Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in Beijing from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.3. Methods
2.3.1. Estimation of the ESVs
2.3.2. Ecological Services Change Index (ESCI)
2.3.3. Trade-Offs and Synergies among the ESs
- Static Correlation Analysis
- GWR Model
3. Results
3.1. Land-Use Change
3.2. Temporal Change in the ESVs
3.3. Spatial Change in the Total ESV
3.3.1. Spatial Distribution of the Total ESV
3.3.2. Distribution of the ESCI
3.4. Trade-Offs and Synergies among the ESVs
3.4.1. Spearman Correlation of the ES Pairs
3.4.2. Spatial Distribution of Trade-Offs and Synergies
4. Discussion
4.1. Spatio-Temporal Changes in the ESVs
4.2. Trade-Off and Synergy among the ESs
4.3. Future Outlook
5. Conclusions
- (1)
- The total ESV in Beijing increased from CNY 15.0 billion to 52.0 billion during the study period, experiencing the process of first rising and then falling. Among all the land-use types, forest provides the highest ESV, followed by water and cropland. The regulating services covered the largest proportion of the total ESV, followed by the supporting services;
- (2)
- The spatial distribution of the ESVs in the study area was closely related to land-use types. The highest ESV was distributed in areas with abundant forest resources, and the low ESV was mainly concentrated in urban built-up areas. The area where the total ESV significantly decreased from 2010 to 2020 was the built-up area with high expansion intensity;
- (3)
- The static correlation analysis and GWR model indicate that synergy was the dominant relationship between the ESs during the study period, and trade-offs mainly existed between FS and other services. Local food production activities should pay attention to the protection and restoration of the other ESs. The degree and direction of interaction between various ESs changed from 2000 to 2020, and the synergistic degree of most ES pairs strengthened.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Land-Use Type | 2000 | 2010 | 2020 | Change Rate (%) | |||||
ESV (Million CNY) | Proportion (%) | ESV (Million CNY) | Proportion (%) | ESV (Million CNY) | Proportion (%) | 2000–2010 | 2010–2020 | 2000–2020 | |
Cropland | 1513.6 | 10.1 | 3676.1 | 4.5 | 7580.9 | 14.6 | 142.9 | 106.2 | 400.9 |
Forest | 11,246.6 | 75.0 | 67,250.9 | 81.7 | 37,254.3 | 71.7 | 498.0 | −44.6 | 231.2 |
Shrub | 33.7 | 0.2 | 295.8 | 0.4 | 208.7 | 0.4 | 778.3 | −29.5 | 519.6 |
Grassland | 621.7 | 4.1 | 3893.2 | 4.7 | 1288.2 | 2.5 | 526.2 | −66.9 | 107.2 |
Water | 1582.7 | 10.6 | 7174.7 | 8.7 | 5632.8 | 10.8 | 353.3 | −21.5 | 255.9 |
Barren land | 0.007 | 0 | 0.04 | 0 | 0.8 | 0 | 459.4 | 1901. | 11,094.2 |
Wetland | 0 | 0 | 0 | 0 | 0.05 | 0 | - | - | - |
Total ESV | 14,998.2 | 82,290.8 | 51,965.6 | 448.7 | −36.9 | 246.5 |
Ecosystem Type | 2000 | 2010 | 2020 | |||
ESV (Million CNY) | Proportion (%) | ESV (Million CNY) | Proportion (%) | ESV (Million CNY) | Proportion (%) | |
FS | 524.1 | 3.5 | 1948.1 | 2.4 | 2285.3 | 4.4 |
RMS | 564.9 | 3.8 | 2828.8 | 3.4 | 2114.4 | 4.1 |
AQR | 1619.3 | 10.8 | 8770.8 | 10.7 | 5732.8 | 11.0 |
CR | 4180.4 | 27.9 | 24,534.6 | 29.8 | 13,896.1 | 26.7 |
WFR | 3599.7 | 24.0 | 19,118.9 | 23.2 | 12,315.8 | 23.7 |
SC | 2054.3 | 13.7 | 10,877.2 | 13.2 | 7395.0 | 14.2 |
NC | 173.7 | 1.2 | 874.1 | 1.1 | 647.8 | 1.2 |
HQ | 1577.8 | 10.5 | 9235.5 | 11.2 | 5237.1 | 10.1 |
LA | 704.1 | 4.7 | 4102.8 | 5.0 | 2341.4 | 4.5 |
Total ESV | 14,998.2 | 82,290.8 | 51,965.6 |
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Jiang, C.; Wang, Y.X.; Wang, J.; Li, C.; Yang, Z.; Gong, Q.; Yang, C. Improving the integrated efficacy of ecosystem restoration efforts by linking land degradation neutrality to ecosystem service enhancement from a spatial association perspective. Ecol. Eng. 2022, 181, 106693. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Obeng, E.A.; Aguilar, F.X. Value orientation and payment for ecosystem services: Perceived detrimental consequences lead to willingness-to-pay for ecosystem services. J. Environ. Manag. 2018, 206, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.T.; Brown, M.T. Environmental accounting of natural capital and ecosystem services for the US National Forest System. Environ. Dev. Sustain. 2012, 14, 691–724. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Casazza, M.; Campbell, E.T.; Giannetti, B.F.; Brown, M.T. Development of a new framework for non-monetary accounting on ecosystem services valuation. Ecosyst. Serv. 2018, 34, 37–54. [Google Scholar] [CrossRef]
- De Groot, R.S.; Fisher, B.; Christie, M.; Aronson, J.; Braat, L.; Gowdy, J.; Haines-Young, R.; Maltby, E.; Neuville, A.; Polasky, S.; et al. Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. In The Economics of Ecosystems and Biodiversity (TEEB): Ecological and Economic Foundations; Routledge: London, UK, 2010; pp. 9–40. [Google Scholar]
- Liu, S.; Costanza, R.; Farber, S.; Troy, A. Valuing ecosystem services: Theory, practice, and the need for a transdisciplinary synthesis. Ann. N. Y. Acad. Sci. 2010, 1185, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, H.; Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Xie, G.D.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Liu, Z.; Wang, S.; Fang, C. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. J. Geog. Sci. 2023, 33, 1226–1244. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, J.; Li, R.; Huang, K. Driving factors of the variation of ecosystem service and the trade-off and synergistic relationships in typical karst basin. Ecol. Indic. 2022, 142, 109253. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape Urban. Plann. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Wang, Q. Response and multiscenario simulation of trade-offs/synergies among ecosystem services to the Grain to Green Program: A case study of the Chengdu-Chongqing urban agglomeration, China. Environ. Sci. Pollut. Res. 2022, 29, 33572–33586. [Google Scholar] [CrossRef]
- Locatelli, B.; Imbach, P.; Wunder, S. Synergies and trade-offs between ecosystem services in Costa Rica. Environ. Conserv. 2014, 41, 27–36. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships between ecosystem services: Comparing methods for assessing tradeoffs and synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Apan, A. Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas. Ecosyst. Serv. 2023, 59, 101503. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: An integrated multiscale framework applied to the Leipzig-Halle Region, Germany. Ecol. Soc. 2012, 17, 22. [Google Scholar] [CrossRef]
- Spake, R.; Lasseur, R.; Crouzat, E.; Bullock, J.M.; Lavorel, S.; Parks, K.E.; Schaafsma, M.; Bennett, E.M.; Maes, J.; Mulligan, M.; et al. Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environ. Chang. 2017, 47, 37–50. [Google Scholar] [CrossRef]
- Gao, J.; Yu, Z.; Wang, L.; Vejre, H. Suitability of regional development based on ecosystem service benefits and losses: A case study of the Yangtze River Delta urban agglomeration, China. Ecol. Indic. 2019, 107, 105579. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Q.; He, C.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- Chen, L.; Pei, S.; Liu, X.; Qiao, Q.; Liu, C. Mapping and analysing tradeoffs, synergies and losses among multiple ecosystem services across a transitional area in Beijing, China. Ecol. Indic. 2021, 123, 107329. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Jia, G. Water utilization characteristics of typical vegetation in the rocky mountain area of Beijing, China. Ecol. Indic. 2018, 91, 249–258. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Beijing Statistical Yearbook 2001. Available online: https://www.zgtjnj.org/navibooklist-N2005120280-1.html (accessed on 1 March 2023).
- Beijing Statistical Yearbook 2011. Available online: https://nj.tjj.beijing.gov.cn/nj/main/2011_ch/e/index.htm (accessed on 1 March 2023).
- Beijing Statistical Yearbook 2021. Available online: http://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/indexch.htm (accessed on 1 March 2023).
- Compilation of National Agricultural Product Cost-Benefit Data in 2001. Available online: https://www.zgtjnj.org/navipage-n2010090048000004.html (accessed on 2 March 2023).
- Compilation of National Agricultural Product Cost-Benefit Data in 2011. Available online: https://www.zgtjnj.org/navibooklist-N2011030097-1.html (accessed on 2 March 2023).
- Compilation of National Agricultural Product Cost-Benefit Data in 2021. Available online: http://www.zgtjcbs.com/data/attachement/pdf/site2/20211111/1636611914406.pdf (accessed on 2 March 2023).
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Liu, C.F.; Hou, Y.; Chen, W.P.; Cui, H.T. Research on ecological risk characterization methods for urbanized areas based on ecosystem services. Acta Ecol. Sin. 2021, 41, 3343–3353. (In Chinese) [Google Scholar]
- Xie, G.D.; Xiao, Y.; Zhen, L.; Lu, C.X. Study on ecological service value of grain production in China. Chin. J. Eco-Agric. 2005, 13, 10–13. (In Chinese) [Google Scholar]
- Qian, C.; Gong, J.; Zhang, J.; Liu, D.; Ma, X. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Geogr. Sin. 2018, 73, 868–879. (In Chinese) [Google Scholar]
- Peng, J.; Liu, Z.C.; Liu, Y.X.; Chen, X.; Zhao, H.J. Assessment of farmland landscape multifunctionality at county level in Beijing-Tianjin-Hebei area. Acta Ecol. Sin. 2016, 36, 2274–2285. (In Chinese) [Google Scholar]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Wu, W.; Peng, J.; Liu, Y.; Hu, Y. Tradeoffs and synergies between ecosystem services in Ordos City. Prog. Geogr. 2017, 36, 1571–1581. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, F.; Zhao, Y. Exploring the spatial discrete heterogeneity of housing prices in Beijing, China, based on regionally geographically weighted regression affected by education. Land 2023, 12, 167. [Google Scholar] [CrossRef]
- Gollini, I.; Lu, B.; Charlton, M.; Brunsdon, C.; Harris, P. GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models. arXiv 2013, arXiv:1306.0413. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Liu, S.; Zhu, Y.; Yan, Z. Reclamation of cultivated land reserves in Northeast China: Indigenous ecological insecurity underlying national food security. Int. J. Environ. Res. Public. Health 2020, 17, 1211. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, X. Cultivated land and food supply in China. Land Use Policy 2000, 17, 73–88. [Google Scholar] [CrossRef]
- Jiang, C.; Lu, D.; Zu, C.; Zhou, J.; Wang, H. Root-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in China. Sci. Rep. 2018, 8, 15139. [Google Scholar] [CrossRef]
- Hui, L.I.; Feng, W.T.; He, X.H.; Ping, Z.H.U.; Gao, H.J.; Nan, S.U.N.; Xu, M.G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J. Integr. Agric. 2017, 16, 937–946. [Google Scholar]
- Zhou, M.; Lu, L.; Guo, H.; Weng, Q.; Cao, S.; Zhang, S.; Li, Q. Urban sprawl and changes in land-use efficiency in the beijing–tianjin–hebei region, china from 2000 to 2020: A spatiotemporal analysis using earth observation data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Xu, Q.; Li, R.; Yu, J.; Zhang, P. Synergies and trade-Offs among different ecosystem services through the analyses of spatio-temporal changes in Beijing, China. Land 2023, 12, 1000. [Google Scholar] [CrossRef]
- Chen, H.Y.; Li, W. Analysis on forest distribution and structure in Beijing. For. Resour. Manag. 2011, 2, 32–35. [Google Scholar]
- Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of forest biomass in Beijing (China) using multisource remote sensing and forest inventory data. Forests 2020, 11, 163. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Schmalz, B.; Kruse, M.; Kiesel, J.; Müller, F.; Fohrer, N. Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecol. Indic. 2016, 71, 55–65. [Google Scholar] [CrossRef]
- Jelic, M.; Milivojevic, J.; Nikolic, O.; Djekic, V.; Stamenkovic, S. Effect of long-term fertilization and soil amendments on yield, grain quality and nutrition optimization in winter wheat on an acidic pseudogley. Rom. Agric. Res. 2015, 32, 165–174. [Google Scholar]
- Yang, S.; Bai, Y.; Alatalo, J.M.; Wang, H.; Jiang, B.; Liu, G.; Chen, J. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. J. Clean. Prod. 2021, 286, 125316. [Google Scholar] [CrossRef]
- Deng, R.; Wang, W.; Fang, H.; Yao, Z. Effect of farmland shelterbelts on gully erosion in the black soil region of Northeast China. J. For. Res. 2015, 26, 941–948. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y. Associations among ecosystem services from local perspectives. Sci. Total Environ. 2019, 690, 790–798. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Hu, T.; Li, X.; Gong, P.; Yu, W.; Huang, X. Evaluating the effect of plain afforestation project and future spatial suitability in Beijing. Sci China, Ser D Earth Sci. 2020, 63, 1587–1598. [Google Scholar] [CrossRef]
- Zhao, Y.; Chi, W.; Kuang, W.; Bao, Y.; Ding, G. Ecological and environmental consequences of ecological projects in the Beijing–Tianjin sand source region. Ecol. Indic. 2020, 112, 106111. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, S.; Wu, J.; Zhang, Y.; Liu, P.; Jia, R. The influence of ecological restoration projects on groundwater in Yongding River Basin in Beijing, China. Water Supply 2019, 19, 2391–2399. [Google Scholar] [CrossRef]
- National Research Council. Valuing Ecosystem Services: Toward Better Environmental Decision-Making; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
Ecosystem Type | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | |||||
---|---|---|---|---|---|---|---|---|---|
FS | RMS | AQR | CR | WFR | SC | NC | HQ | LA | |
cropland | 0.85 | 0.40 | 0.67 | 0.36 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 |
forest | 0.31 | 0.71 | 2.35 | 7.03 | 3.51 | 2.86 | 0.22 | 2.60 | 1.14 |
shrub | 0.19 | 0.43 | 1.41 | 4.32 | 3.35 | 1.72 | 0.13 | 1.57 | 0.69 |
grassland | 0.38 | 0.56 | 1.97 | 5.21 | 3.82 | 2.40 | 0.18 | 2.18 | 0.96 |
water | 0.80 | 0.23 | 0.77 | 2.29 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
barren land | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.02 | 0.00 | 0.02 | 0.01 |
wetland | 0.51 | 0.50 | 1.90 | 3.60 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
Region | Biomass Factor | Region | Biomass Factor | Region | Biomass Factor |
---|---|---|---|---|---|
Beijing | 1.04 | Anhui Province | 1.17 | Sichuan Province | 1.35 |
Tianjin | 0.85 | Fujian Province | 1.56 | Guizhou Province | 0.63 |
Heibei Province | 1.02 | Jiangxi Province | 1.51 | Yunnan Province | 0.64 |
Shanxi Province | 0.46 | Shandong Province | 1.38 | Tibet | 0.75 |
Inner Mongolia | 0.44 | Henan Province | 1.39 | Shaanxi Province | 0.51 |
Liaoning Province | 0.90 | Hubei Province | 1.27 | Gansu Province | 0.42 |
Jilin Province | 0.96 | Hunan Province | 1.95 | Qinghai Province | 0.40 |
Heilongjiang Province | 0.66 | Guangdong Province | 1.40 | Ningxia | 0.61 |
Shanghai | 1.44 | Guangxi | 0.98 | Xinjiang | 0.58 |
Jiangsu Province | 1.74 | Hainan Province | 0.72 | National average level | 1.00 |
Zhejiang Province | 1.76 | Chongqing | 1.21 |
Grain Type | 2010 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Planting Area (ha) | Annual Yield (t/a) | National Average Price (CNY/t) | Planting Area (ha) | Annual Yield (t/a) | National Average Price (CNY/t) | Planting Area (ha) | Annual Yield (t/a) | National Average Price (CNY/t) | |
Rice | 14,062.9 | 93,575 | 1034.8 | 299.1 | 1892.3 | 2360 | 203.2 | 1361.5 | 2750.8 |
Wheat | 121,686.7 | 668,508 | 1008.6 | 61,566.1 | 283,835.3 | 1980.2 | 8201.8 | 45,221.9 | 2283.6 |
Maize | 135,808 | 587,098 | 856.2 | 14,970.5 | 841,674 | 1872.4 | 35,646 | 241,861.9 | 2311.2 |
Ea (CNY∙ha−1∙a−1) | 670.1 | 3983.4 | 2159.9 |
Land-Use Type | Year | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | |||||
---|---|---|---|---|---|---|---|---|---|---|
FS | RMS | AQR | CR | WFR | SC | NC | HQ | LA | ||
Cropland | 2000 | 592.4 | 278.8 | 13.9 | 466.9 | 250.9 | 69.7 | 188.2 | 717.8 | 83.6 |
2010 | 3521.3 | 1657.1 | 82.9 | 2775.6 | 1491.4 | 414.3 | 1118.5 | 4267.0 | 497.1 | |
2020 | 1909.3 | 898.5 | 44.9 | 1505.0 | 808.6 | 224.6 | 606.5 | 2313.6 | 269.6 | |
Forest | 2000 | 216.0 | 494.8 | 257.9 | 1637.7 | 4899.1 | 1386.8 | 2446.1 | 1993.1 | 153.3 |
2010 | 1284.2 | 2941.3 | 1532.8 | 9735.4 | 29,123.4 | 8244.0 | 14,541.0 | 11,848.2 | 911.4 | |
2020 | 696.3 | 1594.8 | 831.1 | 5278.7 | 15,791.0 | 4470.0 | 7884.3 | 6424.2 | 494.2 | |
Shrub | 2000 | 132.4 | 299.7 | 153.3 | 982.6 | 3010.5 | 892.0 | 2334.6 | 1198.6 | 90.6 |
2010 | 787.1 | 1781.4 | 911.4 | 5841.2 | 17,896.6 | 5302.7 | 13,878.1 | 7125.5 | 538.6 | |
2020 | 426.8 | 965.9 | 494.2 | 3167.2 | 9703.7 | 2875.2 | 7524.9 | 3863.5 | 292.0 | |
Grassland | 2000 | 264.8 | 390.3 | 216.0 | 1372.9 | 3630.8 | 1198.6 | 2662.1 | 1672.5 | 125.4 |
2010 | 1574.2 | 2319.9 | 1284.2 | 8161.2 | 21,583.6 | 7125.5 | 15,825.2 | 9942.5 | 745.7 | |
2020 | 853.6 | 1257.9 | 696.3 | 4425.1 | 11,702.9 | 3863.5 | 8580.6 | 5391.0 | 404.3 | |
Water | 2000 | 557.5 | 160.3 | 5777.2 | 536.6 | 1595.9 | 3867.7 | 71,249.3 | 648.1 | 48.8 |
2010 | 3314.2 | 952.8 | 34,343.2 | 3189.9 | 9486.8 | 22,992.1 | 423,552.3 | 3852.7 | 290.0 | |
2020 | 1797.0 | 516.6 | 18,621.3 | 1729.6 | 5143.9 | 12,466.6 | 229,654.9 | 2089.0 | 157.2 | |
Barren land | 2000 | 0 | 0 | 0 | 13.9 | 0.0 | 69.7 | 20.9 | 13.9 | 0 |
2010 | 0 | 0 | 0 | 82.9 | 0.0 | 414.3 | 124.3 | 82.9 | 0 | |
2020 | 0 | 0 | 309.1 | 0 | 1545.5 | 463.6 | 309.1 | 0.0 | 309.1 | |
Wetland | 2000 | 35.2 | 182.4 | 133.8 | 253.6 | 253.6 | 1706.8 | 162.7 | 12.7 | 554.4 |
2010 | 2112.8 | 2071.4 | 10,729.7 | 7871.2 | 14,913.8 | 14,913.8 | 100,378.2 | 9569.7 | 745.7 | |
2020 | 1145.6 | 1123.1 | 5817.8 | 4267.8 | 8086.4 | 8086.4 | 54,426.2 | 5188.8 | 404.3 |
Year | Cropland | Forest | Shrub | Grassland | Water | Barren Land | Built-Up Area | Wetland | |
---|---|---|---|---|---|---|---|---|---|
2000 | Area (ha) | 558,338.2 | 778,504.1 | 3499.7 | 50,517.8 | 20,319.0 | 98.7 | 229,247.3 | 0 |
Proportion (%) | 34.0 | 47.5 | 0.2 | 3.1 | 1.2 | 0.0 | 14.0 | 0 | |
2010 | Area (ha) | 470,421.7 | 783,092.5 | 5170.8 | 53,215.1 | 15,495.9 | 93.1 | 313,035.8 | 0 |
Proportion (%) | 28.7 | 47.7 | 0.3 | 3.2 | 0.9 | 0 | 19.1 | 0 | |
2020 | Area (ha) | 420,407.3 | 800,054.7 | 6726.1 | 32,475.2 | 22,435.7 | 55.1 | 358,550.6 | 0.5 |
Proportion (%) | 25.6 | 48.8 | 0.4 | 2.0 | 1.4 | 0 | 21.9 | 0 |
Year | ESV (Million CNY) | |||||
---|---|---|---|---|---|---|
0 < ESV ≤ 1000 | 1000 < ESV ≤ 3000 | 3000 < ESV ≤ 5000 | 5000 < ESV ≤ 7000 | ESV > 7000 | ||
2000 | Area (km2) | 9252 | 7535 | 73 | 91 | 1 |
Proportion (%) | 54.6 | 44.4 | 0.4 | 0.5 | 0 | |
2010 | Area (km2) | 3673 | 3771 | 1056 | 2540 | 5949 |
Proportion (%) | 21.6 | 22.2 | 6.2 | 15 | 35 | |
2020 | Area (km2) | 6670 | 2116 | 7890 | 68 | 250 |
Proportion (%) | 39.2 | 12.5 | 46.4 | 0.4 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Chen, S.; Wang, X.; Wang, X. Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in Beijing from 2000 to 2020. Forests 2023, 14, 2314. https://doi.org/10.3390/f14122314
Xu F, Chen S, Wang X, Wang X. Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in Beijing from 2000 to 2020. Forests. 2023; 14(12):2314. https://doi.org/10.3390/f14122314
Chicago/Turabian StyleXu, Fang, Shige Chen, Xiyue Wang, and Xiangrong Wang. 2023. "Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in Beijing from 2000 to 2020" Forests 14, no. 12: 2314. https://doi.org/10.3390/f14122314
APA StyleXu, F., Chen, S., Wang, X., & Wang, X. (2023). Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in Beijing from 2000 to 2020. Forests, 14(12), 2314. https://doi.org/10.3390/f14122314