Potential of Using Natural and Synthetic Binder in Wood Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Wood Particles
2.2. Seaweed Binder Particleboard
2.3. Starch-Based Binder Particleboard
2.4. Wood Plastic Composite (WPC)
2.5. Comparison of Physical Properties for Different Binders
2.5.1. Density
2.5.2. Thickness Swelling
2.5.3. Water Absorption
2.6. Comparison of Mechanical Properties for Different Binders
2.6.1. Bending Properties
2.6.2. Internal Bond (IB) Strength
2.6.3. Tensile Strength
2.7. Statistical Analysis
3. Results and Discussion
3.1. Density
3.2. Thickness Swelling
3.3. Water Absorption
3.4. Bending Properties
3.5. Internal Bond (IB) Strength
3.6. Tensile Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiedenhoeft, A. Structure and Function of Wood. Available online: https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr190/chapter_03.pdf (accessed on 3 July 2019).
- Shumlsky, R.; Jones, D. Forest Products and Wood Science: An Introduction, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Tsoumis, G.T. Wood: Plant Tissue. Available online: https://www.britannica.com/science/wood-plant-tissue (accessed on 3 July 2019).
- Starck, N.M.; Cai, Z.; Carll, C. Wood-Based Composite Materials-Panel Products-Glued Laminated Timber, Structural Composite Lumber, and wood Non-Wood Composite Materials; General Technical Report FPL-GTR-190; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 11, pp. 252–279. [Google Scholar]
- Papadopoulos, A.N. Advances in wood composites. Polymers 2020, 12, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekhta, P.; Sedliačik, J.; Kačík, F.; Noshchenko, G.; Kleinová, A. Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood. Eur. J. Wood Wood Prod. 2019, 77, 495–508. [Google Scholar] [CrossRef]
- Antov, P.; Mantanis, G.I.; Savov, V. Development of wood composites from recycled fibres bonded with magnesium lignosulfonate. Forests 2020, 11, 613. [Google Scholar] [CrossRef]
- Iždinský, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from recycled wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Małozięć, D. Hazards resulting from the burning wood impregnated with selected chemical compounds. Appl. Sci. 2020, 10, 6093. [Google Scholar] [CrossRef]
- Anon. Formaldehyde. In Chemical Economics Handbook; IHS Inc.: London, UK, 2015. [Google Scholar]
- International Agency for Research on Cancer. IARC Classifies Formaldehyde as Carcinogenic to Humans; IARC: Lyon, France, 2004. [Google Scholar]
- Saraswat, Y.; Patel, M.; Sagar, T.; Shil, S. Bioplastics from starch. Int. J. Res. Sci. Innov. 2014, 1, 385–387. [Google Scholar]
- Johnson, A.C.; Yunus, N. Particleboards from Rice Husk: A Brief Introduction to Renewable Materials of Construction; The Institute of Engineers: Petaling Jaya, Malaysia, 2009. [Google Scholar]
- Gaspar, M.; Benko, Z.; Dogossy, G.; Reczey, K.; Czigany, T. Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stab. 2005, 90, 563–569. [Google Scholar] [CrossRef]
- Liew, K.C.; Khor, L.K. Effect of different ratios of bioplastic to newspaper pulp fibres on the weight loss of bioplastic pot. J. King Saud Univ.-Eng. Sci. 2015, 27, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood composites and their polymer binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to Seaweed Industry; FAO Fisheries Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Abowei, J.F.N.; Ezekiel, E.N. The Potential and Utilizations of Seaweeds. Sci. Agric. 2013, 4, 58–66. [Google Scholar]
- Hayashi, L.; Reis, R.P. Cultivation of the Red Algae Kappaphycus alvarezii in Brazil and its Pharmacological Potential. Braz. J. Pharmacogn. 2012, 22, 748–752. [Google Scholar] [CrossRef] [Green Version]
- Clemons, C. Wood-plastic composites in the United States—The interfacing of two industries. For. Prod. J. 1992, 52, 10–18. [Google Scholar]
- Pol, V.G.; Thiyagarajan, P. Remediating plastic waste into carbon nanotubes. J. Environ. Monit. 2010, 12, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Kazulis, V.; Muizniece, I.; Zihare, L.; Blumberga, D. Carbon storage in wood products. Energy Procedia 2017, 128, 558–563. [Google Scholar] [CrossRef]
- Stew, D. Purity and Identification of Solids Using Melting Points; Portland State University: Portland, OR, USA, 2006. [Google Scholar]
- Koyano, M. Japanese Scroll Paintings: A Handbook of Mounting Techniques; Foundation of the American Institute for Conservation: Washington, DC, USA, 1979. [Google Scholar]
- ASTM D638-02a; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D570-98; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- JIS A 5908; Particleboards. Japanese Standard Association: Tokyo, Japan, 2003.
- Reeve, R.C. Modulus of Rupture, U.S Salinity Lab Riverside, California. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronmonogr9.1.c36 (accessed on 7 July 2019).
- Meier, E. Wood Database: Modulus of Rupture. The Wood Database, USA. Available online: https://www.wood-database.com/wood-articles/modulus-of-rupture/ (accessed on 7 July 2019).
- Istek, A.; Siradag, H. The Effect of Density on Particleboard. In Proceedings of the International Caucasian Forestry Symposium, Artvin, Turkey, 24–26 October 2013. [Google Scholar]
- Zobel, B.J.; Jett, J.B. Genetics of Wood Production: The Importance of Wood Density (Specific Gravity) and Its Component Parts; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Tan, Y.F.; Liew, K.C. Properties of Acacia mangium wood particles and bioplastic binder. In Prospects and Utilization of Tropical Plantation Trees; Liew, K.C., Ed.; Taylor & Francis Group: Abingdon, UK, 2020; pp. 281–307. [Google Scholar]
- Iswanto, A.H.; Fauzi, F.; Yusuf, S.H.; Dede, H. The Effect of Pressing Temperature and Time on the Quality of Particleboard Made from Jattropha Fruit Hulls Treated in Acidic Condition; Bogor Agricultural University: Bogor, Indonesia, 2013. [Google Scholar]
- Albert, C.M.; Liew, K.C. Application of seaweed-based adhesive in wood composite. In Applications of Advanced Green Materials; Ahmed, S., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 169–192. [Google Scholar]
- Oakley, P. Reducing the Water Absorption of Thermoplastic Starch Processed by Extrusion. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Khazaei, J. Water Absorption Characteristics of Three Wood Varieties; University of Tehran: Tehran, Iran, 2007. [Google Scholar]
- Manuhara, G.J.; Praseptiangga, J.; Rachmad, A.R. Extraction and Characterization of Refined K-carrageenan of Red Algae [Kappaphycus alvarezii (Doty ex P.C. Silva, 1996)] Originated from Karimun Jawa Islands. Aquat. Procedia 2016, 7, 106–111. [Google Scholar] [CrossRef]
- Hemmila, V.; Trischler, J.; Sandberg, D. Bio-based adhesives for the wood industry—An opportunity for the future? Pro Ligno 2013, 9, 118–125. [Google Scholar]
- Lopez-Gil, A.; Rodriguez-Perez, M.A.; De Saja, J. Strategies to improve the mechanical properties of starch-based materials: Plasticization and natural fibers reinforcement. Polímeros 2014, 24, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Abdul Ghani, N.S.N.; Liew, K.C. Green and Sustainable Advanced Materials: Processing and Characterization; Advanced material series; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Jahanilomer, Z.; Farrokhpayam, S.R. Physical and mechanical properties of flat pressed HDPE. J. Indian Acad. Wood Sci. 2014, 11, 50–56. [Google Scholar] [CrossRef]
- ASTM D1037; Standard Test Method for Evaluating the Properties of Wood-Base Fiber and Particle Panel Material. ASTM International: West Conshohocken, PA, USA, 1989.
- Wang, Z.; Gu, Z.; Li, Z.; Hong, Y.; Cheng, L. Effects of urea on freeze–thaw stability of starch-based wood adhesive. Carbohydr. Polym. 2013, 95, 397–403. [Google Scholar] [CrossRef]
- Wu, Y.B.; LV, C.F.; Han, M.N. Synthesis and performance study of polybasic starch graft copolymerization function materials. Adv. Mater. Res. 2009, 79–82, 43–46. [Google Scholar] [CrossRef]
- Tanrattanakul, V.; Chumeka, W. Effect of potassium persulfate on graft copolymerization and mechanical properties of cassava starch/natural rubber foams. J. Appl. Polym. Sci. 2010, 116, 93–105. [Google Scholar] [CrossRef]
- Najafi, K.S. Use of recycled plastics in wood plastic composites—A review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Jiang, H.; Cui, W.; Freed, J.; Matuana, L.M. Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service. Compos. Part A 2004, 35, 347–355. [Google Scholar] [CrossRef]
- Chen, H.C.; Chen, T.Y.; Hsu, C.H. Effects of wood particle size and mixing ratios of HDPE on the properties of the composites. Holz als Roh- und Werkstoff 2006, 64, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Matuana, L.M.; Park, C.B.; Balatinecz, J.J. Cell morphology and property relationship of microcellular foamed PVC/wood-fibre composites. Polym. Eng. Sci. 1998, 38, 1862–1872. [Google Scholar] [CrossRef]
- Marcovich, L.M.; Villar, M.A. Thermal and mechanical characterization of liner low density polyethylene/wood-flour composites. J. Appl. Polym. Sci. 2003, 90, 2775–2784. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A review on interface modification and characterization of natural fibre reinforced plastic composite. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
Seaweed Chemical Cooking Percentage | Volume of Chemical Solution (mL) | |
---|---|---|
1 M Sulfuric Acid (H2SO4) | 1 M Sodium Hydroxide (NaOH) | |
S 30:70 | 30 | 70 |
S 50:50 | 50 | 50 |
S 70:30 | 70 | 30 |
Type of Binders | Modification |
---|---|
100% UF (control) | 100% Urea Formaldehyde (100% UF) + Wood Particles + 2% ammonium chloride Hardener |
S 30:70 | Seaweed Binder with 30% Acid: 70% Alkali + Wood Particles |
S 50:50 | Seaweed Binder with 50% Acid: 50% Alkali + Wood Particles |
S 70:30 | Seaweed Binder with 70% Acid: 30% Alkali + Wood Particles |
Code | Composition |
---|---|
UF20A | 20% Urea-formaldehyde binder + wood particles |
UF25A | 25% Urea-formaldehyde binder + wood particles |
UF30A | 30% Urea-formaldehyde binder + wood particles |
10S20A | 10% starch + 20% starch-based binder + wood particles |
10S25A | 10% starch + 25% starch-based binder + wood particles |
10S30A | 10% starch + 30% starch-based binder + wood particles |
15S20A | 15% starch + 20% starch-based binder + wood particles |
15S25A | 15% starch + 25% starch-based binder + wood particles |
15S30A | 15% starch + 30% starch-based binder + wood particles |
20S20A | 20% starch + 20% starch-based binder + wood particles |
20S25A | 20% starch + 25% starch-based binder + wood particles |
20S30A | 20% starch + 30% starch-based binder + wood particles |
Code | WP-HDPE Composition Based on Percentage Weight | |
---|---|---|
Wood Powder (WP) Content (%) | HDPE Content (%) | |
100H | - | 100 |
90H | 10 | 90 |
80H | 20 | 80 |
70H | 30 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liew, K.; Tan, Y.; Albert, C.M.; Raman, V.; Boyou, M. Potential of Using Natural and Synthetic Binder in Wood Composites. Forests 2022, 13, 844. https://doi.org/10.3390/f13060844
Liew K, Tan Y, Albert CM, Raman V, Boyou M. Potential of Using Natural and Synthetic Binder in Wood Composites. Forests. 2022; 13(6):844. https://doi.org/10.3390/f13060844
Chicago/Turabian StyleLiew, Kangchiang, Yufeng Tan, Charles Michael Albert, Vinodini Raman, and Michelle Boyou. 2022. "Potential of Using Natural and Synthetic Binder in Wood Composites" Forests 13, no. 6: 844. https://doi.org/10.3390/f13060844
APA StyleLiew, K., Tan, Y., Albert, C. M., Raman, V., & Boyou, M. (2022). Potential of Using Natural and Synthetic Binder in Wood Composites. Forests, 13(6), 844. https://doi.org/10.3390/f13060844