Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tošić, I.; Mladjan, D.; Gavrilov, M.B.; Zivanović, S.; Radaković, M.G.; Putniković, S.; Petrović, P.; Mistridzelović, I.K.; Marković, S. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000–2017. Open Geosci. 2019, 11, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Pinol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard and wildfire occurrence in coastal eastern Spain. Clim. Chang. 1998, 38, 345–357. [Google Scholar] [CrossRef]
- San Miguel Ayanz, J.; Pereira, M.C.; Boca, C.; Strobl, P.; Kucera, J.; Pekkarinen, A. Forest Fires in the European Mediterranean Region: Mapping and Analysis of Burned Areas. In Earth Observation on Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 189–203. [Google Scholar]
- Trabaud, L. Inflammabilite et combustibilite des principales especes des garrigues de la region mediterraneenne. Oecol. Plant. 1976, 11, 117–136. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1996; p. 769. [Google Scholar]
- Naveh, Z. The role of fire as an evolutionary and ecological factor on the landscapes and vegetation of Mt. Carmel. J. Mediterr. Ecol. 1999, 1, 11–25. [Google Scholar]
- Bessie, W.C.; Johnson, E.A. The relative importance of fuels and weather on fire behaviour in subalpine forests. Ecology 1995, 76, 747–762. [Google Scholar] [CrossRef] [Green Version]
- Barčić, D. Odnosi Stanišnih Čimbenika u Sastojinama Crnoga Bora (Pinus nigra J.F. Arnold) u Hrvatskom Primorju i u Istri. Ph.D Thesis, Šumarski fakultet Sveučilišta u Zagrebu, Zagreb, Croatia, 2007; p. 114. [Google Scholar]
- Francis, C.F.; Thornes, J.B. Runoff hydrographs from three Mediterranean vegetation cover types. In Vegetation and Erosion; Thornes, J.B., Ed.; Wiley: Chichester, UK, 1990; pp. 363–384. [Google Scholar]
- Ferran, A.; Serrasolsas, I.; Vallejo, V.R. Soil evolution after fire in Quercus ilex and Pinus pinaster forests. In Responses of Forest Ecosystems to Environmental Changes; Teller, A., Mathy, P., Jeffers, J.N.R., Eds.; Elsevier: London, UK, 1992; pp. 397–404. [Google Scholar]
- Skinner, W.; Stocks, B.; Martell, D.; Bonsal, B.; Shabbar, A. The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada. Theor. Appl. Climatol. 1999, 63, 89–105. [Google Scholar] [CrossRef]
- Kunkel, K.K. Surface energy budget and fuel moisture. In Forest Fires-Behaviour and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 303–350. [Google Scholar]
- Viegas, D.X.; Reis, R.M.; Cruz, M.G.; Viegas, M.T. Calibracao do Sistema Canadiano de Perigo de Incendio para Aplicacao em Portugal (Canadian Fire Weather Risk System Calibration for aplication in Portugal). Silva Lusit. 2004, 12, 77–93. [Google Scholar]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Bonora, L.; Checcacci, E.; Romani, M.; Tesi, E.; Conese, C. Correlation between meteorological data and fire occurrence in a Mediterranean area (Tuscany Region). For. Ecol. Manag. 2006, 234, S63. [Google Scholar] [CrossRef]
- Mooney, H.A. Carbon-gaining capacity and allocation patterns of Mediterranean climate plants. In Mediterranean Type Ecosystems: The Role of Nutrient; Kruger, F.J., Mitchel, D.T., Jarvis, J.U.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; pp. 103–119. [Google Scholar]
- Sabate, S.; Gracia, C.A.; Sanchez, A. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For. Ecol. Manag. 2002, 162, 23–37. [Google Scholar] [CrossRef]
- WWF. Beyond Cork—A Wealth of Resources for People and Nature; Berrahmouni, N., Escute, X., Regato, P., Stein, C., Eds.; World Wide Fund for Nature Madrid: Ultimo, Australia, 2007; p. 116. [Google Scholar]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Malcolm Gill, A.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, A.P. A statistical classification of Mediterranean species based on their flammability components. Int. J. Wildland Fire 2001, 10, 113–118. [Google Scholar] [CrossRef]
- Rosavec, R. Odnos Čimbenika Klime i Zapaljivosti Nekih Mediteranskih Vrsta. Ph.D Thesis, Šumarski fakultet Sveučilišta u Zagrebu, Zagreb, Croatia, 2010; p. 168. [Google Scholar]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1983; p. 450. [Google Scholar]
- Bilandžija, J. Prirodno opterećenje sastojina alepskog, primorskog i crnog bora šumskim gorivima. Radovi 1992, 27, 105–113. [Google Scholar]
- Bilandžija, J. Struktura goriva, vjerojatnost pojave i razvoj požara u sastojinama primorskog i crnog bora na Biokovu. Prirodosl. Istraživanja Biokov. Područja Ekološke Monogr. 1995, 4, 293–297. [Google Scholar]
- Bilandžija, J.; Lindić, V. Utjecaj strukture šumskog goriva na vjerojatnost pojave i razvoja požara u sastojinama alepskog bora. Radovi 1993, 28, 215–224. [Google Scholar]
- Mak, E.H. Measuring foliar flammability with the limiting oxygen method. For. Sci. 1988, 17, 253–259. [Google Scholar]
- Hogenbirk, J.C.; Sarrazin-Delay, C.I. Using fuel characteristics to estimate plant ignitability or fire hazard reduction. Water Air Soil Pollut. 1995, 82, 161–170. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- Simms, D.L.; Law, M. The ignition of wet and dry wood by radiation. Combust. Flame 1967, 11, 377–388. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest fuel ignitability. Fire Tehnol. 1970, 6, 312–319. [Google Scholar]
- Drysdale, D. An Introduction to Fire Dynamics. Chichester; John Wiley & Sons: Chichester, UK, 1994; p. 576. [Google Scholar]
- Van Wagner, C.E. Conditions for the start and spread of crown fires. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Viegas, D.X.; Viegas, M.T.; Ferreira, A.D. Moisture content of fine forest fuels and fire occurrence in Central Portugal. Int. J. Wildland Fire 1992, 2, 69–86. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Dimitrakopoulos, A.P. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Can. J. For. Res. 2004, 34, 2284–2293. [Google Scholar] [CrossRef]
- Cappelli, M.; Bonani, S.; Conci, I. Sul Grado d Infiammabilita di Alcune Specie Della Macchia Mediterranea. Collana Verde 1983, 62, 1–52. [Google Scholar]
- Xanthopoulos, G.; Wakimoto, R.H. A time to ignition-temperature-moisture relationship for branches of three western conifers. Can. J. For. Res. 1992, 23, 253–258. [Google Scholar] [CrossRef]
- Massari, G.; Leopaldi, A. Leaf flammability in Mediterranean species. Plant Biosyst. 1998, 132, 29–38. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability Assessment of Mediterranean Forest Fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Simard, A.J. The Mositure Content of Forest Fuels—A Review of the Basic Concepts; Forest Fire Research Institute: Ottawa, ON, Canada, 1968; p. FF-X-14. [Google Scholar]
- Novkovic, I.; Marković, G.B.; Lukić, D.; Dragičević, S.; Milošević, M.; Djurdjić, S.; Samardžić, I.; Lezaić, T.; Tadić, M. GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study—Nature Park Golija, Serbia. Sensors 2021, 21, 6520. [Google Scholar] [CrossRef]
- Lukić, T.; Marić, P.; Hrnjak, I.; Gavrilov, M.B.; Mladjan, D.; Zorn, M.; Komac, B.; Milošević, Z.; Marković, S.B.; Sakulski, D.; et al. Forest fire analysis and classification based on Serbian case study. Acta Geogr. Slov. 2017, 57, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Castro, F.X.; Tudela, A.; Sebastia, M.T. Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric. For. Meteorol. 2003, 116, 49–59. [Google Scholar] [CrossRef]
- Aguado, I.; Chuvieco, E.; Boren, R.; Nieto, H. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int. J. Wildland Fire 2007, 16, 390–397. [Google Scholar] [CrossRef]
- Madrigal, J.; Guijarro, M.; Hernando, C.; Diez, C.; Marino, E.E. Effective heat of combustion for flaming combustion of Mediterranean forest fuels. Fire Technol. 2001, 47, 461–474. [Google Scholar] [CrossRef]
- Ganteaume, A.; Jappiot, M.; Lampin, C.; Guijarro, M.; Hernando, C. Flammability of some ornamental species in wildland–urban interfaces in southeastern France: Laboratory assessment at particle level. Environ. Manag. 2013, 52, 467–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jervis, F.X.; Rein, G. Experimental study on the burning behaviour of Pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples. Fire Mater. 2016, 40, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Weise, D.R.; White, R.H.; Beall, F.C.; Etlinger, M. Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int. J. Wildland Fire 2005, 14, 321–338. [Google Scholar] [CrossRef] [Green Version]
- White, R.H.; Zipperer, W.C. Testing and classification of individual plants for fire behaviour: Plant selection for the wildland–urban interface. Int. J. Wildland Fire 2010, 19, 213–227. [Google Scholar] [CrossRef]
- Filipčić, A. Climatic regionalization of Croatia according to W. Köppen for the standard period 1961–1990 in relation to the period 1931–1960. Acta Geogr. Croat. 1998, 33, 7–14. [Google Scholar]
- Barbero, M.; Loisel, R.; Quezel, P.; Richardson, D.M.; Romane, F. Pines of the Mediterranean Basin. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 153–170. [Google Scholar]
- Adamović, L. Biljnogeografske formacije zimzelenog pojasa Dalmacije, Hercegovine i Crne Gore. Rad Jugosl. Akad. Znan. Umjet. Kn. 1911, 188, 1–54. [Google Scholar]
- Anić, M. Šume Hrvatske. Zemljopis Hrvat. 1942, 539–558. [Google Scholar]
- Valette, J.C. Inflammabilite des especes forestieres mediterraneennes. Consequences sur la combustibilite des formations forestieres. Rev. For. Française 1990, 42, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, T. Biološki parametri prikladni za poboljšanje indeksa opasnosti od šumskih požara. Šum. List 1994, 118, 105–113. [Google Scholar]
- Alessio, G.A.; Penuelas, J.; De Lillis, M.; Llusia, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Ecol. 2008, 10, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995; p. 345. [Google Scholar]
- Nikolov, N.; Helmisaari, H. Silvics of the circumpolar boreal forest tree species. In A System Analysis of the Global Boreal Forest; Shugat, H.H., Leemans, R., Bonan, G.B., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 13–84. [Google Scholar]
- Viegas, D.X.; Sol, B.; Bovio, G.; Nosenzo, A.; Ferreira, A.D. Comparative study of various methods of fire danger. Int. J. Wildland Fire 1999, 9, 235–246. [Google Scholar] [CrossRef]
- Nikolov, N. Povezanost klimatskih promjena sa šumskim požarima kao i njihov utjecaj na šume i šumarstvo. In Seminar: Tehnologije, Metode i Pristupi u Borbi Protiv Šumskih Požara; HVZ Splitsko dalmatinske županije: Makarska, Croatia, 2009. [Google Scholar]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Van Wagner, C.E. Climate Change and Wildfire in Canada. Can. J. For. Res. 1991, 21, 66–72. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Change 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Wotton, B.M.; Stocks, B.J.; Flannigan, M.D.; Laprise, R.; Blanchet, J.P. Estimating Current and Future Fire Climates in the Boreal Forest of Canada Using a Regional Climate Model. In Proceedings of the 3rd International Conference on Forest Fire Research, Luso, Portugal, 16–20 November 1998; Viegas, D.X., Ed.; pp. 1207–1221. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA, Forest Service, Research: Seattle, WA, USA, 1972; p. 115. [Google Scholar]
- Pompe, V.; Vines, R.G. The influence of moisture on the Comustion of leaves. Aust. For. 1966, 30, 231–241. [Google Scholar] [CrossRef]
- Brown, A.A.; Davis, K.J. Forest Fires: Control and Use; Academic press: New York, NY, USA, 1973. [Google Scholar]
- Viegas, D.X. Fuel mositure evaluation for fire behaviour assessment. In Advanced Study Course on Wildfire Management Final report; Eftichidis, G., Balabanis, P., Ghazi, A., Eds.; European Commission: Marathon, Greece, 1998; pp. 81–92. [Google Scholar]
- Renkin, R.A.; Despain, D.G. Fuel Moisture, Forest Type and Lightning-Caused Fires in Yellowstone National Park. Can. J. For. Res. 1992, 16, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Albini, F.A. A model for fire spread in wildland fuels by radiation. Combust. Sci. Technol. 1985, 42, 229–258. [Google Scholar] [CrossRef]
- Molina, J.R.; Martin, T.; Rodriguez y Silva, F.; Herrera, M.A. The ignition index based on flammability of vegetation improves planning in the wildland-urban interface: A case study in Southern Spain. Landsc. Urban Plan. 2017, 158, 129–138. [Google Scholar] [CrossRef]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Guijarro, M.; Madrigal, J.; Hernando, C.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann. For. Sci. 2017, 74, 1. [Google Scholar] [CrossRef] [Green Version]
- Rosavec, R.; Barčić, D.; Dubravac, T.; Antonović, A.; Španjol, Ž. Flammability and Combustibility of Some Mediterranean Species Related with Forest Fires in Croatia. Environ. Sci. Proc. 2022, 17, 43. [Google Scholar] [CrossRef]
Species | TI (s) | DC (s) | LFMC (%) | |||
---|---|---|---|---|---|---|
Makarska | Rab | Makarska | Rab | Makarska | Rab | |
Aleppo pine (Pinus halepensis Mill.) | 9.69–16.34 | 10.22–16.75 | 7.12–13.36 | 6.38–13.79 | 108.88–153.48 | 109.31–142.73 |
Holm oak (Quercus ilex L.) | 5.29–9.59 | 6.05–9.27 | 10.22–14.67 | 9.64–13.94 | 48.99–91.37 | 66.36–102.86 |
Variable | TI | LFMC | Mean Monthly Air Humidity (%) | Mean Monthly Air Temperature (°C) | Mean Monthly Maximum Air Temperature (°C) | Mean Monthly Minimum Air Temperature (°C) | Mean Monthly Precipitation (mm) |
---|---|---|---|---|---|---|---|
Aleppo pine (Pinus halepensis Mill.) | |||||||
Rab–TI | 1.00 | 0.15 | 0.08 | −0.11 | −0.11 | −0.12 | 0.13 |
Makarska–TI | 1.00 | 0.78 | 0.22 | −0.75 | −0.76 | −0.73 | 0.46 |
Holm oak (Quercus ilex L.) | |||||||
Rab–TI | 1.00 | 0.64 | 0.04 | −0.09 | −0.09 | −0.08 | 0.38 |
Makarska–TI | 1.00 | 0.80 | 0.11 | −0.19 | −0.20 | −0.19 | 0.60 |
Island of Rab | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 3.61647 | 0.60274 | 0.18 | 0.9793 | 0.0561 | −0.2585 | 13.92013 | 1.83840 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 9.15408 | 8.56190 | 1.07 | 0.2991 | |||||||||
LFMC | 1 | 0.02200 | 0.03105 | 0.71 | 0.4878 | |||||||||
Mean monthly humidity | 1 | 0.01518 | 0.08498 | 0.18 | 0.8602 | |||||||||
Mean monthly air temp. | 1 | 1.10666 | 2.11468 | 0.52 | 0.6071 | |||||||||
Mean monthly max. air temp. | 1 | −0.35631 | 1.14764 | −0.31 | 0.7598 | |||||||||
Mean monthly min. air temp. | 1 | −0.80969 | 1.51922 | −0.53 | 0.6006 | |||||||||
Mean monthly precipitation | 1 | 0.00105 | 0.00804 | 0.13 | 0.8972 | |||||||||
Makarska | ||||||||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 76.64047 | 12.77341 | 15.12 | <0.0001 | 0.8344 | 0.7792 | 7.32148 | 0.91926 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 2.74296 | 5.48704 | 0.50 | 0.6232 | |||||||||
LFMC | 1 | 0.10621 | 0.02405 | 4.42 | 0.0003 | |||||||||
Mean monthly humidity | 1 | 0.00629 | 0.04295 | 0.15 | 0.8853 | |||||||||
Mean monthly air temp. | 1 | −0.18009 | 1.08663 | −0.17 | 0.8702 | |||||||||
Mean monthly max. air temp. | 1 | −0.08870 | 0.74173 | −0.12 | 0.9061 | |||||||||
Mean monthly min. air temp. | 1 | 0.11935 | 0.58892 | 0.20 | 0.8417 | |||||||||
Mean monthly precipitation | 1 | −0.00365 | 0.00430 | −0.85 | 0.4067 |
Island of Rab | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 8.44659 | 1.40777 | 5.46 | 0.0023 | 0.6454 | 0.5272 | 6.61575 | 0.50772 | |||||
Variable | DF | Proc.Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 3.87989 | 2.71097 | 1.43 | 0.1695 | |||||||||
LFMC | 1 | 0.04876 | 0.01156 | 4.22 | 0.0005 | |||||||||
Mean monthly humidity | 1 | 0.00067607 | 0.02530 | 0.03 | 0.9790 | |||||||||
Mean monthly air temp. | 1 | −1.21234 | 0.56074 | −2.16 | 0.0443 | |||||||||
Mean monthly max. air temp. | 1 | 0.27008 | 0.29937 | 0.90 | 0.3789 | |||||||||
Mean monthly min. air temp. | 1 | 1.05031 | 0.41557 | 2.53 | 0.0211 | |||||||||
Mean monthly precipitation | 1 | 0.00267 | 0.00236 | 1.13 | 0.2743 | |||||||||
Makarska | ||||||||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 26.57689 | 4.42948 | 14.85 | <0001 | 0.8319 | 0.7759 | 7.59167 | 0.54617 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 1.65293 | 2.14724 | 0.77 | 0.4514 | |||||||||
LFMC | 1 | 0.07716 | 0.01147 | 6.73 | <0001 | |||||||||
Mean monthly humidity | 1 | −0.00350 | 0.02544 | −0.14 | 0.8921 | |||||||||
Mean monthly air temp. | 1 | 0.13148 | 0.64359 | 0.20 | 0.8404 | |||||||||
Mean monthly max. air temp. | 1 | −0.06647 | 0.43337 | −0.15 | 0.8798 | |||||||||
Mean monthly min. air temp. | 1 | −0.08213 | 0.31742 | −0.26 | 0.7988 | |||||||||
Mean monthly precipitation | 1 | 0.00758 | 0.00263 | 2.88 | 0.0100 |
Variable | TI | LFMC | Mean Monthly Air Humidity (%) | Mean Monthly Air Temperature (°C) | Mean Monthly Maximum Air Temperature (°C) | Mean Monthly Minimum Air Temperature (°C) | Mean Monthly Precipitation (mm) |
---|---|---|---|---|---|---|---|
Aleppo pine (Pinus halepensis Mill.) | |||||||
Rab–DC | 1.00 | −0.12 | 0.06 | 0.27 | 0.25 | 0.27 | 0.02 |
Makarska–DC | 1.00 | −0.45 | −0.25 | 0.43 | 0.44 | 0.43 | −0.42 |
Holm oak (Quercus ilex L.) | |||||||
Rab–DC | 1.00 | −0.35 | −0.07 | 0.24 | 0.23 | 0.24 | −0.05 |
Makarska–DC | 1.00 | −0.49 | 0.15 | −0.18 | −0.20 | −0.17 | 0.06 |
Island of Rab | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 18.44877 | 3.07479 | 0.65 | 0.6875 | 0.1788 | −0.0950 | 20.60565 | 2.16978 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 7.37497 | 10.10518 | 0.73 | 0.4749 | |||||||||
LFMC | 1 | −0.01392 | 0.03665 | −0.38 | 0.7085 | |||||||||
Mean monthly humidity | 1 | 0.06901 | 0.10030 | 0.69 | 0.5002 | |||||||||
Mean monthly air temp. | 1 | 2.01928 | 2.49585 | 0.81 | 0.4290 | |||||||||
Mean monthly max. air temp. | 1 | −1.11742 | 1.35450 | −0.82 | 0.4202 | |||||||||
Mean monthly min. air temp. | 1 | −0.74598 | 1.79306 | −0.42 | 0.6823 | |||||||||
Mean monthly precipitation | 1 | 0.00376 | 0.00949 | 0.40 | 0.6962 | |||||||||
Makarska | ||||||||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 21.45471 | 3.57578 | 1.31 | 0.3019 | 0.3043 | 0.0724 | 15.59932 | 1.65084 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 19.38539 | 9.85389 | 1.97 | 0.0648 | |||||||||
LFMC | 1 | −0.05272 | 0.04319 | −1.22 | 0.2379 | |||||||||
Mean monthly humidity | 1 | −0.03911 | 0.07714 | −0.51 | 0.6183 | |||||||||
Mean monthly air temp. | 1 | −0.38392 | 1.95142 | −0.20 | 0.8462 | |||||||||
Mean monthly max. air temp. | 1 | 0.06821 | 1.33204 | 0.05 | 0.9597 | |||||||||
Mean monthly min. air temp. | 1 | 0.40133 | 1.05761 | 0.38 | 0.7088 | |||||||||
Mean monthly precipitation | 1 | −0.00323 | 0.00772 | −0.42 | 0.6809 |
Island of Rab | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 4.40758 | 0.73460 | 0.69 | 0.6570 | 0.1880 | −0.0826 | 8.95588 | 1.02824 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 17.02350 | 5.49030 | 3.10 | 0.0062 | |||||||||
LFMC | 1 | −0.03538 | 0.02342 | −1.51 | 0.1482 | |||||||||
Mean monthly humidity | 1 | −0.03079 | 0.05125 | −0.60 | 0.5554 | |||||||||
Mean monthly air temp. | 1 | 0.40697 | 1.13561 | 0.36 | 0.7242 | |||||||||
Mean monthly max. air temp. | 1 | −0.37925 | 0.60628 | −0.63 | 0.5395 | |||||||||
Mean monthly min. air temp. | 1 | 0.01751 | 0.84162 | 0.02 | 0.9836 | |||||||||
Mean monthly precipitation | 1 | 0.00374 | 0.00479 | 0.78 | 0.4453 | |||||||||
Makarska | ||||||||||||||
DF | SS | MS | F | Pr > F | R2 | Parc. R2 | Coef. Var. | RMSE | ||||||
model | 6 | 13.86550 | 2.31092 | 2.69 | 0.0484 | 0.4725 | 0.2966 | 7.52307 | 0.92741 | |||||
Variable | DF | Proc. Param. | Standard Error | t | Pr > |t| | |||||||||
Intercept | 1 | 20.00005 | 3.64605 | 5.49 | <0.0001 | |||||||||
LFMC | 1 | −0.05492 | 0.01948 | −2.82 | 0.0113 | |||||||||
Mean monthly humidity | 1 | −0.00167 | 0.04320 | −0.04 | 0.9697 | |||||||||
Mean monthly air temp. | 1 | 2.01340 | 1.09283 | 1.84 | 0.0820 | |||||||||
Mean monthly max. air temp. | 1 | −1.80469 | 0.73587 | −2.45 | 0.0246 | |||||||||
Mean monthly min. air temp. | 1 | −0.03042 | 0.53898 | −0.06 | 0.9556 | |||||||||
Mean monthly precipitation | 1 | 0.00103 | 0.00447 | 0.23 | 0.8200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosavec, R.; Barčić, D.; Španjol, Ž.; Oršanić, M.; Dubravac, T.; Antonović, A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests 2022, 13, 1266. https://doi.org/10.3390/f13081266
Rosavec R, Barčić D, Španjol Ž, Oršanić M, Dubravac T, Antonović A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests. 2022; 13(8):1266. https://doi.org/10.3390/f13081266
Chicago/Turabian StyleRosavec, Roman, Damir Barčić, Željko Španjol, Milan Oršanić, Tomislav Dubravac, and Alan Antonović. 2022. "Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia" Forests 13, no. 8: 1266. https://doi.org/10.3390/f13081266
APA StyleRosavec, R., Barčić, D., Španjol, Ž., Oršanić, M., Dubravac, T., & Antonović, A. (2022). Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests, 13(8), 1266. https://doi.org/10.3390/f13081266