Days in Paulownia. Sci. Rep. 2019, 9, 16602. [Google Scholar] [CrossRef] [PubMed]
- Rad, J.E.; Mirkala, S.R.M. Irrigation Effects on Diameter Growth of 2-Year-Old Paulownia tomentosa Saplings. J. For. Res. 2015, 26, 153–157. [Google Scholar] [CrossRef]
- Ptach, W.; Langowski, A.; Rolbiecki, R.; Rolbiecki, S.; Jagosz, B.; Grybauskienė, V.; Kokoszewski, M. The Influence of Irrigation on the Growth of Paulownia Trees at the First Year of Cultivation in a Light Soil. In Proceedings of the 8th International Scientific Conference Rural Development, Kaunas, Lithuania, 23–24 November 2017; pp. 763–768. [Google Scholar] [CrossRef] [Green Version]
- Langowski, A.; Rolbiecki, R.; Rolbiecki, S.; Ptach, W.; Wrobel, P. Effect of sprinkler irrigation on growth of paulownia Shan Tong trees at first two years of cultivation in light soil. In Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019. [Google Scholar] [CrossRef]
- Tu, J.; Wang, B.; McGrouther, K.; Wang, H.; Ma, T.; Qiao, J.; Wu, L. Soil Quality Assessment under Different Paulownia fortunei Plantations in Mid-Subtropical China. J. Soils Sediments 2017, 17, 2371–2382. [Google Scholar] [CrossRef]
- Woźniak, M.; Gałązka, A.; Siebielec, G.; Frąc, M. Can the Biological Activity of Abandoned Soils Be Changed by the Growth of Paulownia elongata × Paulownia fortunei?—Preliminary Study on a Young Tree Plantation. Agriculture 2022, 12, 128. [Google Scholar] [CrossRef]
- Moreno, J.L.; Bastida, F.; Ondoño, S.; García, C.; Andrés-Abellán, M.; López-Serrano, F.R. Agro-Forestry Management of Paulownia Plantations and Their Impact on Soil Biological Quality: The Effects of Fertilization and Irrigation Treatments. Appl. Soil Ecol. 2017, 117–118, 46–56. [Google Scholar] [CrossRef]
- Ivanova, K.; Geneva, M.; Anev, S.; Georgieva, T.; Tzvetkova, N.; Stancheva, I.; Markovska, Y. Effect of Soil Salinity on Morphology and Gas Exchange of Two Paulownia Hybrids. Agrofor. Syst. 2019, 93, 929–935. [Google Scholar] [CrossRef]
- Stefanov, M.; Yotsova, E.; Markovska, Y.; Apostolova, E.L. Effect of High Light Intensity on the Photosynthetic Apparatus of Two Hybrid Lines of Paulownia Grown on Soils with Different Salinity. Photosynthetica 2018, 56, 832–840. [Google Scholar] [CrossRef]
- Ulu, F.; Çetiner, Ş.; Eren, N.; Ayan, S. Results of the Field Stage in Third Year of Species and Provenances Trials of Paulownia Sieb. &Zucc. in Eastern Black Sea Region. Kast. Univ. 2005. Available online: http://earsiv.kastamonu.edu.tr:8080/jspui/handle/123456789/344 (accessed on 21 April 2021).
- Smarul, N.; Tomczak, K.; Tomczak, A.; Jakubowski, M. Growth of paulownia ‘Shan Tong’ seedlings at the Forest Experimental Station in Murowana Goślina in 2017 (In Polish). Studia I Mater. CEPL 2018, 20, 158–165. [Google Scholar]
- Kadlec, J.; Novosadová, K.; Pokorný, R. Impact of Different Pruning Practices on Height Growth of Paulownia Clon in Vitro 112®. Forests 2022, 13, 317. [Google Scholar] [CrossRef]
- Lisowski, J.; Porwisiak, H. Oxytree tree biometric features (paulownia clon in vitro 112) after third and fourth years of cultivation. Zesz. Nauk. WSA W Łomży Res. Books WSA Łomża 2020, 41, 41–48. [Google Scholar]
- Jakubowski, M.; Dobroczyński, M. Density of Wood of 2year Paulownia Plantation Damaged by Wind in Poland. For. Lett. 2020, 113, 8–11. Available online: http://www.forestryletters.pl/index.php/forestryletters/article/view/77 (accessed on 22 April 2021).
- Barton, I.L.; Nicholas, I.D.; Ecroyd, C.E. Paulownia. Forest Research Bulletin; New Zealand Forest Research Institute: Rotoura, New Zeland, 2007. [Google Scholar]
- Tokushige, Y. Witches-Broom of Paulownia Tomentosa L. J. Fac. Agric. Kyushu Univ. 1951, 10, 45–67. [Google Scholar] [CrossRef]
- Yue, H.N.; Wu, Y.F.; Shi, Y.Z.; Wu, K.K.; Li, Y.R. First Report of Paulownia Witches’-Broom Phytoplasma in China. Plant Dis. 2008, 92, 1134. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, G.-M.; Lan, Y.-F.; Zhu, T.-S.; Yu, X.-Q.; Zhu, X.-P.; Li, X.-D. Molecular Characterization of Phytoplasma Associated with Rose Witches’-Broom in China. J. Phytopathol. 2008, 156, 93–98. [Google Scholar] [CrossRef]
- Cao, X.; Fan, G.; Deng, M.; Zhao, Z.; Dong, Y. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP. Int. J. Mol. Sci. 2014, 15, 14669–14683. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Sun, G.; Zhai, X.; Xu, P.; Ma, L.; Deng, M.; Zhao, Z.; Yang, H.; Dong, Y.; Shang, Z.; et al. Genomic Insights into the Fast Growth of Paulownias and the Formation of Paulownia Witches’ Broom. Mol. Plant 2021, 14, 1668–1682. [Google Scholar] [CrossRef]
- Du, T.; Wang, Y.; Hu, Q.-X.; Chen, J.; Liu, S.; Huang, W.-J.; Lin, M.-L. Transgenic Paulownia Expressing Shiva-1 Gene Has Increased Resistance to Paulownia Witches’ Broom Disease. J. Integr. Plant Biol. 2005, 47, 1500–1506. [Google Scholar] [CrossRef]
- Aloi, F.; Riolo, M.; La Spada, F.; Bentivenga, G.; Moricca, S.; Santilli, E.; Pane, A.; Faedda, R.; Cacciola, S.O. Phytophthora Root and Collar Rot of Paulownia, a New Disease for Europe. Forests 2021, 12, 1664. [Google Scholar] [CrossRef]
- Milenković, I.; Tomšovský, M.; Karadžić, D.; Veselinović, M. Decline of Paulownia tomentosa Caused by Trametes hirsuta in Serbia. For. Pathol. 2018, 48, e12438. [Google Scholar] [CrossRef]
- Skwiercz, A.; Dobosz, R.; Flis, L.; Damszel, M.; Litwińczuk, W. First Report of Meloidogyne Hapla on Paulownia tomentosa in Poland. Acta Soc. Bot. Pol. 2019, 88, 3628. [Google Scholar] [CrossRef] [Green Version]
- Skwiercz, A.T.; Zapałowska, A.; Litwińczuk, W.; Stefanovska, T.; Puchalski, C. Plant Parasitic Nematodes on Paulownia tomentosa in Poland. Preprints 2020, 2020010047. [Google Scholar] [CrossRef]
- Qi, Y.; Jang, J.H.; Park, S.H.; Kim, N.H. Anatomical and Physical Characteristics of Korean Paulownia (Paulownia coreana) Branch Wood. J. Korean Wood Sci. Technol. 2014, 42, 510–515. [Google Scholar]
- Qi, Y.; Jang, J.; Hidayat, W.; Lee, A.; Park, S.; Lee, S.; Kim, N. Anatomical Characteristics of Paulownia tomentosa Root Wood. J. Korean Wood Sci. Technol. 2016, 44, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Gao, W. Review on the Discoloration Treatment Technology of Paulownia Wood. J. Phys. Conf. Ser. 2019, 1213, 052040. [Google Scholar] [CrossRef]
- Liu, X.Y.; Timar, M.C.; Varodi, A.M.; Yi, S.L. Effects of Ageing on the Color and Surface Chemistry of Paulownia Wood (P. Elongata) from Fast Growing Crops. BioResources 2016, 11, 9400–9420. [Google Scholar] [CrossRef] [Green Version]
- Suri, I.F.; Kim, J.H.; Purusatama, B.D.; Yang, G.U.; Prasetia, D.; Lee, S.H.; Hidayat, W.; Febrianto, F.; Park, B.H.; Kim, N.H. Comparison of the Color and Weight Change in Paulownia tomentosa and Pinus koraiensis Wood Heat-Treated in Hot Oil and Hot Air. BioResources 2021, 16, 5574–5585. [Google Scholar] [CrossRef]
- Akyildiz, M.H.; Kol Sahin, H. Some Technological Properties and Uses of Paulownia (Paulownia tomentosa Steud.) Wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar]
- Kozakiewicz, P.; Laskowka, A.; Ciołek, S. A Study of Selected Features of Shan Tong Variety of Plantation Paulownia and Its Wood Properties. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2020, 111, 116–123. [Google Scholar] [CrossRef]
- Kaymakci, A.; Bektas, I.; Bal, B. Some Mechanical Properties of Paulownia (Paulownia elongata) Wood. In Proceedings of the International Caucasian Forestry Symposium, Artvin, Turkey, 24–26 September 2013; pp. 24–26. [Google Scholar]
- Joshi, N.R.; Karki, S.; Adhikari, M.D.; Udas, E.; Sherpa, S.; Karki, B.S.; Chettri, N.; Kotru, R.; Ning, W. Development of Allometric Equations for Paulownia tomentosa (Thunb) to Estimate Biomass and Carbon Stocks: An Assessment from the ICIMOD Knowledge Park, Godavari, Nepal; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2015. [Google Scholar]
- Lachowicz, H.; Giedrowicz, A. Characteristics of the technical properties of Paulownia COTE- 2 wood. Sylwan 2020, 164, 414–423. [Google Scholar]
- Bardarov, N.; Popovska, T. Examination of the properties of local origin paulownia wood. (Paulownia sp. Siebold & Zucc.). Housing provision as an element of the quality of life in the regions of Bulgaria. Manag. Sustain. Dev. 2017, 63, 75–78. [Google Scholar]
- Koman, S.; Feher, S.; Vityi, A. Physical and Mechanical Properties of Paulownia tomentosa Wood Planted in Hungaria. Wood Res. 2017, 62, 335–340. [Google Scholar]
- Koman, S.; Feher, S. Physical and Mechanical Properties of Paulownia Clone in Vitro 112. Eur. J. Wood Wood Prod. 2020, 78, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Madhoushi, M.; Boskabadi, Z. Relationship between the Dynamic and Static Modulus of Elasticity in Standing Trees and Sawn Lumbers of Paulownia fortune Planted in Iran. Maderas. Cienc. Y Tecnol. 2019, 21, 35–44. [Google Scholar] [CrossRef]
- Miri Tari, S.M.; Habibzade, S.; Taghiyari, H.R. Effects of Drying Schedules on Physical and Mechanical Properties in Paulownia Wood. Dry. Technol. 2015, 33, 1981–1990. [Google Scholar] [CrossRef]
- Sobhani, M.; Khazaeian, A.; Tabarsa, T.; Shakeri, A. Evaluation of Physical and Mechanical Properties of Paulownia Wood Core and Fiberglass Surfaces Sandwich Panel. Key Eng. Mater. 2011, 471–472, 85–90. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, L.; Zhao, Y.; Qiao, J.; Wang, B.; Yang, C.; Zhou, H.; Chang, D. Comprehensive Selection of the Wood Properties of Paulownia Clones Grown in the Hilly Region of Southern China. BioResources 2020, 15, 1098–1111. [Google Scholar] [CrossRef]
- Latib, H.A.; Liat, L.C.; Ratnasingam, J.; Law, E.L.; Azim, A.A.A.; Mariapan, M.; Natkuncaran, J. Suitability of Paulownia Wood from Malaysia for Furniture Application. BioResources 2020, 15, 4727–4737. [Google Scholar] [CrossRef]
- Sidan, L.; Liu, Z.; Liu, Y.; Yu, H.; Yinglai, H. Acoustic Vibration Properties of Wood for Musical Instrument Based on FFT of Adding Windows. In Proceedings of the 2010 International Conference on Mechanical and Electrical Technology, Singapore, 10–12 September 2010; pp. 370–373. [Google Scholar]
- Jang, E.-S.; Kang, C.-W. Sound Absorption Characteristics of Three Species (Binuang, Balsa and Paulownia) of Low Density Hardwood. Holzforschung 2021, 75, 1115–1124. [Google Scholar] [CrossRef]
- Marzbani, P.; Saraeyan, A.; Mohammadnia-afrouzi, Y.; Azim-mohseni, M. Statistical Modeling of Weight and Dimensions Changes of Paulownia fortunei and Pseudotsuga menziesii Sapwood. Adv. Environ. Biol. 2014, 8, 440–445. [Google Scholar]
- Taghiyari, H.R.; Kalantari, A.; Ghorbani, M.; Bavaneghi, F.; Akhtari, M. Effects of Fungal Exposure on Air and Liquid Permeability of Nanosilver- and Nanozincoxide-Impregnated Paulownia Wood. Int. Biodeterior. Biodegrad. 2015, 105, 51–57. [Google Scholar] [CrossRef]
- Kang, C.-W.; Jang, E.-S.; Jang, S.-S.; Cho, J.-I.; Kim, N.-H. Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood. J. Korean Wood Sci. Technol. 2019, 47, 644–654. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Hygrothermal Treated Paulownia Hardwood Reveals Enhanced Sound Absorption Coefficient: An Effective and Facile Approach. Appl. Acoust. 2021, 174, 107758. [Google Scholar] [CrossRef]
- Xu, H.; Taghiyari, H.R.; Clauson, M.; Milota, M.R.; Morrell, J.J. Effect of Supercritical Carbon Dioxide Treatment on Gas Permeability of Paulownia Fortunei Heartwood and Sapwood. Wood Fiber. Sci. 2019, 51, 1–5. [Google Scholar] [CrossRef]
- Kaygin, B.; Kaplan, D.; Aydemir, D. Paulownia Tree as an Alternative Raw Material for Pencil Manufacturing. BioResources 2015, 10, 3426–3433. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.R.; Carpenter, S.B. Specific Gravity, Fiber Length, and Extractive Content of Young Paulownia. Wood Fiber Sci. 1985, 17, 428–438. [Google Scholar]
- Popović, J.; Radošević, G. Paulownia Elongata, S.Y. Hu–Anatomical and Chemical Properties of Wood Fibers. Prerada Drv. 2011, 9, 15–22. [Google Scholar]
- Ates, S.; Ni, Y.; Akgul, M.; Tozluoglu, A. Characterization and Evaluation of Paulownia elongota as a Raw Material for Paper Production. Afr. J. Biotechnol. 2008, 7, 4153–4158. [Google Scholar]
- Ashori, A.; Nourbakhsh, A. Studies on Iranian Cultivated Paulownia—a Potential Source of Fibrous Raw Material for Paperindustry. Eur. J. Wood Prod. 2009, 67, 323–327. [Google Scholar] [CrossRef]
- Vilotić, D.; Popović, J.; Mitrović, S.; Šijačić-Nikolić, M.; Ocokoljić, M.; Novović, J.; Veselinović, M. Dimensions of Mechanical Fibres in Paulownia elongata S. Y. Hu Wood from Different Habitats. Drv. Ind. Znan. Časopis Za Pitanja Drv. Tehnol. 2015, 66, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Bujanovic, B.M. Impact of Hot-Water Extraction on Acetone-Water Oxygen Delignification of Paulownia Spp. and Lignin Recovery. Energies 2014, 7, 857–873. [Google Scholar] [CrossRef]
- Qi, Y.; Jang, J.-H.; Hidayat, W.; Lee, A.-H.; Lee, S.-H.; Chae, H.-M.; Kim, N.-H. Carbonization of Reaction Wood from Paulownia tomentosa and Pinus Densiflora Branch Woods. Wood Sci. Technol. 2016, 50, 973–987. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, C.; Hidayat, W.; Jang, J.-H.; Kim, N.-H. Solid Bioenergy Properties of Paulownia tomentosa Grown in Korea. J. Korean Wood Sci. Technol. 2016, 44, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Baier, C.; Thevs, N.; Villwock, D.; Emileva, B.; Fischer, S. Water Productivity of Paulownia tomentosa x fortunei (Shan Tong) in a Plantation at Lake Issyk-Kul, Kyrgyzstan, Central Asia. Trees 2021, 35, 1627–1637. [Google Scholar] [CrossRef]
- Gyuleva, V.; Stankova, T.; Zhiyanski, M.; Andonova, E. Five Years Growth of Paulownia on Two Sites in Bulgaria. For. Sci. 2021, 1, 11–22. [Google Scholar]
- Madejón, P.; Alaejos, J.; García-Álbala, J.; Fernández, M.; Madejón, E. Three-Year Study of Fast-Growing Trees in Degraded Soils Amended with Composts: Effects on Soil Fertility and Productivity. J. Environ. Manag. 2016, 169, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Pegoretti Leite de Souza, H.J.; Muñoz, F.; Mendonça, R.T.; Sáez, K.; Olave, R.; Segura, C.; de Souza, D.P.L.; de Paula Protásio, T.; Rodríguez-Soalleiro, R. Influence of Lignin Distribution, Physicochemical Characteristics and Microstructure on the Quality of Biofuel Pellets Made from Four Different Types of Biomass. Renew. Energy 2021, 163, 1802–1816. [Google Scholar] [CrossRef]
- Spirchez, C.; Japalela, V.; Lunguleasa, A.; Buduroi, D. Analysis of Briquettes and Pellets Obtained from Two Types of Paulownia (Paulownia tomentosa and Paulownia elongata) Sawdust. BioResources 2021, 16, 5083–5095. [Google Scholar] [CrossRef]
- Świechowski, K.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Fuel Properties of Torrefied Biomass from Pruning of Oxytree. Data 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Świechowski, K.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree Pruned Biomass Torrefaction: Mathematical Models of the Influence of Temperature and Residence Time on Fuel Properties Improvement. Materials 2019, 12, 2228. [Google Scholar] [CrossRef] [Green Version]
- Vusić, D.; Migalić, M.; Zečić, Ž.; Trkmić, M.; Bešlić, A.; Drvodelić, D. Fuel Properties of Paulownia Biomass. In Proceedings of the Natural Resources, Green Technology and Sustainable Development/3-GREEN, Zagreb, Croatia, 5–8 June 2018; pp. 126–130. Available online: https://urn.nsk.hr/urn:nbn:hr:108:838890 (accessed on 22 April 2022).
- Zachar, M.; Lieskovský, M.; Majlingová, A.; Mitterová, I. Comparison of Thermal Properties of the Fast-Growing Tree Species and Energy Crop Species to Be Used as a Renewable and Energy-Efficient Resource. J. Therm. Anal. Calorim. 2018, 134, 543–548. [Google Scholar] [CrossRef]
- Stankova, T.; Gyuleva, V.; Dimitrov, D.N.; Hristova, H.; Andonova, E. Above Dendromass Estimation of Juvenile Paulownia Sp. Glas. Šumarskog Fak. Univ. U Banjoj Luci 2016, 24, 5–18. [Google Scholar]
- Stankova, T.; Gyuleva, V.; Dimitrov, D.N.; Popov, E. Allometric Relationships for Estimation of Aboveground Woody Biomass of Two Clones Paulownia at Juvenile Age. Nauka Gorata 2019, 55, 43–54. [Google Scholar]
- Perpiña, C.; Martínez-Llario, J.C.; Pérez-Navarro, Á. Multicriteria Assessment in GIS Environments for Siting Biomass Plants. Land Use Policy 2013, 31, 326–335. [Google Scholar] [CrossRef]
- Galán-Martín, Á.; Pozo, C.; Guillén-Gosálbez, G.; Antón Vallejo, A.; Jiménez Esteller, L. Multi-Stage Linear Programming Model for Optimizing Cropping Plan Decisions under the New Common Agricultural Policy. Land Use Policy 2015, 48, 515–524. [Google Scholar] [CrossRef]
- Abbasi, M.; Pishvaee, M.S.; Bairamzadeh, S. Land Suitability Assessment for Paulownia Cultivation Using Combined GIS and Z-Number DEA: A Case Study. Comput. Electron. Agric. 2020, 176, 105666. [Google Scholar] [CrossRef]
- Palma, A.; Loaiza, J.M.; Díaz, M.J.; García, J.C.; Giráldez, I.; López, F. Tagasaste, Leucaena and Paulownia: Three Industrial Crops for Energy and Hemicelluloses Production. Biotechnol. Biofuels 2021, 14, 89. [Google Scholar] [CrossRef]
- Pleguezuelo, C.R.R.; Zuazo, V.H.D.; Bielders, C.; Bocanegra, J.A.J.; PereaTorres, F.; Martínez, J.R.F. Bioenergy Farming Using Woody Crops. A Review. Agron. Sustain. Dev. 2015, 35, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Parra-Lopez, C.; Sayadi, S.; Duran-Zuzáo, V.H. Production and Use of Biomass from Short-Rotation Plantations in Andalusia, Southern Spain: Limitations and Opportunities. New Medit. 2015, 14, 40–49. [Google Scholar]
- Livia, B.R.; Maxim, A.; Odagiu, A.; Balint, C.; Hartagan, R.M. Paulownia Sp. Used as an Energetic Plant, for the Phytoremediation of Soils and in Agroforestry Systems. ProEnvironment 2018, 11, 76–85. Available online: http://journals.usamvcluj.ro/index.php/promediu/article/view/13206 (accessed on 22 April 2022).
- Testa, R.; Schifani, G.; Rizzo, G.; Migliore, G. Assessing the Economic Profitability of Paulownia as a Biomass Crop in Southern Mediterranean Area. J. Clean. Prod. 2022, 336, 130426. [Google Scholar] [CrossRef]
- Thevs, N.; Baier, C.; Aliev, K. Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia. J. Water Resour. Prot. 2021, 13, 293. [Google Scholar] [CrossRef]
- Morozova, I.; Oechsner, H.; Roik, M.; Hülsemann, B.; Lemmer, A. Assessment of Areal Methane Yields from Energy Crops in Ukraine, Best Practices. Appl. Sci. 2020, 10, 4431. [Google Scholar] [CrossRef]
- Kaletnik, G.; Pryshliak, N.; Tokarchuk, D. Potential of Production of Energy Crops in Ukraine and Their Processing on Solid Biofuels. Ecol. Eng. Environ. Technol. 2021, 22, 59–70. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Bahmani, A.A.; Rafighi, A.; Tabarsa, T. Utilization of Bio-Waste Cotton (Gossypium hirsutum L.) Stalks and Underutilized Paulownia (Paulownia fortunie) in Wood-Based Composite Particleboard. Afr. J. Biotechnol. 2012, 11, 8045–8050. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Vaziri, V.; Faraji, F.; Aminian, H.; Jamalirad, L. The Effect of Using PET to Paulownia Strands on Physical and Mechanical Properties of OSB. For. Wood Prod. 2021, 74, 371–382. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Domínguez, H.; Torres, M.D. Mechanical Characterization of Biopolymer-Based Hydrogels Enriched with Paulownia Extracts Recovered Using a Green Technique. Appl. Sci. 2020, 10, 8439. [Google Scholar] [CrossRef]
- Nelis, P.A.; Henke, O.; Mai, C. Comparison of Blockboards with Core Layers Made of Kiri (Paulownia Spp.) and of Spruce (Picea abies) Regarding Mechanical Properties. Eur. J. Wood Wood Prod. 2019, 77, 323–326. [Google Scholar] [CrossRef]
- Nelis, P.A.; Michaelis, F.; Krause, K.C.; Mai, C. Kiri Wood (Paulownia tomentosa): Can It Improve the Performance of Particleboards? Eur. J. Wood Prod. 2018, 76, 445–453. [Google Scholar] [CrossRef]
- Nelis, P.A.; Mai, C. The Influence of Low-Density (Paulownia Spp.) and High-Density (Fagus sylvatica L.) Wood Species on Various Characteristics of Light and Medium-Density Three-Layered Particleboards. Wood Mater. Sci. Eng. 2021, 16, 21–26. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kwon, G.J.; Kim, A.R.; Lee, H.S.; Purusatama, B.; Lee, S.H.; Kang, C.W.; Kim, N.H. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. J. Korean Wood Sci. Technol. 2018, 46, 511–526. [Google Scholar] [CrossRef]
- Esmailpour, A.; Taghiyari, H.R.; Golchin, M.; Avramidis, S. On the Fluid Permeability of Heat Treated Paulownia Wood. Int. Wood Prod. J. 2019, 10, 55–63. [Google Scholar] [CrossRef]
- Candan, Z.; Gonultas, O.; Gorgun, H.V.; Unsal, O. Examining Parameters of Surface Quality Performance of Paulownia Wood Materials Modified by Thermal Compression Technique. Drv. Ind. 2021, 72, 231–236. [Google Scholar] [CrossRef]
- Li, H.; Jiang, X.; Ramaswamy, H.S.; Zhu, S.; Yu, Y. High-Pressure Treatment Effects on Density Profile, Surface Roughness, Hardness, and Abrasion Resistance of Paulownia Wood Boards. Trans. ASABE 2018, 61, 1181–1188. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, X.; Ramaswamy, H.S.; Zhu, S.; Li, H. Effect of High-Pressure Densification on Moisture Sorption Properties of Paulownia Wood. BioResources 2018, 13, 2473–2486. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Meng, H.; Wu, Z.; Zhao, J. Study on Gas Products Distributions During Fast Co-Pyrolysis of Paulownia Wood and PET at High Temperature. Energy Procedia 2017, 105, 391–397. [Google Scholar] [CrossRef]
- Domínguez, E.; Río, P.G.; del Romaní, A.; Garrote, G.; Domingues, L. Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes 2021, 9, 173. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, P.; Li, Y.; Zhang, Z.; Zhang, H.; Ru, G.; Jiang, D.; Jing, Y.; Zhang, X. Analysis of the Characteristics of Paulownia Lignocellulose and Hydrogen Production Potential via Photo Fermentation. Bioresour. Technol. 2022, 344, 126361. [Google Scholar] [CrossRef]
- He, T.; Vaidya, B.N.; Perry, Z.D.; Parajuli, P.; Joshee, N. Paulownia as a Medicinal Tree: Traditional Uses and Current Advances. Eur. J. Med. Plants 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and Phytochemical Composition, in Vitro Ruminal Fermentation, Methane Production, and Nutrient Degradability of Fresh and Ensiled Paulownia Hybrid Leaves. Anim. Feed. Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Adach, W.; Żuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieslak, A. In Vitro Antiplatelet Activity of Extract and Its Fractions of Paulownia Clone in Vitro 112 Leaves. Biomed. Pharmacother. 2021, 137, 111301. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Miłek, M.; Grabek-Lejko, D.; Hęclik, J.; Jacek, B.; Litwińczuk, W. Antioxidant Activity, Polyphenolic Profiles and Antibacterial Properties of Leaf Extract of Various Paulownia Spp. Clones. Agronomy 2021, 11, 2001. [Google Scholar] [CrossRef]
- Stochmal, A.; Moniuszko-Szajwaj, B.; Zuchowski, J.; Pecio, Ł.; Kontek, B.; Szumacher-Strabel, M.; Olas, B.; Cieslak, A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood. Molecules 2022, 27, 980. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, P.; Xu, X.; Chen, X.; Liu, Q.; Jiang, C. The Enhanced Immunological Activity of Paulownia tomentosa Flower Polysaccharide on Newcastle Disease Vaccine in Chicken. Biosci. Rep. 2019, 39, BSR20190224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sagheer, A.A.; Abd El-Hack, M.E.; Alagawany, M.; Naiel, M.A.; Mahgoub, S.A.; Badr, M.M.; Hussein, E.O.S.; Alowaimer, A.N.; Swelum, A.A. Paulownia Leaves as A New Feed Resource: Chemical Composition and Effects on Growth, Carcasses, Digestibility, Blood Biochemistry, and Intestinal Bacterial Populations of Growing Rabbits. Animals 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganchev, G.; Ilchev, A.; Koleva, A. Digestibility and Energy Content of Paulownia (Paulownia elongata SY Hu) Leaves. Agric. Sci. Technol. 2019, 11, 307–310. [Google Scholar]
- Alagawany, M.; Farag, M.R.; Sahfi, M.E.; Elnesr, S.S.; Alqaisi, O.; El-Kassas, S.; Al-wajeeh, A.S.; Taha, A.E.; Abd, E.; Hack, M.E. Phytochemical Characteristics of Paulownia Trees Wastes and Its Use as Unconventional Feedstuff in Animal Feed. Anim. Biotechnol. 2020, 1–8. [Google Scholar] [CrossRef]
- Miladinova-Georgieva, K.; Geneva, M.; Markovska, Y. Effects of EDTA and Citrate Addition to the Soil on C4 Photosynthetic Enzymes and Biochemical Indicators for Heavy Metal Tolerance in Two Paulownia Hybrids. Genet. Plant Physiol. 2018, 8, 68–81. [Google Scholar]
- Miladinova-Georgieva, K.; Ivanova, K.; Georgieva, T.; Geneva, M.; Petrov, P.; Stancheva, I.; Markovska, Y. EDTA and Citrate Impact on Heavy Metals Phytoremediation Using Paulownia Hybrids. Int. J. Environ. Pollut. 2018, 63, 31–46. [Google Scholar] [CrossRef]
- Tzvetkova, N.; Miladinova, K.; Ivanova, K.; Georgieva, T.; Geneva, M.; Markovska, Y. Possibility for Using of Two Paulownia Lines as a Tool for Remediation of Heavy Metal Contaminated Soil. J. Environ. Biol. 2015, 36, 145. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowski, M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022, 13, 668. https://doi.org/10.3390/f13050668
Jakubowski M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests. 2022; 13(5):668. https://doi.org/10.3390/f13050668
Chicago/Turabian StyleJakubowski, Marcin. 2022. "Cultivation Potential and Uses of Paulownia Wood: A Review" Forests 13, no. 5: 668. https://doi.org/10.3390/f13050668
APA StyleJakubowski, M. (2022). Cultivation Potential and Uses of Paulownia Wood: A Review. Forests, 13(5), 668. https://doi.org/10.3390/f13050668