Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Growth Measurement and Calculation
2.4. Soil Sampling and Analysis
2.5. Data Analyses
3. Results
3.1. Effects on Tree Growth
3.2. Effects on Interannual Variation of Soil Chemical Properties
3.3. Effects of Irrigation and Nitrogen Application on Soil Nutrients
3.4. Correlation between Soil Nutrients under Different Nitrogen Application and Irrigation Conditions
4. Discussion
4.1. Effects on Interannual Variation of Soil Chemical Properties
4.2. Effects of Irrigation on Soil Nutrients
4.3. Effects of Nitrogen Application on Soil Nutrients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myint, Y.Y.; Sasaki, N.; Datta, A.; Tsusaka, T.W. Management of plantation forests for bioenergy generation, timber production, carbon emission reductions, and removals. Clean. Environ. Syst. 2021, 2, 100029. [Google Scholar] [CrossRef]
- Sedjo, R.A. From foraging to cropping: The transition to plantation forestry, and implications for wood supply and demand. Unasylva 2001, 204, 24–32. [Google Scholar]
- Truax, B.; Gagnon, D.; Fortier, J. Biomass and volume yield in mature hybrid mature hybrid poplar plantations on temperate abandoned farmland. Forests 2014, 5, 3107–3130. [Google Scholar] [CrossRef] [Green Version]
- Bo, H.; Wen, C.; Song, L.; Yue, Y.; Nie, L. Fine-Root Responses of Populus tomentosa Forests to Stand Density. Forests 2018, 9, 562. [Google Scholar] [CrossRef] [Green Version]
- Xi, B.Y.; Bloomberg, M.; Watt, M.S.; Jia, L.M. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the north China plain. Agric. Water Manag. 2016, 176, 243–254. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Shen, Y.B.; Lin, H.B.; Wang, J. A comparative study on early growth and photosynthetic activity among clones of Populus tomentosa and its hybrids. J. Beijing For. Univ. 1992, S9, 35–39. [Google Scholar]
- Liu, T.P.; Zhu, Z.X.; Zhang, Y. On the relationship between the law of growth of Poplus tomentosa carr. and the soil condition of forest land in the plain of western Shandong province. For. Res. 1988, 1, 588–597. [Google Scholar]
- Li, D.; Fernández, J.E.; Li, X.; Xi, B.; Jia, L.; Hernandez-Santana, V. Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations. Agric. Water Manag. 2020, 241, 106348. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Yue, G.; Liu, G.; Chen, H. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci. Total Environ. 2017, 607, 855–864. [Google Scholar] [CrossRef]
- Matías, L.; Castro, J.; Zamora, R. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Glob. Chang. Biol. 2011, 17, 1646–1657. [Google Scholar] [CrossRef]
- Xu, M.G.; Yu, R.; Wang, B.R. Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedol. Sin. 2006, 43, 723–729. [Google Scholar]
- Zhang, S.; Zhang, W.; Shen, R.; Xu, M. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition. Plant Nutr. Fert. Sci. 2015, 21, 1389–1393. [Google Scholar] [CrossRef]
- Sandoval López, D.M.; Arturi, M.F.; Goya, J.F.; Pérez, C.A.; Frangi, J.L. Eucalyptus grandis plantations: Effects of management on soil carbon, nutrient contents and yields. J. For. Res. 2020, 31, 601–611. [Google Scholar] [CrossRef]
- Wan, F.; Ross-Davis, A.L.; Davis, A.S.; Song, X.; Liu, Y. Nutrient retranslocation in larix principis-rupprechtii mayr relative to fertilization and irrigation. New For. 2021, 52, 69–88. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Martin, D.L.; Ferguson, R.B.; Bernards, M.L. Plant nutrient uptake and soil nutrient dynamics under full and limited irrigation and rainfed maize production. Agron. J. 2013, 105, 527. [Google Scholar] [CrossRef]
- Xu, G.; Lu, D.; Wang, H. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Nikolskii, Y.N.; Aidarov, I.P.; Landeros-Sanchez, C.; Pchyolkin, V.V. Impact of long-term freshwater irrigation on soil fertility. Irrig. Drain. 2019, 68, 993–1001. [Google Scholar] [CrossRef]
- Han, Y.G.; Feng, G.; Ouyang, Y. Effects of Soil and Water Conservation Practices on Runoff, Sediment and Nutrient Losses. Water 2018, 10, 1333. [Google Scholar] [CrossRef] [Green Version]
- José Ignacio, Q.; Wei, R.; Prieto, I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytol. 2021, 230, 1378–1393. [Google Scholar] [CrossRef]
- León-Sánchez, L.; Nicolás, E.; Goberna, M.; Querejeta, J.I. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland. J. Ecol. 2018, 106, 960–976. [Google Scholar] [CrossRef]
- Prieto, I.; Almagro, M.; Bastida, F.; Querejeta, J.I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 2019, 107, 2364–2382. [Google Scholar] [CrossRef]
- Rani, P.; Batra, V.K.; Bhatia, A.K.; Sain, V. Effect of water deficit and fertigation on nutrients uptake and soil fertility of drip irrigated onion (Allium cepa L.) in semi-arid region of India. J. Plant Nutr. 2020, 44, 765–772. [Google Scholar] [CrossRef]
- Moeskops, B.; Buchan, D.; Van Beneden, S.; Fievez, V.; Sleutel, S.; Gasper, M.S.; De Neve, S. The impact of exogenous organic matter on SOM contents and microbial soil quality. Pedobiologia 2012, 55, 175–184. [Google Scholar] [CrossRef]
- Poffenbarger, H.J.; Barker, D.W.; Helmers, M.J.; Miguez, F.E.; Olk, D.C.; Sawyer, J.E.; Castellano, M.J. Maximum soil organic carbon storage in Midwest US cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Luo, L.; Ma, Q.; Hui, X.; Ma, Q.; Hui, X.; Wang, S.; Liu, J.; Wang, Z. Monitoring wheat nitrogen requirement and top soil nitrate for nitrate residue controlling in drylands. J. Clean Prod. 2019, 241, 118372. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Li, F.; Lemcoff, J.H. Long-Term Fertilization Effect on Fraction and Distribution of Soil Phosphorus in a Plastic-Film House in China. Commun. Soil Sci. Plan 2010, 42, 1–12. [Google Scholar] [CrossRef]
- Tao, L.; Wen, X.; Li, H.; Huang, C.; Jiang, Y.; Liu, D.; Sun, B. Influence of manure fertilization on soil phosphorous retention and clay mineral transformation: Evidence from a 16-year long-term fertilization experiment. Appl. Clay Sci. 2021, 204, 106021. [Google Scholar] [CrossRef]
- Cherney, J.H.; Ketterings, Q.M.; Orloski, J.L. Plant and Soil Elemental Status as Influenced by Multi-year Nitrogen and Potassium Fertilization. J. Plant Nutr. 2004, 27, 991–1014. [Google Scholar] [CrossRef]
- Danso, E.O.; Abenney-Mickson, S.; Sabi, E.B.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.O.; Andersen, M.N. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2015, 147, 34–42. [Google Scholar] [CrossRef]
- Li, Y. Principles and Applications of Modern Irrigation Water and Fertilizer Management; Yellow River Water Conservancy Press: Zhengzhou, China, 2008. [Google Scholar]
- DesRochers, A.; Driessche, R.; Thomas, B.R. Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH. Can. J. For. Res. 2003, 33, 552–560. [Google Scholar] [CrossRef]
- Xi, B.; Li, G.; Bloomberg, M.; Jia, L. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain. Austral. For. 2014, 77, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Agriculture and Forestry Ministry of China. Tree Volume Tables (LY208−77); China Standard Press: Beijing, China, 1977. [Google Scholar]
- Olsen, A.M. The biology, migration, and growth rate of the school shark, Galeorhinus australis (macleay) (carcharhanidae) in the South-Eastern Australian waters. Mar. Freshw. Res. 1954, 5, 353–410. [Google Scholar] [CrossRef]
- Yang, C.M.; Yang, L.Z.; Yan, T.M. Chemical and microbiological parameters of paddy soil quality as affected by different nutrient and water regimes. Pedosphere 2005, 15, 369–378. [Google Scholar]
- Allen, H.L. Forest fertilizers. J. For. 1987, 85, 37–46. [Google Scholar] [CrossRef]
- Wen, C.Y.; Zhu, J.L.; Bo, H.J.; Song, L.J.; Nie, L.S. Effects of irrigation and nitrogen application on carbon, nitrogen, and phosphorus stoichiometry of Populus tomentosa. Chin. J. Appl. Environ. Biol. 2019, 25, 0254–0261. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Jiang, Y.; Yang, Z. Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests. For. Ecol. Manag. 2002, 169, 149–157. [Google Scholar] [CrossRef]
- Lodhiyal, L.S.; Lodhiyal, N. Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations. For. Ecol. Manag. 1997, 98, 167–179. [Google Scholar] [CrossRef]
- Cole, D.W. Nutrient Cycle in World Forests. In Forest Site and Productivity; Gessel, S.P., Ed.; Martinus Nijhoff: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Berthelot, A.; Ranger, J.; Gelhaye, D. Nutrient uptake and immobilization in a short-rotation coppice stand of hybrid poplars in north-west France. For. Ecol. Manag. 2000, 128, 167–179. [Google Scholar] [CrossRef]
- Wan, P. Analysis of the soil microbial communities in Pinus tabulaeformis Carr. and Bupleurum chinense plantations of the Xiaolongshan Mountain Region, Gansu Province, China—ScienceDirect. Ecol. Inform. 2019, 53, 100981. [Google Scholar] [CrossRef]
- Nave, L.E.; Swanston, C.W.; Mishra, U.; Nadelhoffer, K.J. Afforestation effects on soil carbon storage in the United States: A synthesis. Soil Sci. Soc. Am. J. 2013, 77, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Schipper, L.A.; Dodd, M.B.; Fisk, L.M.; Power, I.L.; Parenzee, J.; Arnold, G. Trends in soil carbon and nutrients of hill-country pastures receiving different phosphorus fertilizer loadings for 20 years. Biogeochemistry 2011, 104, 35–48. [Google Scholar] [CrossRef]
- Yang, S.; Feng, C.; Ma, Y.; Wang, W.; Huang, C.; Qi, C.; Chen, H.Y. Transition from N to P limited soil nutrients over time since restoration in degraded subtropical broadleaved mixed forests. For. Ecol. Manag. 2021, 494, 119298. [Google Scholar] [CrossRef]
- Toor, G.S.; Bahl, G.S.; Vig, A.C. Pattern of P availability in different soils as assessed by different adsorption equations. J. Indian Soc. Soi. Sci. 1997, 45, 719–723. [Google Scholar]
- Oelmann, Y.; Richter, A.K.; Roscher, C.; Rosenkranz, S.; Temperton, V.M.; Weisser, W.W.; Wilcke, W. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 2011, 167, 178–187. [Google Scholar] [CrossRef]
- Shi, S.; Peng, C.; Wang, M.; Zhu, Q.; Yang, G.; Yang, Y.; Zhang, T. A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant Soil 2016, 407, 323–340. [Google Scholar] [CrossRef]
- Tan, D.S.; Jin, J.Y.; Huang, S.W.; Li, S.T.; He, P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Sci. Agric. Sin. 2007, 6, 133–139. [Google Scholar] [CrossRef]
- Ronnenberg, K.; Wesche, K. Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia. Plant Soil 2011, 340, 239–251. [Google Scholar] [CrossRef]
- Hu, A.; Yu, Z.; Liu, X.; Gao, W.; He, Y.; Li, J. The effects of irrigation and fertilization on the migration and transformation processes of main chemical components in the soil profile. Environ. Geochem. Health 2019, 41, 2631–2648. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, J.; Zhu, A.; Li, X.; Ma, D.; Xin, X.; Zhang, C.; Wu, S.; Garland, G.; Pereira, E.I.P. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Sci. Total Environ. 2018, 610, 1020–1028. [Google Scholar] [CrossRef]
- Zhou, L.Y. Effects of soil water conditions on fate of urea nitrogen. J. Plant. Nutr. Fertil. 1998, 4, 237–241. [Google Scholar] [CrossRef]
- Shen, L.F.; Bai, L.Y.; Zeng, X.B.; Wang, Y.Z. Effects of fertilization on NO3−-N accumulation in greenhouse soils. J. Agro-Environ. Sci. 2012, 31, 1350–1356. [Google Scholar]
- Miller, A.J.; Schuur, E.A.; Chadwick, O.A. Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma 2001, 102, 219–237. [Google Scholar] [CrossRef]
- Luan, M.M. Spatial Distribution of Soil Phosphorus in Urban-Rural Fringe and Its Influencing Factors. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2015. [Google Scholar]
- Magid, J.; Nielsen, N.E. Seasonal variations in organic and inorganic phosphorus fractions of temperate-climate sandy soils. Plant Soil 1992, 144, 155–165. [Google Scholar] [CrossRef]
- Chen, H.J. Phosphatase activity and P fractions in soils of an 18-year old Chinese fir plantation. For. Ecol. Manag. 2003, 178, 301–310. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Ren, Y.; Wang, X. Influence of different drying-rewetting frequency on soil respiration and available nutrients. Acta. Ecol. Sin. 2018, 38, 1542–1549. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Study on Nutrient Dynamic Change and Distribution of Phosphorus and Potassium of Camellia oleifera Abel under Different Water Conditions. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2016. [Google Scholar]
- Dobermann, A.; Cassman, K.G.; Adviento, M.A.A.; Pampolino, M.F. Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice system. III. Phosphorus. Nutr. Cycl. Agroecosyst. 1996, 46, 111–125. [Google Scholar] [CrossRef]
- Pathak, P.; Reddy, A.S. Vertical distribution analysis of soil organic carbon and total nitrogen in different land use patterns of an agro-organic farm. Trop. Ecol. 2021, 62, 386–397. [Google Scholar] [CrossRef]
- Somers, C.; Girkin, N.T.; Rippey, B.; Lanigan, G.J.; Richards, K.G. The effects of urine nitrogen application rate on nitrogen transformations in grassland soils. J. Agric. Sci. 2019, 157, 515–522. [Google Scholar] [CrossRef]
- Rex, D.; Clough, T.J.; Richards, K.G.; de Klein, C.; Morales, S.E.; Samad, M.S.; Grant, J.; Lanigan, G.J. Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutr. Cycl. Agroecosyst. 2018, 110, 135–149. [Google Scholar] [CrossRef]
- Lu, J.; Yang, M.; Liu, M.; Lu, Y.; Yang, H. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 2019, 42, 2234–2246. [Google Scholar] [CrossRef]
pH | SOM | TN | AP | AK | C/N | |
---|---|---|---|---|---|---|
(g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | |||
2007 | 8.62 ± 0.02 | 8.60 ± 0.88 | 0.58 ± 0.04 | 8.09 ± 1.04 | 90 ± 8 | 9 |
2012 | 7.08 ± 0.01 | 10.71 ± 1.02 | 0.21 ± 0.05 | 47.05 ± 3.25 | 322 ± 11 | 30 |
2018 | 7.31 ± 0.02 | 16.33 ± 1.33 | 0.52 ± 0.05 | 34.11 ± 2.99 | 229 ± 18 | 18 |
2020 | 7.58 ± 0.01 | 18.72 ± 1.21 | 0.73 ± 0.14 | 17.62 ± 0.92 | 260 ± 16 | 14 |
Depth | SWC | NAR | SOM | TN | AP | AK | NH4+-N | NO3−-N |
---|---|---|---|---|---|---|---|---|
(cm) | (%) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | |
W1 | N0 | 14.38 ± 1.14 | 0.64 ± 0.04 efg | 26.54 ± 1.82 a | 269 ± 14 b | 5.18 ± 0.85 | 4.32 ± 0.17 f | |
N1 | 17.37 ± 2.37 | 0.73 ± 0.02 cde | 18.99 ± 2.08 bc | 254 ± 7 bc | 5.75 ± 0.21 | 16.64 ± 1.29 e | ||
N2 | 18.79 ± 0.27 | 0.80 ± 0.04 c | 18.22 ± 4.16 cd | 250 ± 13 bc | 5.82 ± 1.34 | 24.06 ± 2.01 bc | ||
N3 | 18.32 ± 1.87 | 1.25 ± 0.12 a | 16.16 ± 1.80 cde | 186 ± 10 e | 6.17 ± 2.31 | 37.15 ± 3.38 a | ||
0–20 | W2 | N0 | 12.90 ± 0.72 | 0.60 ± 0.03 fg | 22.88 ± 3.43 ab | 306 ± 12 b | 4.84 ± 0.11 | 6.90 ± 0.09 f |
N1 | 17.75 ± 2.03 | 0.65 ± 0.09 def | 15.74 ± 0.20 cde | 284 ± 8 b | 5.10 ± 0.54 | 25.41 ± 0.96 b | ||
N2 | 12.86 ± 1.10 | 0.75 ± 0.03 cd | 14.48 ± 0.76 de | 268 ± 9 b | 5.45 ± 0.91 | 33.41 ± 2.44 a | ||
N3 | 18.57 ± 0.83 | 1.09 ± 0.07 b | 11.90 ± 1.13 e | 230 ± 17 cd | 5.55 ± 0.28 | 34.65 ± 2.05 a | ||
W3 | N0 | 11.37 ± 0.15 | 0.36 ± 0.05 i | 19.88 ± 3.94 bc | 274 ± 14 b | 4.88 ± 0.44 | 5.99 ± 0.14 f | |
N1 | 18.20 ± 4.18 | 0.46 ± 0.03 h | 18.14 ± 1.07 cd | 265 ± 14 cd | 4.94 ± 0.49 | 20.07 ± 0.90 d | ||
N2 | 19.40 ± 0.73 | 0.55 ± 0.03 g | 16.05 ± 1.72 cde | 226 ± 18 b | 5.14 ± 0.08 | 21.48 ± 1.00 cd | ||
N3 | 16.03 ± 0.61 | 0.71 ± 0.04 cde | 12.52 ± 0.71 e | 203 ± 11 de | 5.44 ± 0.37 | 35.58 ± 1.90 a | ||
SWC | ns | ** | * | * | ns | * | ||
NAR | ns | ** | ** | ** | * | ** | ||
SWC×NAR | ns | ** | ** | ** | ns | ** | ||
W1 | N0 | 9.99 ± 0.24 | 0.37 ± 0.13 abc | 8.81 ± 1.37 cd | 154 ± 8 fg | 4.54 ± 0.66 | 3.62 ± 0.36 g | |
N1 | 8.54 ± 0.34 | 0.40 ± 0.14 abc | 9.01 ± 1.78 cd | 162 ± 4 ef | 4.68 ± 0.27 | 13.32 ± 1.31 f | ||
N2 | 6.13 ± 0.16 | 0.46 ± 0.06 abc | 14.30 ± 2.45 a | 153 ± 6 fg | 5.42 ± 0.86 | 27.24 ± 0.85 c | ||
N3 | 9.25 ± 1.20 | 0.55 ± 0.06 a | 13.52 ± 2.20 ab | 202 ± 10 c | 5.51 ± 0.13 | 32.8 ± 0.58 b | ||
20–40 | W2 | N0 | 5.82 ± 0.57 | 0.27 ± 0.03 d | 8.89 ± 0.30 cd | 164 ± 11 ef | 4.50 ± 0.17 | 5.84 ± 0.49 g |
N1 | 7.88 ± 2.09 | 0.37 ± 0.13 abc | 4.00 ± 0.12 e | 241 ± 11 b | 4.73 ± 0.58 | 22.52 ± 0.70 d | ||
N2 | 9.87 ± 1.45 | 0.38 ± 0.05 abc | 11.61 ± 3.48 abc | 171 ± 3 de | 4.79 ± 0.31 | 29.48 ± 2.19 b | ||
N3 | 12.19 ± 0.52 | 0.41 ± 0.09 abc | 7.48 ± 1.30 d | 273 ± 6 a | 4.96 ± 0.40 | 28.25 ± 0.60 b | ||
W3 | N0 | 11.97 ± 0.15 | 0.25 ± 0.07 d | 8.60 ± 0.87 cd | 146 ± 7 g | 4.44 ± 1.09 | 5.53 ± 0.58 g | |
N1 | 9.04 ± 1.25 | 0.27 ± 0.12 d | 8.69 ± 2.24 cd | 177 ± 5 d | 4.60 ± 0.08 | 17.61 ± 1.41 e | ||
N2 | 6.93 ± 0.68 | 0.33 ± 0.13 cd | 10.71 ± 1.04 bcd | 162 ± 2 ef | 4.64 ± 0.14 | 16.08 ± 3.32 e | ||
N3 | 9.07 ± 0.76 | 0.53 ± 0.07 ab | 8.37 ± 1.04 cd | 159 ± 6 ef | 4.66 ± 0.35 | 35.69 ± 2.17 a | ||
SWC | ns | ** | * | * | ns | * | ||
NAR | ns | ** | ** | ** | * | ** | ||
SWC×NAR | ns | ** | ** | ** | ns | ** |
N = 36 | SOM | TN | AP | AK | NH4+-N | NO3−-N |
---|---|---|---|---|---|---|
SOM | 1 | 0.431 * | −0.424 * | −0.539 * | 0.471 * | 0.500 * |
TN | 1 | −0.419 * | −0.631 * | 0.691 * | 0.844 ** | |
AP | 1 | 0.567 * | −0.365 | −0.891 ** | ||
AK | 1 | −0.700 * | −0.699 * | |||
NH4+-N | 1 | 0.635 * | ||||
NO3−-N | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Nie, L.; Huang, M.; Yang, H.; Shi, C.; Wei, Y.; Song, L.; Zhu, J.; Bo, H.; Wang, J.; et al. Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands. Forests 2022, 13, 1046. https://doi.org/10.3390/f13071046
Zhang R, Nie L, Huang M, Yang H, Shi C, Wei Y, Song L, Zhu J, Bo H, Wang J, et al. Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands. Forests. 2022; 13(7):1046. https://doi.org/10.3390/f13071046
Chicago/Turabian StyleZhang, Runzhe, Lishui Nie, Mengyao Huang, Hao Yang, Ce Shi, Yifan Wei, Lianjun Song, Jialei Zhu, Huijuan Bo, Jiang Wang, and et al. 2022. "Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands" Forests 13, no. 7: 1046. https://doi.org/10.3390/f13071046
APA StyleZhang, R., Nie, L., Huang, M., Yang, H., Shi, C., Wei, Y., Song, L., Zhu, J., Bo, H., Wang, J., & Nie, H. (2022). Effects of Irrigation and Nitrogen Application on Soil Nutrients in Triploid Populus tomentosa Stands. Forests, 13(7), 1046. https://doi.org/10.3390/f13071046