Conifer Biotechnology: An Overview
Abstract
:1. General Traits, Distribution, and Diversity
2. Ecological and Economic Importance of Conifers
3. Genomic Research in Conifers
4. Breeding Programs and Biotechnological Alternatives
5. Genetic Transformation
6. Genome Editing with CRISPR/Cas9
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.A.; Beaulieu, J.M.; Donoghue, M.J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl. Acad. Sci. USA 2010, 107, 5897–5902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farjon, A. The Kew Review: Conifers of the World. Kew Bull. 2018, 73, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Ran, J.H. Evolution and biogeography of gymnosperms. Mol. Phylogenet. Evol. 2014, 75, 24–40. [Google Scholar] [CrossRef]
- Egertsdotter, U.; Ahmad, I.; Clapham, D. Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front. Plant Sci. 2019, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, D.B.; Wheeler, N.C. The Conifers. In The Conifers: Genomes, Variation and Evolution; Springer: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- O’Connell, L.M.; Mosseler, A.; Rajora, O.P. Extensive long-distance pollen dispersal in a fragmented landscape maintains genetic diversity in white spruce. J. Hered. 2007, 98, 640–645. [Google Scholar] [CrossRef]
- Williams, C.G. Conifer reproductive biology. In Conifer Reproductive Biology; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Reveal, J.L.; Farjon, A.; Gardner, M.F.; Mill, R.R.; Chase, M.W. A new classification and linear sequence of extant gymnosperms. Phytotaxa 2011, 19, 55. [Google Scholar] [CrossRef]
- Diao, S.; Ding, X.; Luan, Q.; Jiang, J. A complete transcriptional landscape analysis of Pinus elliottii Engelm. Using third-generation sequencing and comparative analysis in the Pinus phylogeny. Forests 2019, 10, 942. [Google Scholar] [CrossRef] [Green Version]
- Onyenedum, J.G.; Pace, M.R. The role of ontogeny in wood diversity and evolution. Am. J. Bot. 2021, 108, 2331–2355. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Zhang, C.; Dou, M.; Weng, K.; Wang, Y.; Xu, Y. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnol. J. 2021, 19, 1824–1838. [Google Scholar] [CrossRef]
- Bueno, N.; Cuesta, C.; Centeno, M.L.; Ordás, R.J.; Alvarez, J.M. In vitro plant pegeneration in conifers: The role of WOX and KNOX gene families. Genes 2021, 12, 438. [Google Scholar] [CrossRef]
- Vogel, J.G.; Bracho, R.; Akers, M.; Amateis, R.; Bacon, A.; Burkhart, H.E.; Gonzalez-Benecke, C.A.; Grunwald, S.; Jokela, E.J.; Kane, M.B.; et al. Regional assessment of crbon pool response to intensive silvicultural practices in loblolly pine plantations. Forests 2021, 13, 36. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Chen, T.; Zhao, T.; Song, L.; Mei, L. Fertilization and clear-cutting effects on greenhouse gas emissions of pinewood nematode damaged Masson pine plantation. Ecosyst. Health Sustain. 2021, 7, 1868271. [Google Scholar] [CrossRef]
- Hoppa, A.; Sikorska, D.; Przybysz, A.; Melon, M.; Sikorski, P. The role of trees in winter air purification on children’s routes to school. Forests 2022, 13, 40. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Sharma, V.; Shrivastava, V.; Kumar, P.; Kanga, S.; Sahu, N.; Meraj, G.; Farooq, M.; Singh, S.K. Impact of forest fires on air quality in Wolgan valley, New South Wales, Australia; A mapping and monitoring study using Google Earth engine. Forests 2022, 13, 4. [Google Scholar] [CrossRef]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D.; et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef]
- Dorigan de Matos Furlanetto, A.L.; Kaziuk, F.D.; Martinez, G.R.; Donatti, L.; Merlin Rocha, M.E.; Dos Santos, A.L.W.; Floh, E.I.S.; Cadena, S. Mitochondrial bioenergetics and enzymatic antioxidant defense differ in Parana pine cell lines with contrasting embryogenic potential. Free Radic. Res. 2021, 55, 255–266. [Google Scholar] [CrossRef]
- Valeriano, C.; Gazol, A.; Colangelo, M.; Camarero, J.J. Drought drives growth and mortality rates in three pine species under mediterranean conditions. Forests 2021, 12, 1700. [Google Scholar] [CrossRef]
- Shao, C.; Duan, H.; Ding, G.; Luo, X.; Fu, Y.; Lou, Q. Physiological and biochemical dynamics of Pinus massoniana Lamb. Seedlings under extreme drought stress and during recovery. Forests 2022, 13, 65. [Google Scholar] [CrossRef]
- Qi, C.; Jiao, L.; Xue, R.; Wu, X.; Du, D. Timescale effects of radial growth responses of two dominant coniferous trees on climate change in the Eastern Qilian mountains. Forests 2022, 13, 72. [Google Scholar] [CrossRef]
- Flores, A.; López-Upton, J.; Rullán-Silva, C.D.; Olthoff, A.E.; Alía, R.; Sáenz-Romero, C.; Garcia del Barrio, J.M. Priorities for Conservation and Sustainable Use of Forest Genetic Resources in Four Mexican Pines. Forests 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Aniszewska, M.; Gendek, A.; Tulska, E.; Pęska, P.; Moskalik, T. Influence of the duration of microwave irradiation of Scots pine (Pinus sylvestris L.) cones on the quality of harvested seeds. Forests 2019, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.; Sokolov, S.; Drapalyuk, M.; Zelikov, V.; Ivetić, V. Performance of Scots pine seedlings from seeds graded by colour. Forests 2019, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Mvolo, C.S.; Koubaa, A.; Beaulieu, J.; Cloutier, A. Effect of seed transfer on selected wood quality attributes of jack pine (Pinus banksiana Lamb.). Forests 2019, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xiang, W.; Ouyang, S.; Xiao, W.; Li, S.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Zeng, L.; et al. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. For. Ecol. Manag. 2020, 460, 117896. [Google Scholar] [CrossRef]
- Sung, S.-J.S.; Dumroese, R.K.; Pinto, J.R.; Sayer, M.A.S. The persistence of container nursery treatments on the field performance and root system morphology of longleaf pine seedlings. Forests 2019, 10, 807. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xu, H.; Yi, H. Impact of fertilizer on crop yield and C:N:P stoichiometry in arid and semi-arid soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef]
- Flores-Rentería, D.; Barradas, V.L.; Álvarez-Sánchez, J. Ectomycorrhizal pre-inoculation of Pinus hartwegii and Abies religiosa is replaced by native fungi in a temperate forest of central Mexico. Symbiosis 2018, 74, 131–144. [Google Scholar] [CrossRef]
- Vicente, C.S.L.; Soares, M.; Faria, J.M.S.; Ramos, A.P.; Inacio, M.L. Insights into the role of fungi in pine wilt disease. J. Fungi. 2021, 7, 780. [Google Scholar] [CrossRef]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef]
- Balla, A.; Silini, A.; Cherif-Silini, H.; Chenari Bouket, A.; Moser, W.K.; Nowakowska, J.A.; Oszako, T.; Benia, F.; Belbahri, L. The threat of pests and pathogens and the potential for biological control in forest ecosystems. Forests 2021, 12, 1579. [Google Scholar] [CrossRef]
- Rama, T.; Quandt, C.A. Improving fungal cultivability for natural products discovery. Front. Microbiol. 2021, 12, 706044. [Google Scholar] [CrossRef] [PubMed]
- Potter, K.M.; Riitters, K. A national multi-scale assessment of regeneration deficit as an indicator of potential risk of forest genetic variation loss. Forests 2021, 13, 19. [Google Scholar] [CrossRef]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zonneveld, B.J.M. Conifer genome sizes of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nord. J. Bot. 2012, 30, 490–502. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Lin, Y.C.; Van de Peer, Y.; Ingvarsson, P.K. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 2015, 7, 1002–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cañas, R.A.; Pascual, M.B.; de la Torre, F.N.; Ávila, C.; Cánovas, F.M. Resources for conifer functional genomics at the omics era. Adv. Bot. Res. 2019, 89, 39–76. [Google Scholar] [CrossRef]
- Neale, D.B.; Wheeler, N.C. Gene and genome sequencing in conifers: Modern era. In The Conifers: Genomes, Variation and Evolution; Springer: Cham, Switzerland, 2019; pp. 43–60. [Google Scholar] [CrossRef]
- Neale, D.B.; Martinez-Garcia, P.J.; De La Torre, A.R.; Montanari, S.; Wei, X.X. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Annu. Rev. Plant Biol. 2017, 68, 457–483. [Google Scholar] [CrossRef]
- Birol, I.; Raymond, A.; Jackman, S.D.; Pleasance, S.; Coope, R.; Taylor, G.A.; Yuen, M.M.; Keeling, C.I.; Brand, D.; Vandervalk, B.P.; et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 2013, 29, 1492–1497. [Google Scholar] [CrossRef]
- Nystedt, B.; Street, N.R.; Wetterbom, A.; Zuccolo, A.; Lin, Y.C.; Scofield, D.G.; Vezzi, F.; Delhomme, N.; Giacomello, S.; Alexeyenko, A.; et al. The Norway spruce genome sequence and conifer genome evolution. Nature 2013, 497, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.; Stevens, K.A.; Crepeau, M.W.; Holtz-Morris, A.; Koriabine, M.; Marcais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J.L.; de Jong, P.J.; et al. Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 2014, 196, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Stevens, K.A.; Crepeau, M.W.; Puiu, D.; Wegrzyn, J.L.; Yorke, J.A.; Langley, C.H.; Neale, D.B.; Salzberg, S.L. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 2017, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.A.; Wegrzyn, J.L.; Zimin, A.; Puiu, D.; Crepeau, M.; Cardeno, C.; Paul, R.; Gonzalez-Ibeas, D.; Koriabine, M.; Holtz-Morris, A.E.; et al. Sequence of the sugar pine megagenome. Genetics 2016, 204, 1613–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, D.B.; McGuire, P.E.; Wheeler, N.C.; Stevens, K.A.; Crepeau, M.W.; Cardeno, C.; Zimin, A.V.; Puiu, D.; Pertea, G.M.; Sezen, U.U.; et al. The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3 2017, 7, 3157–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, J.; Bautista, R.; Label, P.; Gomez-Maldonado, J.; Lesur, I.; Fernandez-Pozo, N.; Rueda-Lopez, M.; Guerrero-Fernandez, D.; Castro-Rodriguez, V.; Benzekri, H.; et al. De novo assembly of maritime pine transcriptome: Implications for forest breeding and biotechnology. Plant Biotechnol. J. 2014, 12, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ibeas, D.; Martinez-Garcia, P.J.; Famula, R.A.; Delfino-Mix, A.; Stevens, K.A.; Loopstra, C.A.; Langley, C.H.; Neale, D.B.; Wegrzyn, J.L. Assessing the gene content of the megagenome: Sugar pine (Pinus lambertiana). G3 2016, 6, 3787–3802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, P.F. Examining naturogenic processes and anthropogenic influences on tree growth and development via stem analysis: Data processing and computational analytics. Forests 2019, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Le, K.-C.; Weerasekara, A.B.; Ranade, S.S.; Egertsdotter, E.M.U. Evaluation of parameters to characterise germination-competent mature somatic embryos of Norway spruce (Picea abies). Biosyst. Eng. 2021, 203, 55–59. [Google Scholar] [CrossRef]
- Lassoued, R.; Macall, D.M.; Smyth, S.J.; Phillips, P.W.B.; Hesseln, H. Data challenges for future plant gene editing: Expert opinion. Transgenic Res. 2021, 30, 765–780. [Google Scholar] [CrossRef]
- Uddenberg, D.; Akhter, S.; Ramachandran, P.; Sundstrom, J.F.; Carlsbecker, A. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. Front. Plant Sci. 2015, 6, 970. [Google Scholar] [CrossRef] [Green Version]
- Catalán, G. Current situation and prospects of the stonepine as nut producer. FAO-Nucis-Newsletter 1998, 7, 28–32. [Google Scholar]
- Ahuja, M.R.; Libby, W.J. Genetics, Biotechnology and Clonal Forestry. In Clonal Forestry I; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1–4. [Google Scholar] [CrossRef]
- Merkle, S.A.; Dean, J.F.D. Forest tree biotechnology. Curr. Opin. Biotechnol. 2000, 11, 298–302. [Google Scholar] [CrossRef]
- Greenwood, M.S. Juvenility and maturation in conifers: Current concepts. Tree Physiol. 1995, 15, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.M.; Brunner, A.M.; Jones, H.M.; Strauss, S.H. Forestry’s fertile crescent: The application of biotechnology to forest trees. Plant Biotechnol. J. 2003, 1, 141–154. [Google Scholar] [CrossRef] [PubMed]
- von Aderkas, P.; Bonga, J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol. 2000, 20, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harfouche, A.; Meilan, R.; Kirst, M.; Morgante, M.; Boerjan, W.; Sabatti, M.; Scarascia Mugnozza, G. Accelerating the domestication of forest trees in a changing world. Trends Plant Sci. 2012, 17, 64–72. [Google Scholar] [CrossRef]
- Trontin, J.-F.; Harvengt, L.; Garin, E.; Lopez-Vernaza, M.; Arancio, L.; Hoebeke, J.; Canlet, F.; Pâques, M. Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Ann. For. Sci. 2002, 59, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Niskanen, A.M.; Lu, J.; Seitz, S.; Keinonen, K.; Von Weissenberg, K.; Pappinen, A. Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiol. 2004, 24, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Varis, S.; Klimaszewska, K.; Aronen, T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees. Front. Plant Sci. 2018, 9, 1551. [Google Scholar] [CrossRef]
- Lelu-Walter, M.-A.; Bernier-Cardou, M.; Klimaszewska, K. Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep. 2006, 25, 767–776. [Google Scholar] [CrossRef]
- Chang, S.H.; Ho, C.K.; Chen, Z.Z.; Tsay, J.Y. Micropropagation of Taxus mairei from mature trees. Plant Cell Rep. 2001, 20, 496–502. [Google Scholar] [CrossRef]
- Ewald, D. Advances in tissue culture of adult larch. In Vitro Cell. Dev. Biol. Plant 1998, 34, 325–330. [Google Scholar] [CrossRef]
- Dumas, E.; Monteuuis, O. In vitro rooting of micropopagated shoots from juvenile and mature Pinus pinaster explants: Influence of activated charcoal. Plant Cell Tissue Organ Cult. 1995, 40, 231–235. [Google Scholar] [CrossRef]
- Loberant, B.; Altman, A. Micropropagation of Plants. In Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology; Wiley: New York, NY, USA, 2010; pp. 1–17. [Google Scholar]
- Ranade, S.S.; Egertsdotter, U. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genom. 2021, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Bonga, J.M.; Klimaszewska, K.K.; von Aderkas, P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 2010, 100, 241–254. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Salehi, H.; Khosh-Khui, M. Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol. Hung. 2011, 62, 477–484. [Google Scholar] [CrossRef]
- Khater, N.; Benbouza, H. Preservation of Juniperus thurifera L.: A rare endangered species in Algeria through in vitro regeneration. J. For. Res. 2019, 30, 77–86. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Yeoman, M.M.; Grace, J. Micropropagation of mature Calabrian pine (Pinus brutia Ten.) from fascicular buds. Tree Physiol. 1987, 3, 123–136. [Google Scholar] [CrossRef]
- Horgan, K.J. Pinus radiata. In Tissue Culture in Forestry; Bonga, J.M., Durzan, D., Eds.; Martinus Nijhalf: Dordrecht, The Netherlands, 1987; Volume 3, pp. 128–145. [Google Scholar]
- Parasharami, V.A.; Poonawala, I.S.; Nadgauda, R.S. Bud break and plantlet regeneration in vitro from mature trees of Pinus roxburghii Sarg. Curr. Sci. 2003, 84, 203–208. [Google Scholar]
- Prehn, D.; Serrano, C.; Mercado, A.; Stange, C.; Barrales, L.; Arce-Johnson, P. Regeneration of whole plants from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult. 2003, 73, 91–94. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Ollero, J.; Arrillaga, I.; Segura, J. Factors influencing axillary shoot proliferation and adventitious budding in cedar. Tree Physiol. 2005, 25, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Cortizo, M.; de Diego, N.; Moncaleán, P.; Ordás, R.J. Micropropagation of adult Stone Pine (Pinus pinea L.). Trees 2009, 23, 835–842. [Google Scholar] [CrossRef]
- Cuesta, C.; Ordás, R.; Fernández, B.; Rodríguez, A. Clonal micropropagation of six selected half-sibling families of Pinus pinea and somaclonal variation analysis. Plant Cell Tissue Organ Cult. 2008, 95, 125–130. [Google Scholar] [CrossRef]
- Danusevicius, D.; Lindgren, D. Efficiency of selection based on phenotype, clone and progeny testing in long-term breeding. Silvae Genet. 2002, 51, 19–25. [Google Scholar]
- Foster, G.S.; Shaw, D.V. A tree improvement program to develop clones of loblolly pine for reforestation. In Proceedings of the Southern Forest Tree Improvement Conference (USA), College Station, TX, USA, 16–18 June 1987. [Google Scholar] [CrossRef]
- López, M.; Pacheco, J.; Rodríguez, R.; Ordás, R.J. Regeneration of plants from insolated cotyledons of Salgareño Pine (Pinus nigra Arn. ssp. salzmannii (Dunal) Franco). In Vitro Cell. Dev. Biol. Plant 1996, 32, 109–114. [Google Scholar] [CrossRef]
- Alonso, P.; Moncaleán, P.; Fernández, B.; Rodríguez, A.; Centeno, M.L.; Ordás, R.J. An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann. For. Sci. 2006, 63, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.M.; Majada, J.; Ordás, R.J. An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 2009, 82, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Calixto, F.; Pais, M.S. Adventitious shoot formation and plant regeneration from Pinus pinaster Sol. ex Aiton. In Vitro Cell. Dev. Biol. Plant 1997, 33, 119–124. [Google Scholar] [CrossRef]
- Tereso, S.; Gonçalves, S.; Marum, L.; Oliveira, M.; Maroco, J.; Miguel, C. Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster Ait. Propag. Ornam. Plant. 2006, 6, 24–33. [Google Scholar]
- De Diego, N.; Montalbán, I.A.; Fernandez de Larrinoa, E.; Moncaleán, P. In vitro regeneration of Pinus pinaster adult trees. Can. J. For. Res. 2008, 38, 2607–2615. [Google Scholar] [CrossRef]
- Bercetche, J.; Pâques, M. Somatic embryogenesis in maritime pine (Pinus pinaster). In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P., Newton, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume Gymnosperms, pp. 269–285. [Google Scholar]
- Miguel, C.; Gonçalves, S.; Tereso, S.; Marum, L.; Maroco, J.; Oliveira, M. Somatic embryogenesis from 20 open-pollinated families of portuguese plus trees of maritime pine. Plant Cell Tissue Organ Cult. 2004, 76, 121–130. [Google Scholar] [CrossRef]
- Harvengt, L. Somatic embryogenesis in maritime pine (Pinus pinaster Ait.). In Protocol of Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer: Berlin, Germany, 2005; Volume 77, pp. 107–120. [Google Scholar]
- Alvarez, J.M.; Bueno, N.; Cortizo, M.; Ordás, R.J. Improving plantlet yield in Pinus pinaster somatic embryogenesis. Scand. J. For. Res. 2013, 28, 613–620. [Google Scholar] [CrossRef]
- Wise, F.C.; Caldwell, T.D. Macropropagation of conifers by stem cuttings. In Applications of Vegetative Propagation in Forestry; Foster, G.S., Diner, A.M., Eds.; General Technical Report SO-108; USDA Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1994; pp. 51–73. [Google Scholar]
- Zhang, S.; Yan, S.; An, P.; Cao, Q.; Wang, C.; Wang, J.; Zhang, H.; Zhang, L. Embryogenic callus induction from immature zygotic embryos and genetic transformation of Larix kaempferi 3x Larix gmelinii 9. PLoS ONE 2021, 16, e0258654. [Google Scholar] [CrossRef] [PubMed]
- Hazubska-Przybył, T.; Wawrzyniak, M.K.; Kijowska-Oberc, J.; Staszak, A.M.; Ratajczak, E. Somatic embryogenesis of Norway spruce and Scots pine: Possibility of application in modern forestry. Forests 2022, 13, 155. [Google Scholar] [CrossRef]
- von Arnold, S.; Clapham, D.; Abrahamsson, M. Chapter Five—Embryology in conifers. Adv. Bot. Res. 2019, 89, 157–184. [Google Scholar]
- Corredoira, E.; Merkle, S.A.; Martínez, M.T.; Toribio, M.; Canhoto, J.M.; Correia, S.I.; Ballester, A.; Vieitez, A.M. Non-zygotic embryogenesis in hardwood species. Crit. Rev. Plant Sci. 2019, 38, 29–97. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Favero, D.S.; Sakamoto, Y.; Iwase, A.; Coleman, D.; Rymen, B.; Sugimoto, K. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 2019, 70, 377–406. [Google Scholar] [CrossRef] [PubMed]
- Aronen, T.; Pehkonen, T.; Ryynänen, L. Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand. J. For. Res. 2009, 24, 372–383. [Google Scholar] [CrossRef]
- Montalbán, I.A.; De Diego, N.; Moncaleán, P. Bottlenecks in Pinus radiata somatic embryogenesis: Improving maturation and germination. Trees 2010, 24, 1061–1071. [Google Scholar] [CrossRef]
- Carneros, E.; Toribio, M.; Celestino, C. Effect of ABA, the auxin antagonist PCIB and partial desiccation on stone pine somatic embryo maturation. Plant Cell Tissue Organ Cult. 2017, 131, 445–458. [Google Scholar] [CrossRef]
- Attree, S.; Moore, D.; Sawhney, V.; Fowke, L. Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 1991, 68, 519–525. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Smith, D.R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant 1997, 100, 949–957. [Google Scholar] [CrossRef]
- Breton, D.; Harvengt, L.; Trontin, J.-F.; Bouvet, A.; Favre, J.-M. Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tissue Organ Cult. 2006, 87, 95–108. [Google Scholar] [CrossRef]
- Peng, C.; Gao, F.; Wang, H.; Shen, H.; Yang, L. Optimization of maturation process for somatic embryo production and cryopreservation of embryogenic tissue in Pinus koraiensis. Plant Cell Tissue Organ Cult. 2020, 144, 185–194. [Google Scholar] [CrossRef]
- Montalbán, I.A.; Castander-Olarieta, A.; Hargreaves, C.L.; Gough, K.; Reeves, C.B.; van Ballekom, S.; Goicoa, T.; Ugarte, M.D.; Moncaleán, P. Hybrid pine (Pinus attenuata × Pinus radiata) somatic embryogenesis: What do you prefer, mother or nurse? Forests 2020, 12, 45. [Google Scholar] [CrossRef]
- Wunderling, A.; Ripper, D.; Barra-Jimenez, A.; Mahn, S.; Sajak, K.; Targem, M.B.; Ragni, L. A molecular framework to study periderm formation in Arabidopsis. New Phytol. 2018, 219, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Aronen, T.; Virta, S.; Varis, S. Telomere length in Norway spruce during somatic embryogenesis and cryopreservation. Plants 2021, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Hazubska-Przybyl, T.; Ratajczak, E.; Obarska, A.; Pers-Kamczyc, E. Different roles of auxins in somatic embryogenesis efficiency in two Picea species. Int. J. Mol. Sci. 2020, 21, 3394. [Google Scholar] [CrossRef]
- Pereira, C.; Castander-Olarieta, A.; Sales, E.; Montalban, I.A.; Canhoto, J.; Moncalean, P. Heat stress in Pinus halepensis somatic embryogenesis induction: Effect in DNA methylation and differential expression of stress-related genes. Plants 2021, 10, 2333. [Google Scholar] [CrossRef]
- Varis, S.; Tikkinen, M.; Välimäki, S.; Aronen, T. Light spectra during somatic embryogenesis of Norway spruce—Impact on growth, embryo productivity and embling survival. Forests 2021, 12, 301. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, Y.; Zhao, R.; Zhao, J.; Li, Y.; Qi, S.; Zhang, J.; Kong, L. Transcriptomic, metabolomic, and physiological analyses reveal that the culture temperatures modulate the cryotolerance and embryogenicity of developing somatic embryos in Picea glauca. Front. Plant Sci. 2021, 12, 694229. [Google Scholar] [CrossRef]
- Gao, F.; Peng, C.; Wang, H.; Tretyakova, I.N.; Nosov, A.M.; Shen, H.; Yang, L. Key techniques for somatic embryogenesis and plant regeneration of Pinus koraiensis. Forests 2020, 11, 912. [Google Scholar] [CrossRef]
- Salaj, T.; Panis, B.; Swennen, R.; Salaj, J. Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. Cryo. Lett. 2007, 28, 69–76. [Google Scholar]
- Bonga, J. Conifer clonal propagation in tree improvement programs. In Vegetative Propagation of Forest Trees; National Institute of Forest Science (NIFoS): Seoul, Korea, 2016; pp. 3–31. [Google Scholar]
- Rosvall, O. Using Norway spruce clones in Swedish forestry: General overview and concepts. Scand. J. For. Res. 2019, 34, 336–341. [Google Scholar] [CrossRef]
- Park, Y.-S. Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Ann. For. Sci. 2002, 59, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Klimaszewska, K.; Trontin, J.F.; Becwar, M.; Devillard, C.; Park, Y.S.; Lelu-Walter, M.A. Recent progress on somatic embryogenesis of four Pinus spp. Tree For. Sci. Biotechnol. 2007, 1, 11–25. [Google Scholar]
- Alvarez, J.M.; Cortizo, M.; Ordás, R. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: Effects on regrowth and embryo maturation. Cryo. Lett. 2012, 33, 476–484. [Google Scholar]
- Phillips, R.L.; Kaeppler, S.M.; Olhoft, P. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proc. Natl. Acad. Sci. USA 1994, 91, 5222–5226. [Google Scholar] [CrossRef] [Green Version]
- Pischke, M.S.; Huttlin, E.L.; Hegeman, A.D.; Sussman, M.R. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 2006, 140, 1255–1278. [Google Scholar] [CrossRef] [Green Version]
- von Arnold, S.; Egertsdotter, U.; Ekberg, I.; Gupta, P.; Mo, H.; Nörgaard, J. Somatic embryogenesis in Norway spruce (Picea abies). In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 3—Gymnosperms, pp. 17–36. [Google Scholar]
- Izuno, A.; Maruyama, T.E.; Ueno, S.; Ujino-Ihara, T.; Moriguchi, Y. Genotype and transcriptome effects on somatic embryogenesis in Cryptomeria japonica. PLoS ONE 2020, 15, e0244634. [Google Scholar] [CrossRef]
- Maruyama, T.E.; Ueno, S.; Hosoi, Y.; Miyazawa, S.I.; Mori, H.; Kaneeda, T.; Bamba, Y.; Itoh, Y.; Hirayama, S.; Kawakami, K.; et al. Somatic embryogenesis initiation in sugi (Japanese cedar, Cryptomeria japonica D. Don): Responses from male-fertile, male-sterile, and polycross-pollinated-derived seed explants. Plants 2021, 10, 398. [Google Scholar] [CrossRef]
- Rensing, S.A.; Weijers, D. Flowering plant embryos: How did we end up here? Plant Reprod 2021, 34, 365–371. [Google Scholar] [CrossRef]
- Zhu, T.; Moschou, P.N.; Alvarez, J.M.; Sohlberg, J.J.; von Arnold, S. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol. 2016, 16, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Peng, P.; Duan, G.; Lin, T.; Bai, Y.E. Multiple analyses of various factors affecting the plantlet regeneration of Picea mongolica (H. Q. Wu) W.D. Xu from somatic embryos. Sci. Rep. 2021, 11, 6694. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.K.; Zhang, F.; Peng, S.; Niu, L.; Chaturvedi, J.; Elliott, J.; Xiang, Y.; Tadege, M.; Deng, J. Structure of the unique tetrameric STENOFOLIA homeodomain bound with target promoter DNA. Acta Crystallogr. D Struct. Biol. 2021, 77, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Chano, V.; Sobrino-Plata, J.; Collada, C.; Soto, A. Wood development regulators involved in apical growth in Pinus canariensis. Plant Biol. 2021, 23, 438–444. [Google Scholar] [CrossRef]
- Bueno, N.; Alvarez, J.M.; Ordás, R.J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci. 2020, 301, 110691. [Google Scholar] [CrossRef]
- Zhu, T.; Moschou, P.N.; Alvarez, J.M.; Sohlberg, J.J.; von Arnold, S. WUSCHEL-RELATED HOMEOBOX 8/9 is important for proper embryo patterning in the gymnosperm Norway spruce. J. Exp. Bot. 2014, 65, 6543–6552. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.M.; Sohlberg, J.; Engström, P.; Zhu, T.; Englund, M.; Moschou, P.N.; von Arnold, S. The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce. New Phytol. 2015, 208, 1078–1088. [Google Scholar] [CrossRef] [Green Version]
- Tvorogova, V.E.; Krasnoperova, E.Y.; Potsenkovskaia, E.A.; Kudriashov, A.A.; Dodueva, I.E.; Lutova, L.A. What does the WOX say? Review of regulators, targets, partners. Mol. Biol. 2021, 55, 311–337. [Google Scholar] [CrossRef]
- Subban, P.; Kutsher, Y.; Evenor, D.; Belausov, E.; Zemach, H.; Faigenboim, A.; Bocobza, S.; Timko, M.P.; Reuveni, M. Shoot regeneration is not a single cell event. Plants 2020, 10, 58. [Google Scholar] [CrossRef]
- Jha, P.; Ochatt, S.J.; Kumar, V. WUSCHEL: A master regulator in plant growth signaling. Plant Cell Rep. 2020, 39, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Junker, J.P.; van Oudenaarden, A. Every cell is special: Genome-wide studies add a new dimension to single-cell biology. Cell 2014, 157, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.M.; Ordas, R.J. Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection. Sci. World J. 2013, 2013, 681792. [Google Scholar] [CrossRef] [PubMed]
- von Arnold, S.; Zhu, T.; Larsson, E.; Uddenberg, D.; Clapham, D. Regulation of somatic embryo development in Norway spruce. Methods Mol. Biol. 2020, 2122, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Palmgren, M. GRF-GIF chimeras boost plant regeneration. Trends Plant Sci. 2021, 26, 201–204. [Google Scholar] [CrossRef]
- Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 2020, 38, 1274–1279. [Google Scholar] [CrossRef]
- Deng, W.; Luo, K.; Li, Z.; Yang, Y. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci. 2009, 177, 43–48. [Google Scholar] [CrossRef]
- Monson, R.K.; Trowbridge, A.M.; Lindroth, R.L.; Lerdau, M.T. Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol. 2022, 233, 1051–1066. [Google Scholar] [CrossRef]
- Gasser, C.S.; Fraley, R.T. Genetically engineering plants for crop improvement. Science 1989, 244, 1293–1299. [Google Scholar] [CrossRef] [Green Version]
- Manders, G.; Dos Santos, A.V.P.; Vaz, U.; Davey, M.R.; Power, J.B. Transient gene expression in electroporated protoplasts of Eucalyptus citriodora Hook. Plant Cell Tissue Organ Cult. 1992, 30, 69–75. [Google Scholar] [CrossRef]
- Sederoff, R.; Stomp, A.M.; Chilton, W.S.; Moore, L.W. Gene transfer into loblolly pine by Agrobacterium tumefaciens. Nat. Biotechnol. 1986, 4, 647–649. [Google Scholar] [CrossRef]
- Loopstra, C.A.; Stomp, A.M.; Sederoff, R.R. Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol. Biol. 1990, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stomp, A.M.; Loopstra, C.; Chilton, W.S.; Sederoff, R.R.; Moore, L.W. Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol. 1990, 92, 1226–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charest, P.J.; Michel, M.-F. Basics of Plant Genetic Engineering and Its Potential Applications to Tree Species; Canadian Forest Service Publications, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1991; Volume 104. [Google Scholar]
- Tzfira, T.; Yarnitzky, O.; Vainstein, A.; Altman, A. Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep. 1996, 16, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Diner, A.M.; Karnosky, D.F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell. Dev. Biol. Plant 1991, 27, 201–207. [Google Scholar] [CrossRef]
- Bekkaoui, F.; Pilon, M.; Laine, E.; Raju, D.S.; Crosby, W.L.; Dunstan, D.I. Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep. 1988, 7, 481–484. [Google Scholar] [CrossRef]
- Tautorus, T.E.; Bekkaoui, F.; Pilon, M.; Datla, R.S.; Crosby, W.L.; Fowke, L.C.; Dunstan, D.I. Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor. Appl. Genet. 1989, 78, 531–536. [Google Scholar] [CrossRef]
- Wilson, S.M.; Thorpe, T.A.; Moloney, M.M. PEG-mediated expression of GUS and CAT genes in protoplasts from embryogenic suspension cultures of Picea glauca. Plant Cell Rep. 1989, 7, 704–707. [Google Scholar] [CrossRef]
- Goldfarb, B.; Strauss, S.H.; Howe, G.T.; Zaerr, J.B. Transient gene expression of microprojectile-introduced DNA in Douglas-fir cotyledons. Plant Cell Rep. 1991, 10, 517–521. [Google Scholar] [CrossRef]
- Walter, C.; Grace, L.J.; Wagner, A.; White, D.W.R.; Walden, A.R.; Donaldson, S.S.; Hinton, H.; Gardner, R.C.; Smith, D.R. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 1998, 17, 460–468. [Google Scholar] [CrossRef]
- Block, M.D.; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Gossele, V.; Movva, N.R.; Thompson, C.; Montagu, M.V.; Leemans, J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 1987, 6, 2513–2518. [Google Scholar] [CrossRef] [Green Version]
- Hadi, M.Z.; McMullen, M.D.; Finer, J.J. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 1996, 15, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Grace, L.J.; Charity, J.A.; Gresham, B.; Kay, N.; Walter, C. Insect-resistant transgenic Pinus radiata. Plant Cell Rep. 2005, 24, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Lachance, D.; Hamel, L.-P.; Pelletier, F.; Valéro, J.; Bernier-Cardou, M.; Chapman, K.; Van Frankenhuyzen, K.; Séguin, A. Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet. Genomes 2007, 3, 153–167. [Google Scholar] [CrossRef]
- Bishop-Hurley, S.L.; Zabkiewicz, R.J.; Grace, L.; Gardner, R.C.; Wagner, A.; Walter, C. Conifer genetic engineering: Transgenic Pinus radiata (D. Don) and Picea abies (Kasrt) plants are resistant to the herbicide Buster. Plant Cell Rep. 2001, 20, 235–243. [Google Scholar] [CrossRef]
- Charity, J.A.; Holland, L.; Donaldson, S.S.; Grace, L.; Walter, C. Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult. 2002, 70, 51–60. [Google Scholar] [CrossRef]
- Wadenback, J.; von Arnold, S.; Egertsdotter, U.; Walter, M.H.; Grima-Pettenati, J.; Goffner, D.; Gellerstedt, G.; Gullion, T.; Clapham, D. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res. 2008, 17, 379–392. [Google Scholar] [CrossRef]
- Wagner, A.; Tobimatsu, Y.; Phillips, L.; Flint, H.; Torr, K.; Donaldson, L.; Pears, L.; Ralph, J. CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J. 2011, 67, 119–129. [Google Scholar] [CrossRef]
- Tang, W.; Peng, X.; Newton, R. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol. Biochem. 2005, 43, 139–146. [Google Scholar] [CrossRef]
- Zhang, C.; Norris-Caneda, K.H.; Rottmann, W.H.; Gulledge, J.E.; Chang, S.; Kwan, B.Y.; Thomas, A.M.; Mandel, L.C.; Kothera, R.T.; Victor, A.D.; et al. Control of pollen-mediated gene flow in transgenic trees. Plant Physiol. 2012, 159, 1319–1334. [Google Scholar] [CrossRef] [Green Version]
- Myburg, A.A.; Hussey, S.G.; Wang, J.P.; Street, N.R.; Mizrachi, E. Systems and synthetic biology of forest trees: A bioengineering paradigm for woody biomass feedstocks. Front. Plant Sci. 2019, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, A.R.; Piot, A.; Liu, B.; Wilhite, B.; Weiss, M.; Porth, I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol. Appl. 2020, 13, 210–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Botella, J.R.; Liu, Y.; Zhu, J.K. Gene editing in plants: Progress and challenges. Natl. Sci. Rev. 2019, 6, 421–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D.L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y.; et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013, 23, 1229–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poovaiah, C.; Phillips, L.; Geddes, B.; Reeves, C.; Sorieul, M.; Thorlby, G. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC Plant Biol. 2021, 21, 363. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Fernandez i Marti, A.; Dodd, R.S. Using CRISPR as a gene editing tool for validating adaptive gene function in tree landscape genomics. Front. Ecol. Evol. 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Fritsche, S.; Poovaiah, C.; MacRae, E.; Thorlby, G. A New Zealand perspective on the application and regulation of gene editing. Front. Plant Sci. 2018, 9, 1323. [Google Scholar] [CrossRef]
- Arora, L.; Narula, A. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 2017, 8, 1932. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-M.; Liu, M.-M.; Ran, F.; Guo, P.-C.; Ke, Y.-Z.; Wu, Y.-W.; Wen, J.; Li, P.-F.; Li, J.-N.; Du, H. Global Analysis of WOX Transcription Factor Gene Family in Brassica napus Reveals Their Stress- and Hormone-Responsive Patterns. Int. J. Mol. Sci. 2018, 19, 3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, R.K.; Bharat, S.S.; Mishra, R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, M.; Li, J.; Chen, L.; Huang, Z.; Zheng, S.; Zhu, L.; Ni, E.; Jiang, D.; Zhao, B.; et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep. 2016, 6, 37395. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, X.; Wu, C.; He, Y.; Ma, Y.; Hou, H.; Guo, X.; Du, W.; Zhao, Y.; Xia, L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant 2016, 9, 628–631. [Google Scholar] [CrossRef] [Green Version]
- Soyk, S.; Lemmon, Z.H.; Oved, M.; Fisher, J.; Liberatore, K.L.; Park, S.J.; Goren, A.; Jiang, K.; Ramos, A.; van der Knaap, E.; et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 2017, 169, 1142–1155.e12. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Jiang, L.; Cui, X.; Zhang, J.; Guo, S.; Li, M.; Zhang, H.; Ren, Y.; Gong, G.; Zong, M.; et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018, 37, 1353–1356. [Google Scholar] [CrossRef]
- Zhang, H.; Si, X.; Ji, X.; Fan, R.; Liu, J.; Chen, K.; Wang, D.; Gao, C. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 2018, 36, 894–898. [Google Scholar] [CrossRef]
- Shan, S.; Soltis, P.S.; Soltis, D.E.; Yang, B. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Appl. Plant Sci. 2020, 8, e11314. [Google Scholar] [CrossRef]
- Fan, D.; Liu, T.; Li, C.; Jiao, B.; Li, S.; Hou, Y.; Luo, K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep. 2015, 5, 12217. [Google Scholar] [CrossRef]
- Bruegmann, T.; Deecke, K.; Fladung, M. Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. Int. J. Mol. Sci. 2019, 20, 3623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Hu, G.; Dupas, A.; Medina, L.; Blandels, N.; Clemente, H.S.; Ladouce, N.; Badawi, M.; Hernandez-Raquet, G.; Mounet, F.; et al. Implementing the CRISPR/Cas9 technology in eucalyptus hairy roots using wood-related genes. Int. J. Mol. Sci. 2020, 21, 3408. [Google Scholar] [CrossRef] [PubMed]
- Muller, N.A.; Kersten, B.; Leite Montalvao, A.P.; Mahler, N.; Bernhardsson, C.; Brautigam, K.; Carracedo Lorenzo, Z.; Hoenicka, H.; Kumar, V.; Mader, M.; et al. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 2020, 6, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sretenovic, S.; Liu, S.; Tang, X.; Huang, L.; He, Y.; Liu, L.; Guo, Y.; Zhong, Z.; Liu, G.; et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat. Plants 2021, 7, 25–33. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, J.; Gao, Y.; Zhao, R.; Zhang, J.; Kong, L. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Front. Plant Sci. 2021, 12, 751891. [Google Scholar] [CrossRef]
- Nanasato, Y.; Mikami, M.; Futamura, N.; Endo, M.; Nishiguchi, M.; Ohmiya, Y.; Konagaya, K.I.; Taniguchi, T. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Sci. Rep. 2021, 11, 16186. [Google Scholar] [CrossRef]
- Ishii, T.; Araki, M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 2017, 8, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Wolt, J.D.; Wang, K.; Yang, B. The regulatory status of genome-edited crops. Plant Biotechnol. J. 2016, 14, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; Ammann, K. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food 2017, 8, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Whelan, A.I.; Lema, M.A. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 2015, 6, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 2018, 560, 16. [Google Scholar] [CrossRef] [PubMed]
- Kupferschmidt, K. EU verdict on CRISPR crops dismays scientists. Science 2018, 361, 435–436. [Google Scholar] [CrossRef] [PubMed]
Problem | References |
---|---|
Diseases and pests | [14] |
Habitat deterioration | [18] |
Drought | [19,20,21] |
Climate change and human pressure | [22] |
Species | Genome Size | Released in |
---|---|---|
Arabidopsis thaliana | 119.1 Mb | 2000 |
Populus thrichocarpa | 434.1 Mb | 2006 |
Picea glauca | 26.6 Gb | 2013 |
Picea abies | 12.0 Gb | 2013 |
Pinus taeda | 22.1 Gb | 2014 |
Pinus lambertiana | 27.6 Gb | 2016 |
Pseudotsuga menziesii | 14.7 Gb | 2017 |
Alternative | Effectiveness | Emerging Problems |
---|---|---|
Organogenesis | High in juvenile explants Difficult in adult material in most cases | Some recalcitrant species Somaclonal variation Rooting |
Somatic embryogenesis | High in juvenile explants Difficult in adult material in most cases | Some recalcitrant species Somaclonal variation Maturation and germination are a bottleneck |
Genetic transformation (including gene editing) | Insect resistance Herbicide tolerance Wood pulp efficiency Stress tolerance Sterility | Some recalcitrant species Genotype-dependent Chimeras in some cases Gene silencing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, S.M.; Ordás, R.J.; Alvarez, J.M. Conifer Biotechnology: An Overview. Forests 2022, 13, 1061. https://doi.org/10.3390/f13071061
Rodríguez SM, Ordás RJ, Alvarez JM. Conifer Biotechnology: An Overview. Forests. 2022; 13(7):1061. https://doi.org/10.3390/f13071061
Chicago/Turabian StyleRodríguez, Sonia María, Ricardo Javier Ordás, and José Manuel Alvarez. 2022. "Conifer Biotechnology: An Overview" Forests 13, no. 7: 1061. https://doi.org/10.3390/f13071061
APA StyleRodríguez, S. M., Ordás, R. J., & Alvarez, J. M. (2022). Conifer Biotechnology: An Overview. Forests, 13(7), 1061. https://doi.org/10.3390/f13071061