Application of Plant Biotechnology in Forestry
Conflicts of Interest
References
- Rodríguez, S.M.; Ordás, R.J.; Alvarez, J.M. Conifer Biotechnology: An Overview. Forests 2022, 13, 1061. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Wawrzyniak, M.K.; Kijowska-Oberc, J.; Staszak, A.M.; Ratajczak, E. Somatic Embryogenesis of Norway Spruce and Scots Pine: Possibility of Application in Modern Forestry. Forests 2022, 13, 155. [Google Scholar] [CrossRef]
- Varis, S.; Tikkinen, M.; Edesi, J.; Aronen, T. How to Capture Thousands of Genotypes; Initiation of Somatic Embryogenesis in Norway Spruce. Forests 2023, 14, 810. [Google Scholar] [CrossRef]
- Martínez, M.T.; Corredoira, E. Efficient Procedure for Induction Somatic Embryogenesis in Holm Oak: Roles of Explant Type, Auxin Type, and Exposure Duration to Auxin. Forests 2023, 14, 430. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Yu, X.; Tretyakova, I.N.; Nosov, A.M.; Shen, H.; Yang, L. Improved Method for Cryopreservation of Embryogenic Callus of Fraxinus mandshurica Pupr. by Vitrification. Forests 2023, 14, 28. [Google Scholar] [CrossRef]
- Rojas-Vargas, A.; Montalbán, I.A.; Moncaleán, P. Adult Trees Cryptomeria japonica (Thunb. ex L.f.) D. Don Micropropagation: Factors Involved in the Success of the Process. Forests 2023, 14, 743. [Google Scholar] [CrossRef]
- Ioannidis, K.; Tomprou, I.; Panayiotopoulou, D.; Boutsios, S.; Daskalakou, E.N. Potential and Constraints on In Vitro Micropropagation of Juniperus drupacea Labill. Forests 2023, 14, 142. [Google Scholar] [CrossRef]
- Abshahi, M.; García-Morote, F.A.; Zarei, H.; Zahedi, B.; Nejad, A.R. Improvement of Rooting Performance in Stem Cuttings of Savin Juniper (Juniperus sabina L.) as a Function of IBA Pretreatment, Substrate, and Season. Forests 2022, 13, 1705. [Google Scholar] [CrossRef]
- Colavolpe, M.B.; Vaz Dias, F.; Serrazina, S.; Malhó, R.; Lourenço Costa, R. Castanea crenata Ginkbilobin-2-like Recombinant Protein Reveals Potential as an Antimicrobial against Phytophthora cinnamomi, the Causal Agent of Ink Disease in European Chestnut. Forests 2023, 14, 785. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Rodríguez, S.M.; Fuente-Maqueda, F.; Feito, I.; Ordás, R.J.; Cuesta, C. Identification of Candidate Genes Involved in Bud Growth in Pinus pinaster through Knowledge Transfer from Arabidopsis thaliana Models. Forests 2023, 14, 1765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, J.M.; Ordás, R.J. Application of Plant Biotechnology in Forestry. Forests 2023, 14, 2148. https://doi.org/10.3390/f14112148
Alvarez JM, Ordás RJ. Application of Plant Biotechnology in Forestry. Forests. 2023; 14(11):2148. https://doi.org/10.3390/f14112148
Chicago/Turabian StyleAlvarez, José Manuel, and Ricardo Javier Ordás. 2023. "Application of Plant Biotechnology in Forestry" Forests 14, no. 11: 2148. https://doi.org/10.3390/f14112148
APA StyleAlvarez, J. M., & Ordás, R. J. (2023). Application of Plant Biotechnology in Forestry. Forests, 14(11), 2148. https://doi.org/10.3390/f14112148