The Role Played by the Rake Angle of a Strander-Canter When Processing Jack Pine Logs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Logs
2.2. Physical Properties Measurements
2.3. Strander-Canting Process
2.4. Strand Size Measurements
2.5. Power and Energy Consumption Measurements
2.6. Surface Quality Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Proportions of Strands, Pin Chips, and Fines
3.2. Strand Width
3.3. Energy Consumption
3.4. Surface Quality Analysis
3.5. Torn Grain Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alipraja, I.; Hernández, R.E.; Cáceres, C.B.; Koubaa, A. Towards strand production in primary log breakdown: Effects of the counter-knife and temperature on size distribution of jack pine strands. BioResources 2022, 17, 2632–2651. [Google Scholar] [CrossRef]
- [SBA] Structural Board Association. OSB Performance by Design: Oriented Strand Board in Wood Frame Construction; Structural Board Association: Markham, ON, Canada, 2005; p. 2. [Google Scholar]
- Dai, C.; Yu, C.; Jin, J. Theoretical modeling of bonding characteristics and performance of wood composites. Part IV. Internal bond strength. Wood Fiber Sci. 2008, 40, 146–160. [Google Scholar]
- Chen, S.; Du, C.; Wellwood, R. Analysis of strand characteristics and alignment of commercial OSB panels. For. Prod. J. 2008, 58, 94–98. [Google Scholar]
- McKenzie, W.M. Friction coefficient as a guide to optimum rake angle in wood machining. Wood Sci. Technol. 1991, 25, 397–401. [Google Scholar] [CrossRef]
- Ekevad, M.; Marklund, B.; Gren, P. Wood-chip formation in circular saw blades studied by high-speed photography. Wood Mater. Sci. Eng. 2012, 7, 115–119. [Google Scholar] [CrossRef]
- Iskra, P.; Hernández, R.E. Analysis cutting forces in straight-knife peripheral cutting of wood. Wood Fiber Sci. 2012, 44, 134–144. [Google Scholar]
- Kuljich, S.; Hernández, R.E.; Llavé, A.M. Effects of cutting direction, rake angle, and depth of cut on cutting force and surface quality during machining of balsam fir. Wood Fiber Sci. 2013, 45, 195–205. [Google Scholar]
- Bakar, E.S.; Chong, Y.W.; Anokye, R.; Ashaari, Z. Effect of different diameters and rake angles of Forstner bit on the quality of drilling on treated oil palm wood. Eur. J. Wood Prod. 2018, 76, 369–374. [Google Scholar] [CrossRef]
- Rajko, L.; Koleda, P.; Barcík, S.; Koleda, P. Technical and technological factors’ effects on quality of the machined surface and energetic efficiency when planar milling heat-treated meranti wood. BioResources 2021, 16, 7884–7900. [Google Scholar] [CrossRef]
- Jiang, S.; Buck, D.; Tang, Q.; Guan, J.; Wu, Z.; Guo, X.; Zhu, Z.; Wang, X. Cutting force and surface roughness during straight-tooth milling of walnut wood. Forests 2022, 13, 2126. [Google Scholar] [CrossRef]
- Barcík, Š.; Kminiak, R.; Řehák, T.; Kvietková, M. The influence of selected factors on energy requirements for plain milling of beech wood. J. For. Sci. 2010, 56, 243–250. [Google Scholar] [CrossRef]
- Yu, Y.; Buck, D.; Yang, H.; Du, X.; Song, M.; Wang, J.; Zhu, Z. Cutting power, temperature, and surface roughness: A multiple target assessment of beech during diamond milling. Forests 2023, 14, 1163. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Davim, J.P. Tools (geometry and material) and tool wear. In Machining: Fundamentals and Recent Advances; Davim, J.P., Ed.; Springer: London, UK, 2008; pp. 29–57. [Google Scholar] [CrossRef]
- Stiglbauer, P.; Conners, T.; Banerjee, S. Influence of knife angle and ambient temperature on fines generation from flakers. For. Prod. J. 2006, 56, 86–89. [Google Scholar]
- Benbrahim, Z.; Benotmane, B.; Zerizer, A.; Denaud, L.; Marchal, R. Experimental study of the effect of soaking temperature on the peeling parameters of two oak species (Quercus canariensis Willd. and Quercus afares Pomel). Wood Mater. Sci. Eng. 2020, 15, 241–249. [Google Scholar] [CrossRef]
- Denaud, L.; Marcon, B.; Rohumaa, A.; Purba, C.; Viguier, J.; Letourneau, R.; Marchal, R. Influence of peeling process parameters on veneer lathe check properties. In Proceedings of the 24th International Wood Machining Seminar, Corvallis, OR, USA, 25–30 August 2019; pp. 227–236. [Google Scholar]
- Daoui, A.; Descamp, C.; Marchal, R.; Zerizer, A. Influence of veneer quality on beech LVL mechanical properties. Maderas Cienc. Technol. 2011, 13, 69–83. [Google Scholar] [CrossRef]
- Hernández, R.E.; Bustos, C.; Fortin, Y.; Beaulieu, J. Wood machining properties of white spruce from plantation forests. For. Prod. J. 2001, 51, 82–88. [Google Scholar]
- Malkoçoğlu, A.; Özdemir, T. The machining properties of some hardwoods and softwoods naturally grown in eastern black sea region of Turkey. J. Mater. Process. Technol. 2006, 173, 315–320. [Google Scholar] [CrossRef]
- Malkoçoğlu, A. Machining properties and surface roughness of various wood species planed in different conditions. Build. Environ. 2007, 42, 2562–2567. [Google Scholar] [CrossRef]
- Razaei, F.; Gaff, M.; Sethy, A.K.; Niemz, P.; Kamboj, G.; Ditommaso, G.; Corleto, R.; Das, S.; Gašparík, M. Surface quality measurement by contact and laser methods on thermally modified spruce wood after plain milling. Int. J. Adv. Manuf. Technol. 2020, 110, 1653–1663. [Google Scholar] [CrossRef]
- Cáceres, C.B.; Uliana, L.; Hernández, R.E. Orthogonal cutting study of wood and knots of white spruce. Wood Fiber Sci. 2018, 50, 55–65. [Google Scholar] [CrossRef]
- Kuljich, S.; Hernández, R.E.; Blais, C. Effects of cutterhead diameter and log infeed position on energy requirements of a chipper-canter. Wood Fiber Sci. 2015, 47, 399–409. [Google Scholar]
- Gaete-Martinez, V.; Shaler, S.M.; Edgar, R.; Hill, J. Effect of strand geometrical distribution (SGD) in oriented strand composite (OSC) formation quality. In Proceedings of the 51st International Convention of Society of Wood Science and Technology, Concepción, Chile, 10–12 November 2008; pp. 1–10. [Google Scholar]
- Hernández, R.E.; Passarini, L.; Koubaa, A. Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process. Wood Sci. Technol. 2014, 48, 1281–1301. [Google Scholar] [CrossRef]
- Green, D.W.; Evans, J.W. The immediate effect of temperature on the modulus of elasticity of green and dry lumber. Wood Fiber Sci. 2008, 40, 374–383. [Google Scholar]
- Kuklewski, K.M.; Blankenhorn, P.R.; Rishel, L.E. Comparison of selected physical and mechanical properties of red maple (Acer rubrum L.) and aspen (Populus grandidentata Michx.) flakeboard. Wood Fiber Sci. 1985, 17, 11–21. [Google Scholar]
- Stark, N.M.; Cai, Z. Wood-based composite materials: Panel products, glued laminated timber, structural composite lumber, and wood-nonwood composites. In Wood Handbook: Wood as Engineering Material. General Technical Report FPL-GTR-282; USDA: Madison, WI, USA, 2021; pp. 11.1–11.29. [Google Scholar]
- Özkan, O.E. Effects of cryogenic temperature on some mechanical properties of beech (Fagus orientalis Lipsky) wood. Eur. J. Wood Prod. 2021, 79, 417–421. [Google Scholar] [CrossRef]
- Hernández, R.E.; Llavé, A.M.; Koubaa, A. Effects of cutting parameters on cutting forces and surface quality of black spruce cants. Eur. J. Wood Wood Prod. 2014, 72, 107–116. [Google Scholar] [CrossRef]
- Gerhards, C.C. Effect of the moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood Fiber 1982, 14, 4–36. [Google Scholar]
- Pinkowski, G.; Szymański, W.; Krauss, A.; Stefanowski, S. Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources 2018, 13, 6952–6962. [Google Scholar] [CrossRef]
- Hernández, R.E.; Kuljich, S.; Koubaa, A. Effect of cutting width and cutting height on the surface quality of black spruce cants produced by a chipper-canter. Wood Fiber Sci. 2010, 42, 273–284. [Google Scholar]
- Elloumi, I.; Hernández, R.E.; Cáceres, C.B.; Blais, C.B. Effects of log temperature, cutting width, and knots on the surface quality of the cants produced by a chipper-canter. Wood Mater. Sci. Eng. 2023, submitted.
- Kuljich, S.; Hernández, R.E.; Blais, C. Effects of the cutterhead diameter and log infeed position on surface quality of black spruce cants produced by a chipper-canter. Wood Fiber Sci. 2017, 49, 235–248. [Google Scholar]
- Meulenberg, V.; Ekevad, M.; Svensson, M. Thin kerf cutting forces of frozen and non-frozen Norway spruce and Scots pine wood. Wood Mater. Sci. Eng 2021, 16, 414–420. [Google Scholar] [CrossRef]
- Barnes, D. An integrated model of the effect of processing parameters on the strength properties of oriented strand wood products. For. Prod. J. 2000, 50, 33–42. [Google Scholar]
Diameter (mm) | 205.6 (10.7) a |
Length (mm) | 2326 (0.4) |
Taper (mm/m) | 10.8 (56) |
Sapwood thickness (mm) | 32.7 (32) |
Moisture content (%) | 110.8 (25) |
Specific gravity | 0.461 (8) |
Sharpness angle | 20°, 25°, 30° |
Clearance angle | 1° |
Counter-knife angle (frozen condition) | 20° |
Counter-knife angle (unfrozen condition) | 35° |
Edge distance 1 | 6 mm |
Cutting speed | 25 m/s |
Mean cutting width | 20 ± 0.5 mm |
Source of Variation | F-Value | |||||||
---|---|---|---|---|---|---|---|---|
Strands | Pin Chips | Fines | Strand Width | Energy Consumption (EC) | Specific Cutting Energy (SCE) | Depth of Torn Grain (DTG) | Volume of Torn Grain (VTG) | |
Frozen logs | ||||||||
SG | 4.9 * | n.i. | 4.4 * | n.i. | 6.6 * | 8.2 ** | n.i. | n.i. |
MC | n.i. | n.i. | n.i. | n.i. | 11.4 ** | 21.0 *** | n.i. | n.i. |
CV | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | 6.7 * | n.i. |
Rake angle | 11.0 ** | 8.7 ** | 10.8 ** | 4.6 * | 5.2 * | 2.4 ns | 0.6 ns | 1.14 ns |
Unfrozen logs | ||||||||
SG | n.i. | n.i. | n.i. | 6.0 * | 10.5 ** | 11.0** | n.i. | n.i. |
MC | n.i. | n.i. | n.i. | 4.4 * | n.i. | n.i. | n.i. | 9.2 ** |
CV | 4.1 * | n.i. | 5.3 * | 22.0 *** | 12.3 ** | n.i. | n.i. | n.i. |
Rake angle | 1.6 ns | 3.8 * | 0.8 ns | 1.7 ns | 3.0 ns | 2.9 ns | 11.6 *** | 35.0 *** |
Rake Angle | Strand Proportion (%) | Pin Chip Proportion (%) | Fine Proportion (%) | Strand Width (mm) | Energy Consumption (kWh) | SCE (kWh/m3) |
---|---|---|---|---|---|---|
Frozen logs | ||||||
59 | 86.9 (1.0) B | 6.5 (0.6) B | 6.6 (0.5) B | 25 (1) A | 16.5 (1.1) B | 6483 (442) A |
64 | 91.4 (0.8) A | 4.2 (0.5) A | 4.4 (0.4) A | 32 (3) B | 12.2 (1.2) A | 5094 (582) A |
69 | n.a | n.a | n.a | n.a | n.a | n.a |
Unfrozen logs | ||||||
59 | 96.2 (0.4) a | 1.3 (0.2) a | 2.4 (0.2) a | 66 (1) a | 4.2 (0.1) a | 1586 (43) a |
64 | 96.0 (0.4) a | 1.6 (0.2) ab | 2.4 (0.2) a | 69 (2) a | 3.9 (0.1) a | 1489 (42) a |
69 | 95.3 (0.3) a | 1.9 (0.1) b | 2.8 (0.2) a | 66 (2) a | 3.9 (0.2) a | 1534 (56) a |
Source of Variation | Frozen Condition | Unfrozen Condition | ||
---|---|---|---|---|
Factor 1 (Roughness) | Factor 2 (Waviness) | Factor 1 | Factor 2 | |
Rake angle | 0.5 ns | 4.9 * | 104.4 *** | 74.7 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alipraja, I.; Hernández, R.E.; Koubaa, A. The Role Played by the Rake Angle of a Strander-Canter When Processing Jack Pine Logs. Forests 2023, 14, 2182. https://doi.org/10.3390/f14112182
Alipraja I, Hernández RE, Koubaa A. The Role Played by the Rake Angle of a Strander-Canter When Processing Jack Pine Logs. Forests. 2023; 14(11):2182. https://doi.org/10.3390/f14112182
Chicago/Turabian StyleAlipraja, Irsan, Roger E. Hernández, and Ahmed Koubaa. 2023. "The Role Played by the Rake Angle of a Strander-Canter When Processing Jack Pine Logs" Forests 14, no. 11: 2182. https://doi.org/10.3390/f14112182
APA StyleAlipraja, I., Hernández, R. E., & Koubaa, A. (2023). The Role Played by the Rake Angle of a Strander-Canter When Processing Jack Pine Logs. Forests, 14(11), 2182. https://doi.org/10.3390/f14112182