Structural Features of a Post-Clear-Cutting Ecotone between 90-Year-Old Bilberry Spruce Forest and 35-Year-Old Herbs-Forbs Deciduous Stand
Abstract
:1. Introduction
- Do the distinct transitional zones on the clear-cut side as well as on the forest side persist 35 years after the clear-cutting of a bilberry-type spruce forest?
- If the distinct transitional zones between the mature coniferous forest and the deciduous stand do persist, what are the characteristic features of their plant community structure?
2. Materials and Methods
2.1. Study Area
2.2. Objects
2.3. Methods
3. Results
3.1. Ground Vegetation
3.2. Epiphytic Vegetation
3.3. Fine Root Biomass
4. Discussion
4.1. Ground Vegetation
4.2. Epiphytic Vegetation
4.3. Fine Root Biomass
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lapenis, A.; Shvidenko, A.; Shepaschenko, D.; Nilsson, S.; Aiyyer, A. Acclimation of russian forests to recent changes in climate. Glob. Chang. Biol. 2005, 11, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Schepaschenko, D.; Moltchanova, E.; Fedorov, S.; Karminov, V.; Ontikov, P.; Santoro, M.; See, L.; Kositsyn, V.; Shvidenko, A.; Romanovskaya, A.; et al. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep. 2021, 11, 12825. [Google Scholar] [CrossRef] [PubMed]
- Lukina, N.V. Global challenges and forest ecosystems. Vestn. Rossijskoj Akad. Nauk. 2020, 90, 528–532. (In Russian) [Google Scholar] [CrossRef]
- Filipchuk, A.; Malysheva, N.; Zolina, T.; Yugov, A. The boreal forest of Russia: Opportunities for the effects of climate change mitigation. For. Inf. 2020, 1, 92–113. (In Russian) [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Regulations for harvesting wood. In The Order of the Ministry of Natural Resources of the Russian Federation; No. 993; Ministry of Natural Resources of the Russian Federation: Moscow, Russia, 2020; p. 53. (In Russian)
- Pfeifer, M.; Lefebvre, V.; Peres, C.A.; Banks-Leite, C.; Wearn, O.R.; Marsh, C.J.; Butchart, S.H.M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; et al. Creation of forest edges has a global impact on forest vertebrates. Nature 2017, 551, 187–191. [Google Scholar] [CrossRef]
- Baker, S.C.; Spies, T.A.; Wardlaw, T.J.; Balmer, J.; Franklin, J.F.; Jordan, G.J. The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For. Ecol. Manag. 2013, 302, 107–121. [Google Scholar] [CrossRef]
- Rudolphi, J.; Gustafsson, L. Forests regenerating after clear-cutting function as habitat for bryophyte and lichen species of conservation concern. PLoS ONE 2011, 6, e18639. [Google Scholar] [CrossRef]
- Baker, T.P.; Baker, S.C.; Dalton, P.J.; Fountain-Jones, N.M.; Jordan, G.J. Temporal persistence of edge effects on bryophytes within harvested forests. For. Ecol. Manag. 2016, 375, 223–229. [Google Scholar] [CrossRef]
- Odum, E.P.; Barrett, G.W. Fundamentals of Ecology, 3rd ed.; W.B. Saunders Co.: Philadelphia, PA, USA, 1971; p. 574. [Google Scholar]
- Solov’eva, V.V.; Rozenberg, G.S. A contemporary concept of ecotones or theory of ecotones. Biol. Bull. Rev. 2006, 126, 531–549. (In Russian) [Google Scholar]
- Kark, S. Effects of ecotones on biodiversity. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; pp. 142–148. [Google Scholar] [CrossRef]
- Kreyling, J.; Schmiedinger, A.; Macdonald, E.; Beiekuhnlein, C. Potentials of natural tree regeneration after clearcutting in subalpine forests. West. J. Appl. For. 2008, 23, 46–52. [Google Scholar] [CrossRef]
- Tsvetkov, V.F. Potential of reforestation in felled areas of the Russian European North. Russ. For. J. 2010, 3, 3–14. (In Russian) [Google Scholar]
- Belyaeva, N.V.; Gryaz’kin, A.V. Structure transformation of the spruce young generation after selective cutting. Les. Zhurnal 2012, 6, 44–51. (In Russian) [Google Scholar]
- Franklin, C.; Harper, K.; Clarke, M. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 2021, 51, 274–282. [Google Scholar] [CrossRef]
- Martínez Pastur, G.J.; Vanha-Majamaa, I.; Franklin, J.F. Ecological perspectives on variable retention forestry. Ecol. Process. 2020, 9, 12. [Google Scholar] [CrossRef]
- Chen, J.; Franklin, J.F.; Spies, T.A. Growing-season microclimatic gradients from clearcut edges into old-growth douglas-fir forests. Ecol. Appl. 1995, 5, 74–86. [Google Scholar] [CrossRef]
- Jung, S.H.; Lim, C.H.; Kim, A.R.; Woo, D.M.; Kwon, H.J.; Cho, Y.C.; Lee, C.S. Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, Eastern Korea. J. Ecol. Environ. 2017, 41, 36. [Google Scholar] [CrossRef]
- Schmidt, M.; Jochheim, H.; Kersebaum, K.; Lischeid, G.; Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—A review. Agric. For. Meteorol. 2017, 232, 659–671. [Google Scholar]
- Beese, W.J.; Deal, J.; Dunsworth, B.G.; Mitchell, S.J.; Philpott, T.J. Two decades of variable retention in British Columbia: A review of its implementation and effectiveness for biodiversity conservation. Ecol. Process. 2019, 8, 33. [Google Scholar] [CrossRef]
- Nelson, C.; Halpern, C. Edge-related responses of understory plants to aggregated retention harvest in the Pacific NorthWest. Ecol. Appl. 2005, 15, 196–209. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Mayerhofer, M.S.; Biswas, S.R.; Esseen, P.; Hylander, K.; Stewart, K.J.; Mallik, A.U.; Drapeau, P.; Jonsson, B.; et al. Edge influence on vegetation at natural and anthropogenic edges of boreal forests in Canada and Fennoscandia. J. Ecol. 2015, 103, 550–562. [Google Scholar] [CrossRef]
- Harper, K.A.; Drapeau, P.; Lesieur, D.; Bergeron, Y. Negligible structural development and edge influence on the understorey at 16–17-yr-old clear-cut edges in black spruce forest. Appl. Veg. Sci. 2016, 19, 462–473. [Google Scholar] [CrossRef]
- Genikova, N.V.; Kharitonov, V.A.; Pekkoev, A.N.; Karpechko, A.Y.; Kikeeva, A.V.; Kryshen, A.M.; Obabko, R.P. Structure of bilberry spruce–grass-forbs aspen forest ecotone communities in the Republic of Karelia. Rastit. Resur. 2020, 56, 151–164. (In Russian) [Google Scholar] [CrossRef]
- Genikova, N.V.; Mamontov, V.N.; Kryshen, A.M.; Kharitonov, V.A.; Moshnikov, S.A.; Toropova, E.V. Natural regeneration of the tree stand in the bilberry spruce forest—clear-cutting ecotone complex in the first post-logging decade. Forests 2021, 12, 1542. [Google Scholar] [CrossRef]
- Cienciala, E.; Mellander, P.-E.; Kučera, J.; Opluštilová, M.; Ottosson-Löfvenius, M.; Bishop, K. The Effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 2002, 32, 693–702. [Google Scholar] [CrossRef]
- Selmants, P.C.; Knight, D.H. Understory plant species composition 30–50 years after clearcutting in Southeastern Wyoming coniferous forests. For. Ecol. Manag. 2003, 185, 275–289. [Google Scholar] [CrossRef]
- Dupuch, A.; Fortin, D. The extent of edge effects increases during post-harvesting forest succession. Bio. Conserv. 2013, 162, 9–16. [Google Scholar] [CrossRef]
- Baker, T.P.; Jordan, G.J.; Steel, E.A.; Fountain-Jones, N.M.; Wardlaw, T.J.; Baker, S.C. Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For. Ecol. Manag. 2014, 334, 174–184. [Google Scholar] [CrossRef]
- Shanin, V.N.; Rocheva, L.K.; Shashkov, M.P.; Ivanova, N.V.; Moskalenko, S.V.; Burnasheva, E.R. Spatial distribution features of the root biomass of some tree species (Picea abies, Pinus sylvestris, Betula sp.). Biol. Bull. 2015, 42, 260–268. [Google Scholar] [CrossRef]
- Pacé, M.; Fenton, N.J.; Paré, D.; Bergeron, Y. Ground layer composition affects tree fine root biomass and soil nutrient availability in jack pine and black spruce forests under extreme drainage conditions. Can. J. For. Res. 2016, 47, 433–444. [Google Scholar] [CrossRef]
- Sun, T.; Dong, L.; Mao, Z.; Li, Y. Fine root dynamics of trees and understorey vegetation in a chronosequence of Betula platyphylla stands. For. Ecol. Manag. 2015, 346, 1–9. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. CRC Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Vanninen, P.; Makela, A. Fine root biomass of scots pine stands differing in age and soil fertility in Southern Finland. Tree Physiol. 1999, 19, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. AMBIO J. Hum. Environ. 2009, 38, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Brumelis, G.; Jonsson, B.; Kouki, J.; Kuuluvainen, T.; Shorohova, E. Forest naturalness in Northern Europe: Perspectives on processes, structures and species diversity. Silva Fenn. 2011, 45, 807–821. [Google Scholar] [CrossRef]
- Hylander, K. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J. Appl. Ecol. 2005, 42, 518–525. [Google Scholar] [CrossRef]
- Klein, J.; Low, M.; Thor, G.; Sjögren, J.; Lindberg, E.; Eggers, S. Tree species identity and composition shape the epiphytic lichen community of structurally simple boreal forests over vast areas. PLoS ONE 2021, 16, e0257564. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, L.; Kuusinen, M. Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland. Lichenologist 2000, 32, 387–398. [Google Scholar] [CrossRef]
- Gignac, L.D.; Dale, M.R.T. Effects of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forest of Western Canada. Bryologist 2005, 108, 50–66. [Google Scholar] [CrossRef]
- Esseen, P. Edge influence on the old-growth forest indicator lichen Alectoria Sarmentosa in natural ecotones. J. Veg. Sci. 2006, 17, 185–194. [Google Scholar] [CrossRef]
- Johansson, P. Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biodivers. Conserv. 2008, 141, 1933–1944. [Google Scholar] [CrossRef]
- Boudreault, C.; Bergeron, Y.; Drapeau, P.; Mascarúa López, L. Edge effects on epiphytic lichens in remnant stands of managed landscapes in the eastern boreal forest of Canada. For. Ecol. Manag. 2008, 255, 1461–1471. [Google Scholar] [CrossRef]
- Hofmeister, J.; Hošek, J.; Brabec, M.; Tenčík, A. Human-sensitive bryophytes retreat into the depth of forest fragments in Central European landscape. Eur. J. For. Res. 2016, 135, 539–549. [Google Scholar] [CrossRef]
- Lesica, P.; McCune, B.; Cooper, S.V.; Hong, W.S. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Can. J. Bot. 1991, 69, 1745–1755. [Google Scholar] [CrossRef]
- Aleksandrova, V.D. Geobotanical Zoning of the Non-Chernozem Region of the European Part of the Russian Soviet Federative Socialist Republic; Aleksandrova, V.D., Yurkovskaya, T.K., Eds.; Nauka: Leningrad, Russia, 1989; p. 64. (In Russian) [Google Scholar]
- Kazimirov, N.I.; Kabanov, V.V. Forest Inventory Tables; Karelian Branch of the USSR Academy of Sciences: Petrozavodsk, Russia, 1976; 32p. (In Russian) [Google Scholar]
- Genikova, N.V.; Mamontov, V.N.; Kryshen, A.M. Abundance of forest dwarf shrubs and microclimatic conditions in the bilberry spruce forest–clear-cut ecotone. Rastit. Resur. 2021, 2, 99–114. (In Russian) [Google Scholar] [CrossRef]
- MacArthur, R.H. Fluctuations of animal populations, and measure of community stability. Ecology 1955, 36, 353–356. [Google Scholar] [CrossRef]
- Jaccard, P. The Distribution of the Flora in the Alpine Zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Degtyareva, S.I. Quantitative accounting of epiphytic groups. In Reproduction, Monitoring and Protection of Natural, Natural-Anthropogenic and Anthropogenic Landscapes; Drapalyuk, M.V., Tregubov, O.V., Tsaralunga, A.V., Kharchenko, N.N., Matveev, S.M., Mikhin, V.I., Yu. Krakhotina, S., Eds.; Voronezh State Forestry Academy: Voronezh, Russia, 2012. [Google Scholar]
- Ignatov, M.S.; Afonina, O.M.; Ignatova, E.A. Check-list of mosses of East Europe and North Asia. Arctoa 2006, 15, 1–130. [Google Scholar] [CrossRef]
- Ignatov, M.S.; Milyutina, I.A. A revision of the genus Sciuro-hypnum (Brachytheciaceae, Bryophyta) in Russia. Arctoa 2007, 16, 63–86. [Google Scholar] [CrossRef]
- Ignatova, E.A.; Fedorova, A.V.; Kuznetsova, O.I.; Ignatov, M.S. Taxonomy of the Plagiothecium laetum Complex (Plagiotheciaceae, Bryophyta) in Russia. Arctoa 2019, 28, 28–45. [Google Scholar] [CrossRef]
- Bolte, A.; Villanueva, I. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. For. Res. 2006, 125, 15–26. [Google Scholar] [CrossRef]
- Tonteri, T. Species richness of boreal understorey forest vegetation in relation to site type and successional factors. Ann. Zoo. Fennici. 1994, 31, 53–60. [Google Scholar]
- Graae, B.J.; Heskjær, V.S. A Comparison of understorey vegetation between untouched and managed deciduous forest in Denmark. For. Ecol. Manag. 1997, 96, 111–123. [Google Scholar] [CrossRef]
- Genikova, N.V.; Gnatiuk, E.P.; Kryshen, A.M. Coenoflora of bilberry spruce forests in Eastern Fennoscandia. Bot. Zhurnal 2019, 104, 699–716. (In Russian) [Google Scholar] [CrossRef]
- Marozas, V.; Grigaitis, V.; Brazaitis, G. Edge effect on ground vegetation in clear-cut edges of pine-dominated forests. Scand. J. For. Res. 2005, 20, 43–48. [Google Scholar] [CrossRef]
- Kryshen, A.M. Plant Communities of Clearings of Karelia; Nauka: Moscow, Russia, 2006; p. 262. (In Russian) [Google Scholar]
- Burova, N.V.; Tarakanov, A.M.; Drozdov, I.I.; Kononov, O.D.; Gelfand, E.D. Edge effect on the condition of separate components of wood biogeocenoses. Bull. Mosc. State Univ. For. Lesn. Vestnik. 2012, 4, 19–22. (In Russian) [Google Scholar]
- Sobolev, A.N.; Feklistov, P.A. Microclimate variability in forest stands of the Solovetsky Archipelago. Arct. Environ. Res. 2017, 17, 245–254. (In Russian) [Google Scholar] [CrossRef]
- Mölder, A.; Bernhardt-Römermann, M.; Schmidt, W. Herb-layer diversity in deciduous forests: Raised by tree richness or beaten by beech? For. Ecol. Manag. 2008, 256, 272–281. [Google Scholar] [CrossRef]
- Frego, K.A. Bryophytes as potential indicators of forest integrity. For. Ecol. Manag. 2007, 242, 65–75. [Google Scholar] [CrossRef]
- Kramer, P.D.; Kozlovsky, T.T. Physiology of Woody Plants; Lesnaya Promyshlennost: Moscow, Russia, 1983; p. 464. (In Russian) [Google Scholar]
- Caners, R.T.; Macdonald, S.E.; Belland, R.J. Responses of boreal epiphytic bryophytes to different levels of partial canopy harvest. Botany 2010, 88, 315–328. [Google Scholar] [CrossRef]
- Vogt, K.A.; Vogt, D.J.; Palmiotto, P.A.; Boon, P.; O’Hara, J.; Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 1995, 187, 159–219. [Google Scholar] [CrossRef]
- Kalliokoski, T.; Nygren, P.; Sievänen, R. Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn. 2008, 42, 189–210. [Google Scholar] [CrossRef]
- Kalliokoski, T.; Pennanen, T.; Nygren, P.; Sievänen, R.; Helmisaari, H.-S. Belowground interspecific competition in mixed boreal forests: Fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 2010, 330, 73–89. [Google Scholar] [CrossRef]
- Finér, L.; Ohashi, M.; Noguchi, K.; Hirano, Y. Factors causing variation in fine root biomass in forest ecosystems. For. Ecol. Manag. 2011, 261, 265–277. [Google Scholar] [CrossRef]
- Lehtonen, A.; Palviainen, M.; Ojanen, P.; Kalliokoski, T.; Nöjd, P.; Kukkola, M.; Penttilä, T.; Mäkipää, R.; Leppälammi-Kujansuu, J.; Helmisaari, H.-S. Modelling fine root biomass of boreal tree stands using site and stand variables. For. Ecol. Manag. 2016, 359, 361–369. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Yang, J.; Lu, Z. Influence of tree functional diversity and stand environment on fine root biomass and necromass in four types of evergreen broad-leaved forests. Glob. Ecol. Conserv. 2020, 21, e00832. [Google Scholar] [CrossRef]
Site | Plot | Age, Years | Composition by Volume, % | Density, 103 Trees/ha | Average | Volume, m3/ha | Basal Area, m2/ha | |
---|---|---|---|---|---|---|---|---|
Diameter, cm | Height, m | |||||||
Site 1 | 1A | 90 | 62 Spruce | 1 | 16.7 | 17.2 | 251 | 26 |
15 Birch | 0.2 | 18.4 | 20 | 62 | 6.2 | |||
15 Aspen | 0.09 | 30.4 | 23.7 | 61 | 7.2 | |||
8 Pine | 0.02 | 40.2 | 23.8 | 30 | 2.8 | |||
1B | 35 | 57 Aspen | 1.56 | 10.3 | 14.9 | 92 | 12.7 | |
28 Birch | 1.2 | 5.7 | 8.4 | 46 | 6.2 | |||
15 Spruce | 3.2 | 2 | 2.7 | 24 | 5.3 | |||
Site 2 | 2A | 90 | 77 Spruce | 1.43 | 16.6 | 16.8 | 285 | 31.1 |
12 Birch | 0.25 | 16 | 19 | 46 | 5 | |||
6 Aspen | 0.04 | 25.4 | 24 | 22 | 2 | |||
5 Pine | 0.02 | 34 | 24.5 | 20 | 1.8 | |||
2B | 35 | 73 Birch | 2.8 | 10.4 | 14.7 | 187 | 23.8 | |
19 Spruce | 1.07 | 9.6 | 9.8 | 48 | 7.7 | |||
8 Aspen | 0.47 | 9.4 | 10 | 21 | 3.2 |
Species | Average Percentage Cover, % | |||||||
---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | |||||||
CF | CFE | DFE | DF | CF | CFE | DFE | DF | |
Vascular plants: | ||||||||
Angelica sylvestris | - | - | - | - | - | - | - | 0.01 |
Athyrium felix-femina | - | - | - | 0.70 | - | - | - | - |
Calamagrostis arundinacea | 0.20 | 1.09 | 1.02 | 2.22 | 0.44 | 0.43 | 0.91 | 2.78 |
Convallaria majalis | - | - | - | - | - | - | - | 0.49 |
Deschampsia flexuosa | 0.20 | 0.18 | 0.65 | 0.46 | 0.15 | 0.18 | 0.65 | 0.49 |
Dryopteris carthusiana | 0.05 | 0.03 | 0.01 | 5.24 | - | - | - | - |
Geranium sylvaticum | - | - | - | - | - | - | - | 0.01 |
Goodyera repens | - | - | - | - | 0.01 | - | - | - |
Gymnocarpium dryopteris | - | - | - | 0.94 | - | - | - | - |
Linnaea borealis | 0.48 | 0.32 | 0.56 | - | - | - | - | - |
Luzula pilosa | 0.04 | 0.02 | 0.38 | 0.22 | 0.04 | 0.05 | 0.27 | 0.09 |
Lycopodium annotinum | 0.27 | 0.10 | - | - | - | - | - | - |
Maianthemum bifolium | 0.52 | 0.25 | 0.46 | 1.27 | 4.71 | 0.75 | 0.17 | 0.45 |
Melampyrum sp. | 0.15 | 0.17 | 0.27 | 0.39 | 0.09 | 0.29 | 0.26 | 0.61 |
Orthilia secunda | 0.26 | 0.04 | 0.16 | 0.05 | - | - | - | - |
Oxalis acetosella | 2.16 | 0.01 | - | 0.36 | - | - | - | - |
Potentilla erecta | - | - | - | 0.02 | - | - | - | - |
Rubus saxatilis | - | - | - | 0.59 | 0.09 | - | - | 2.35 |
Solidago virgaurea | 0.05 | - | 0.52 | 1.71 | 0.05 | - | 0.07 | 0.66 |
Trientalis europaea | 0.21 | 0.10 | 0.44 | 0.47 | 0.07 | - | - | 0.20 |
Vaccinium myrtillus | 12.30 | 18.27 | 22.23 | 1.78 | 8.72 | 20.52 | 16.20 | 0.74 |
Vaccinium vitis-idaea | 2.22 | 7.47 | 6.33 | 0.46 | 1.49 | 8.53 | 4.93 | 0.16 |
Veronica chamaedrys | - | - | - | 0.02 | - | - | - | - |
Total number of vascular plant species: | 14 | 13 | 12 | 17 | 11 | 7 | 8 | 13 |
Mean number of vascular plant species per 50 × 50 cm2 subplot | 7.7 | 6.4 | 8.4 | 10.9 | 4.7 | 4.4 | 5.8 | 8.0 |
Pielou’s evenness index | 0.50 | 0.38 | 0.46 | 0.80 | 0.49 | 0.44 | 0.46 | 0.77 |
Mosses: | ||||||||
Pleurozium schreberi | 3.00 | 1.29 | 2.01 | 0.33 | 7.64 | 9.77 | 6.57 | 2.20 |
Hylocomium splendens | 4.98 | 4.85 | 5.00 | 0.82 | 13.06 | 7.89 | 2.88 | 0.20 |
D. scoparium | 3.45 | 1.28 | 3.51 | 1.42 | 1.22 | 7.51 | 2.23 | 0.89 |
D. polysetum | 0.22 | 0.09 | 0.79 | 0.03 | 0.38 | 5.31 | 8.85 | 0.10 |
Polytr. commune | 0.06 | 0.45 | 10.94 | 3.13 | 0.01 | 0.00 | 0.53 | 0.24 |
Sphagnum girgensohnii | 0.18 | 0.44 | 2.92 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 |
Rhytidiadelphus triquetrus | 0.02 | 0.13 | 0.00 | 0.00 | 1.58 | 0.00 | 0.00 | 0.00 |
Aulacomium palustre | 0.01 | 0.02 | 0.33 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
Rhodobrium roseum | 0.02 | 0.01 | 0.02 | 0.06 | 0.03 | 0.00 | 0.00 | 0.12 |
Plagiomnium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Total number of moss species: | 9 | 9 | 8 | 8 | 7 | 4 | 5 | 7 |
Mean number of moss species per subplot | 3.7 | 3.9 | 4.9 | 2.7 | 3.3 | 3.4 | 3.7 | 2.1 |
Total number of higher plant species in the ground layer: | 23 | 22 | 20 | 25 | 18 | 11 | 13 | 20 |
1CF | 1CFE | 1DFE | 1DF | 2CF | 2CFE | 2DFE | 2DF | |
---|---|---|---|---|---|---|---|---|
1CF | 1 | 0.93 | 0.86 | 0.63 | 0.56 | 0.50 | 0.57 | 0.50 |
1CFE | 1 | 0.79 | 0.58 | 0.50 | 0.54 | 0.50 | 0.44 | |
1DFE | 1 | 0.61 | 0.64 | 0.58 | 0.67 | 0.56 | ||
1DF | 1 | 0.56 | 0.41 | 0.47 | 0.50 | |||
2CF | 1 | 0.64 | 0.73 | 0.71 | ||||
2CFE | 1 | 0.88 | 0.54 | |||||
2DFE | 1 | 0.62 | ||||||
2DF | 1 |
Site 1 | Site 2 | |||||||
---|---|---|---|---|---|---|---|---|
EC Zone | EC Zone | |||||||
CF | CFE | DFE | DF | CF | CFE | DFE | DF | |
Height of bilberry shoots | ||||||||
M ± m | 13.3 ± 0.3 a | 19.1 ± 1.2 b | 23.7 ± 1.2 c | 11.6 ± 0.6 a | 9.5 ± 0.3 a | 13.4 ± 1.0 b | 13.3 ± 1.2 b | 6.0 ± 0.3 c |
relative to the value in CF | 1.0 | 1.4 | 1.8 | 0.9 | 1.0 | 1.4 | 1.4 | 0.6 |
Height of cowberry shoots | ||||||||
M ± m | 11.1 ± 0.5 a | 14.8 ± 1.2 b | 14.6 ± 1.0 b | 8.2 ± 0.6 c | 10.1 ± 0.5 a | 13.7 ± 0.9 b | 9.3 ± 0.8 a | 6.2 ± 0.6 c |
relative to the value in CF | 1.0 | 1.3 | 1.3 | 0.7 | 1.0 | 1.4 | 0.9 | 0.6 |
Site 1 | Site 2 | |||||||
---|---|---|---|---|---|---|---|---|
Ecotone Complex Zone | Ecotone Complex Zone | |||||||
CF | CFE | DFE | DF | CF | CFE | DFE | DF | |
Spruce roots, tons/ha | 2.10 ± 0.2 a | 1.75 ± 0.4 a | 1.02 ± 0.16 b | 0.61 ± 0.1 b | 3.08 ± 0.9 a | 2.39 ± 0.6 a | 1.66 ± 0.13 ab | 0.50 ± 0.08 b |
Deciduous roots, tons/ha | 1.25 ± 0.3 ab | 1.78 ± 0.2 a | 0.70 ± 0.2 b | 1.56 ± 0.2 a | 0.88 ± 0.07 a | 0.74 ± 0.21 a | 1.55 ± 0.4 a | 3.05 ± 0.3 b |
Roots of all species, tons/ha | 3.35 ± 0.4 a | 3.53 ± 0.5 a | 1.72 ± 0.1 b | 2.17 ± 0.1 b | 3.96 ± 0.9 a | 3.14 ± 0.5 a | 3.11 ± 0.4 a | 3.56 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genikova, N.V.; Kryshen, A.M.; Obabko, R.P.; Karpechko, A.Y.; Pekkoev, A.N. Structural Features of a Post-Clear-Cutting Ecotone between 90-Year-Old Bilberry Spruce Forest and 35-Year-Old Herbs-Forbs Deciduous Stand. Forests 2022, 13, 1468. https://doi.org/10.3390/f13091468
Genikova NV, Kryshen AM, Obabko RP, Karpechko AY, Pekkoev AN. Structural Features of a Post-Clear-Cutting Ecotone between 90-Year-Old Bilberry Spruce Forest and 35-Year-Old Herbs-Forbs Deciduous Stand. Forests. 2022; 13(9):1468. https://doi.org/10.3390/f13091468
Chicago/Turabian StyleGenikova, Nadezhda V., Alexander M. Kryshen, Roman P. Obabko, Anna Yu. Karpechko, and Aleksey N. Pekkoev. 2022. "Structural Features of a Post-Clear-Cutting Ecotone between 90-Year-Old Bilberry Spruce Forest and 35-Year-Old Herbs-Forbs Deciduous Stand" Forests 13, no. 9: 1468. https://doi.org/10.3390/f13091468
APA StyleGenikova, N. V., Kryshen, A. M., Obabko, R. P., Karpechko, A. Y., & Pekkoev, A. N. (2022). Structural Features of a Post-Clear-Cutting Ecotone between 90-Year-Old Bilberry Spruce Forest and 35-Year-Old Herbs-Forbs Deciduous Stand. Forests, 13(9), 1468. https://doi.org/10.3390/f13091468