What Drives Land Use Change in the Southern U.S.? A Case Study of Alabama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Framework
2.2. Empirical Strategy
2.3. Data and Land Use Statistics
3. Results
3.1. State Land Use Statistics
3.1.1. Timberland
3.1.2. Agricultural Land
3.1.3. Urban Land
3.1.4. Conservation Reserve Program Land
3.2. District Land Use Statistics
3.2.1. Timberland
3.2.2. Agricultural Land
3.2.3. Urban Land
3.2.4. Conservation Reserve Program Land
3.3. Results and Discussions
4. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
State/District/ | 1990 | 2000 | 2010 | 2018 | % Change | % Change | % Change | % Change |
---|---|---|---|---|---|---|---|---|
Land use types | (1990–2000) | (2000–2010) | (2010–2018) | (1990–2018) | ||||
Alabama Timberland Use Types | ||||||||
Hardwood | 9947.3 | 10,543.4 | 10,095.2 | 9674.8 | 6.0 | −4.3 | −4.2 | −2.8 |
45.37% | 46.36% | 44.05% | 42.07% | |||||
Softwood | 7456.6 | 8006.1 | 9308.8 | 10,407.2 | 7.4 | 16.3 | 11.8 | 39.6 |
34.01% | 35.20% | 40.62% | 45.25% | |||||
Mixed Hardwood | 4521.5 | 4193.7 | 3513.7 | 2915.3 | −7.4 | −16.2 | −17 | −35.5 |
20.62% | 18.44% | 15.33% | 12.68% | |||||
Total area | 21,925.4 | 22,743.2 | 22,917.7 | 22,997.3 | ||||
District Timberland Use Types | ||||||||
DISTRICT 1 | ||||||||
Hardwood | 1272.9 | 1299.7 | 1272.7 | 1249 | 2.1 | −2.1 | −1.9 | −1.9 |
64.42% | 63.15% | 61.18% | 60.57% | |||||
Softwood | 430.4 | 431.9 | 537.9 | 591 | 0.3 | 21 | 13.1 | 37.3 |
21.78% | 20.98% | 25.86% | 28.66% | |||||
Mixed hardwood | 272.7 | 326.6 | 269.8 | 222 | 19.8 | −17.4 | −17.7 | −18.6 |
13.80% | 15.87% | 12.97% | 10.77% | |||||
Total area | 1976 | 2058.2 | 2080.4 | 2062 | ||||
DISTRICT 2 | ||||||||
Hardwood | 1360.1 | 1555 | 1456.4 | 1364 | 14.3 | −6.3 | −6.3 | 0.3 |
53.78% | 58.67% | 56.83% | 55.95% | |||||
Softwood | 653.7 | 568.8 | 659.9 | 707 | −13 | 16 | 7.1 | 8.1 |
25.85% | 21.46% | 25.75% | 29.00% | |||||
Mixed Hardwood | 515.4 | 526.8 | 446.5 | 367 | 2.2 | −15.2 | −17.8 | −28.8 |
20.38% | 19.87% | 17.42% | 15.05% | |||||
Total area | 2529.2 | 2650.6 | 2562.8 | 2438 | ||||
DISTRICT 3 | ||||||||
Hardwood | 2659.5 | 2559.8 | 2416.7 | 2293.5 | −3.7 | −5.6 | −5.1 | −13.8 |
46.44% | 43.69% | 41.32% | 39.10% | |||||
Softwood | 1742.7 | 2079.3 | 2415.6 | 2736.1 | 19.3 | 16.2 | 13.2 | 57 |
30.43% | 35.49% | 41.30% | 46.64% | |||||
Mixed Hardwood | 1324.4 | 1219.8 | 1016.5 | 836.6 | −7.9 | −16.7 | −17.7 | −36.8 |
23.13% | 20.82% | 17.38% | 14.26% | |||||
Total area | 5726.6 | 5858.9 | 5848.8 | 5866.2 | ||||
DISTRICT 4 | ||||||||
Hardwood | 1676.1 | 1984 | 1958 | 1931.5 | 18.3 | −1.3 | −1.3 | 15.2 |
43.29% | 46.64% | 45.27% | 43.88% | |||||
Softwood | 1392.2 | 1557 | 1787.5 | 2001.5 | 11.8 | 14.8 | 11.9 | 43.8 |
35.96% | 36.60% | 41.33% | 45.47% | |||||
Mixed Hardwood | 803.2 | 713 | 578 | 469 | −24.1 | −3.7 | −7 | −32.1 |
20.75% | 16.76% | 13.40% | 10.65% | |||||
Total area | 3872 | 4254 | 4325 | 4402 | ||||
DISTRICT 5 | ||||||||
Hardwood | 1836.3 | 1930.1 | 1834.2 | 1733.8 | 5.1 | −5 | −5.5 | −5.6 |
34.54% | 36.95% | 33.81% | 31.40% | |||||
Softwood | 2359.2 | 2325.2 | 2777.2 | 3107.7 | −1.4 | 19.4 | 11.9 | 31.7 |
44.38% | 44.51% | 51.20% | 56.29% | |||||
Mixed Hardwood | 1120.5 | 968.4 | 813 | 679.4 | −13.6 | −16 | −16.4 | −39.4 |
21.08% | 18.54% | 14.99% | 12.31% | |||||
Total area | 5316 | 5223.7 | 5424.4 | 5520.9 | ||||
DISTRICT 6 | ||||||||
Hardwood | 1142.4 | 1215 | 1157.3 | 1102.6 | 6.4 | −4.8 | −4.7 | −3.5 |
45.58% | 45.03% | 43.00% | 40.72% | |||||
Softwood | 878.4 | 1044 | 1145.9 | 1263.7 | 18.8 | 9.8 | 10.3 | 43.9 |
35.05% | 38.69% | 42.57% | 46.67% | |||||
Mixed Hardwood | 485.3 | 439.1 | 388.3 | 341.4 | −9.5 | −11.6 | −12.1 | −29.7 |
19.36% | 16.27% | 14.43% | 12.61% | |||||
Total area | 2506.1 | 2698.1 | 2691.5 | 2707.7 |
References
- Wear, D.N.; Greis, J.G. The Southern Forest Futures Project: Summary Report; Gen. Tech. Rep. SRS-GTR-168; USDA-Forest Service, Southern Research Station: Asheville, NC, USA, 2012; Volume 168, pp. 1–54. [CrossRef]
- Rahman, M. Growth of Alabama Urban Areas and Its Impact on Changing Environmental Dynamics. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2014. [Google Scholar]
- Hartsell, A.J.; Cooper, J.A. Alabama’s Forests, 2010; Gen. Tech. Rep. SRS-GTR-168; USDA-Forest Service, Southern Research Station: Asheville, NC, USA, 2013; Volume 193, pp. 1–87. [CrossRef]
- Napton, D.E.; Roger, F.A.; Rachel, H.; Janis, L.T. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Chang. 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Zhou, N.; Rebecca, B.J.; Walter, P.; Zhang, Y. Alabama Rural Land Values and Cash Rents, 2009; Auburn University: Auburn, AL, USA, 2010. [Google Scholar]
- Nagubadi, R.V.; Zhang, D. Determinants of timberland use by ownership and forest type in Alabama and Georgia. J. Agric. Appl. Econ. 2005, 37, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Alabama Forestry Commission. Forest Resource Report. 2018. Available online: https://forestry.alabama.gov/Pages/Other/Forms/Annual_Reports/Annual_Report_2018.pdf (accessed on 20 June 2019).
- Ahn, S.; Plantinga, A.J.; Alig, R.J. Historical Trends and Projections of Land Use for the South-Central United States; Res. Paper PNW-RP-530; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2001. [CrossRef] [Green Version]
- Plantinga, A.J.; Mauldin, T.; Douglas, J.M. An econometric analysis of the costs of sequestering carbon in forests. Am. J. Agric. Econ. 1999, 81, 812–824. [Google Scholar] [CrossRef]
- Lubowski, R.N. Determinants of Land-Use Transitions in the United States: Econometric Analysis of Changes among the Major Land-Use Categories; Harvard University: Cambridge, MA, USA, 2002. [Google Scholar]
- Stavins, R.N.; Adam, B.J. Unintended impacts of public investments on private decisions: The depletion of forested wetlands. Am. Econ. Rev. 1990, 80, 337–352. [Google Scholar] [CrossRef]
- Hardie, I.; Parks, P.; Gottleib, P.; Wear, D. Responsiveness of rural and urban land uses to land rent determinants in the US South. Land Econ. 2000, 76, 659–673. [Google Scholar] [CrossRef] [Green Version]
- Lubowski, R.N.; Plantinga, A.J.; Stavins, R.N. What drives land-use change in the United States? A national analysis of landowner decisions. Land Econ. 2008, 84, 529–550. [Google Scholar] [CrossRef]
- Polyakov, M.; Daowei, Z. Property tax policy and land-use change. Land Econ. 2008, 84, 396–408. [Google Scholar] [CrossRef]
- Call, M.; Mayer, T.; Sellers, S.; Ebanks, D.; Bertalan, M.; Nebie, E.; Gray, C. Socio-Environmental Drivers of Forest Change in Rural Uganda. Land Use Policy 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Van Khuc, Q.; Tran, B.Q.; Meyfroidt, P.; Paschke, M.W. Drivers of Deforestation and Forest Degradation in Vietnam: An Exploratory Analysis at the National Level. For. Policy Econ. 2018, 90, 128–141. [Google Scholar] [CrossRef]
- Van Khuc, Q.; Le, T.A.T.; Nguyen, T.H.; Nong, D.; Tran, B.Q.; Meyfroidt, P.; Tran, T.; Duong, P.B.; Nguyen, T.T.; Tran, T.; et al. Forest Cover Change, Households’ Livelihoods, Trade-Offs, and Constraints Associated with Plantation Forests in Poor Upland-Rural Landscapes: Evidence from North Central Vietnam. Forests 2020, 11, 548. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Roy Chowdhury, R.; de Bremond, A.; Ellis, E.C.; Erb, K.H.; Filatova, T.; Garrett, R.D.; Grove, J.M.; Heinimann, A.; Kuemmerle, T.; et al. Middle-Range Theories of Land System Change. Glob. Environ. Chang. 2018, 53, 52–67. [Google Scholar] [CrossRef]
- Cui, X. Climate change and adaptation in agriculture: Evidence from US cropping patterns. J. Environ. Econ. Manag. 2020, 101, 102306. [Google Scholar] [CrossRef]
- Ji, X.; Cobourn, K.M. Weather fluctuations, expectation formation, and short-run behavioral responses to climate change. Environ. Resour. Econ. 2021, 78, 77–119. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response, and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Bockstael, N.E. Modeling Economics and Ecology: The Importance of a Spatial Perspective. Am. J. Agric. Econ. 1996, 78, 1168–1180. [Google Scholar] [CrossRef]
- Kline, J.D.; Alig, R.J. Does Land Use Planning Slow the Conversion of Forest and Farmlands? Growth Chang. 1999, 30, 3–22. [Google Scholar] [CrossRef]
- Claassen, R. Tegene Agricultural land use choice: A discrete choice approach. Agric. Resour. Econ. Rev. 1999, 28, 26–36. [Google Scholar] [CrossRef] [Green Version]
- USDA-FSA. CRP Enrollment and Rental Payments per Acres by County, 1986–2017; U.S. Department of Agriculture: Washington, DC, USA, 2018.
- Assogba, N.P.; Daowei, Z. The conservation reserve program and timber prices in the southern United States. For. Policy Econ. 2022, 140, 102752. [Google Scholar] [CrossRef]
- Alig, R.J. Econometric analysis of the factors influencing forest acreage trends in the Southeast. For. Sci. 1986, 32, 119–134. [Google Scholar] [CrossRef]
- Alig, R.J.; Healy, R.G. Urban, and built-up land area changes in the United States: An empirical investigation of determinants. Land Econ. 1987, 6, 215–226. [Google Scholar] [CrossRef]
- Biørn, E. Regression systems for unbalanced panel data: A stepwise maximum likelihood procedure. J. Econom. 2004, 122, 281–291. [Google Scholar] [CrossRef]
- Barlowe, R. Land Resource Economics: The Economics of Real Estate; U.S. Department of Energy: Oak Ridge, TN, USA, 1978. [Google Scholar]
- Ricardo, D. On the Principles of Political Economy; J. Murray: London, UK, 1821. [Google Scholar]
- von Thünen, J.H. Der isolierte Staat in Beziehung auf Nationalalökonomie und Landwirtschaft; Pergamon Press: Oxford, UK, 1826. [Google Scholar]
- Alig, R.J.; Plantinga, A.J. Future forestland area: Impacts from population growth and other factors that affect land values. J. For. 2004, 102, 19–24. [Google Scholar]
- Zhang, Y.; Zhang, D.; Schelhas, J. Small-scale non-industrial private forest ownership in the United States: Rationale and implications for forest management. Silva Fenn. 2005, 39, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Control function methods in applied econometrics. J. Hum. Resour. 2015, 50, 420–445. [Google Scholar] [CrossRef]
- Guo, Z.; Small, D.S. Control function instrumental variable estimation of nonlinear causal effect models. J. Mach. Learn. Res. 2016, 17, 3448–3482. [Google Scholar]
- Hausman, J.A. Valuation of new goods under perfect and imperfect competition. Econ. New Goods 1997, 58, 209–237. [Google Scholar]
- Nevo, A. New products, quality changes, and welfare measures computed from estimated demand systems. Rev. Econ. Stat. 2003, 85, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ruiqing, M.; Khanna, M. Effects of ethanol plant proximity and crop prices on land-use change in the United States. Am. J. Agric. Econ. 2019, 101, 467–491. [Google Scholar] [CrossRef]
- Kebede, E.; Schelhas, J.; Harslerig, J. Alternative Forest resource use-outdoor recreation and rural economics. J. Environ. Monit. Restor. 2008, 5, 20–29. [Google Scholar] [CrossRef]
- Strader, S.M.; David, B.R.; Brett, M.D. Unpacking Tornado Disasters: Illustrating Southeastern US Tornado Mobile and Manufactured Housing Problem Using March 3, 2019 Beauregard-Smith Station, Alabama, Tornado Event. Nat. Hazards Rev. 2021, 22, 04020060. [Google Scholar] [CrossRef]
- Mei, B. Assessing Commercial Timberland Assets in the U.S. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2010. [Google Scholar]
- Alabama Department of Revenue. 2019. Available online: https://revenue.alabama.gov/ (accessed on 20 May 2020).
- Mei, B.; Clutter, M.L.; Harris, T.G. Timberland return drivers and timberland returns and risks: A simulation approach. South. J. Appl. For. 2013, 37, 18–25. [Google Scholar] [CrossRef]
- Nigatu, G.; Badau, F.; Seeley, R.; Hansen, J. Factors Contributing to Changes in Agricultural Commodity Prices and Trade for the United States and the World; United States Department of Agriculture (USDA): Washington, DC, USA, 2020.
- Hellerstein, D.M. The U.S. Conservation Reserve Program: The evolution of an enrollment mechanism. Land Use Policy 2017, 63, 601–610. [Google Scholar] [CrossRef]
- Laband, D.N. Emerging Issues along Urban/Rural Interfaces: Linking Science and Society. Conference Proceedings, Atlanta, GA, USA, 13–16 March 2005; Auburn University: Auburn, AL, USA, 2005; p. 405. [Google Scholar]
- JunJie, W.; Sergeson, K. The impact of policies and land characteristics on potential groundwater pollution in Wisconsin. Am. J. Agric. Econ. 1995, 77, 1033–1047. [Google Scholar] [CrossRef]
- Parks, P.J.; Kramer, A.R. A policy simulation of the wetlands reserve program. J. Environ. Econ. Manag. 1995, 28, 223–240. [Google Scholar] [CrossRef]
- Secchi, S.; Tyndall, J.; Schulte, L.A.; Asbjornsen, H. High crop prices and conservation: Raising the stakes. J. Soil Water Conserv. 2008, 63, 68A–73A. [Google Scholar] [CrossRef]
- Shoshany, M.; Naftaly, G. Land-use and population density changes in Israel–1950 to 1990: Analysis of regional and local trends. Land Use Policy 2002, 19, 123–133. [Google Scholar] [CrossRef]
- Wang, Y.; Bellemare, M.F. Lagged Variables as Instruments. Working Paper, Department of Applied Economics, University of Minnesota, Minneapolis, MN, USA, 2019. Available online: http://marcfbellemare.com/wordpress/wp-content/uploads/2019/05/WangBellemareLaggedIVsMay2019.pdf (accessed on 20 May 2020).
Variable | Mean | Standard Deviation |
---|---|---|
Dependent variables | ||
0.69 | 0.15 | |
0.28 | 0.14 | |
0.02 | 0.01 | |
CRP lands | 0.01 | 0.02 |
Independent variables | ||
(Number of people/acre) | 133.49 | 156.05 |
(Dollar ($)/number of people) | 12,842.41 | 2458.55 |
4.04 | 2.93 | |
I-II | 0.22 | 0.12 |
III-IV | 0.34 | 0.13 |
V-VIII | 0.43 | 0.17 |
($/m3) | 0.39 | 0.15 |
Crop price Index | 335.7 | 17.01 |
Land Use Types (Acres) | 1990 | 2000 | 2010 | 2018 | % Change (1990–2000) | % Change (2000–2010) | % Change (2010–2018) | % Change (1990–2018) |
---|---|---|---|---|---|---|---|---|
Timberland | 21,925.4 (67.4%) | 22,743.2 (70%) | 22,917.7 (70.6%) | 22,997.3 (70.8%) | 3.7 | 0.7 | 0.3 | 4.8 |
Agriculture | 10,011.5 (30.8%) | 8794.8 (27.1%) | 8591.3 (26.4%) | 8469.7 (26.1%) | −12.2 | −2.3 | −1.4 | −15.4 |
Urban | 434.9 (1.3%) | 480.9 (1.5%) | 592.9 (1.8%) | 779.5 (2.4%) | 10.6 | 23.3 | 31.5 | 79.2 |
CRP | 118.9 (0.4%) | 471.8 (1.5%) | 388.8 (1.2%) | 244.2 (0.8%) | 296.7 | −17.6 | −37.2 | 105.4 |
Total land area | 32,491 | 32,491 | 32,491 | 32,491 | ||||
District Land Use Types | ||||||||
DISTRICT 1 | ||||||||
Timberland | 1976 (52.5%) | 2058.2 (54.7%) | 2080.4 (55.3%) | 2063.1(54.8%) | 4.1 | 1.08 | −0.8 | 4.4 |
Agriculture | 1718.5 (45.6%) | 1575.6 (41.8%) | 1550 (41.2%) | 1583 (42%) | −8.3 | −1.6 | 2.1 | −7.9 |
Urban | 60.7 (1.6%) | 67.5 (1.8%) | 81.2 (2.3%) | 91.2 (2.4%) | 11.1 | 20.5 | 12.3 | 50.3 |
CRP | 10.0 (0.3%) | 471.8 (1.5%) | 388.8 (1.2%) | 244.2 (0.8%) | 296.7 | −17.6 | −37.2 | 105.4 |
Total area | 3765.2 | 3765.2 | 3765.2 | 3765.2 | ||||
DISTRICT 2 | ||||||||
Timberland | 2529.2 (57.6%) | 2650.5 (60.3%) | 2562.7 (58.3%) | 2438 (55.5%) | 4.8 | 3.3 | −4.9 | −3.6 |
Agriculture | 1777.4 (40.5%) | 1629 (40.5%) | 1721.7 (39.2%) | 1819 (41.4%) | −8.4 | 5.7 | 5.7 | 2.3 |
Urban | 81.5 (1.9%) | 76.2 (1.9%) | 88.6 (2%) | 117.2 (2.7%) | −6.5 | 16.3 | 32.2 | 43.8 |
CRP | 4.8 (0.1%) | 37.7 (0.8%) | 19.9 (0.5%) | 18.7 (0.4%) | 685.4 | −47.2 | −6.0 | 291.6 |
Total area | 4392.9 | 4392.9 | 4392.9 | 4392.9 | ||||
DISTRICT 3 | ||||||||
Timberland | 5726.6 (75.5%) | 5858.9 (77.2%) | 5848.8 (77.1%) | 5866.3 (77.3%) | 2.3 | −0.2 | 0.3 | 2.4 |
Agriculture | 1777.7 (23.4%) | 1617.3 (21.3%) | 1630.3 (21.5%) | 1549.7 (20.4%) | −9.0 | 0.8 | −4.9 | −12.8 |
Urban | 76.5 (1%) | 78.4 (1%) | 89.4 (1.2%) | 155.9 (2.1%) | 2.4 | 14.1 | 74.4 | 103.7 |
CRP | 6.1 (0.1%) | 32.4 (0.4%) | 17.5 (0.2%) | 15.1 (0.2%) | 429.8 | −46.1 | −13.6 | 146.6 |
Total area | 7589 | 7589 | 7589 | 7589 | ||||
DISTRICT 4 | ||||||||
Timberland | 3871.5 (63.9%) | 4253.6 (70.2%) | 4325.2 (71.3%) | 4402 (72.6%) | 9.9 | 1.7 | 1.8 | 13.7 |
Agriculture | 2023.9 (33.2%) | 1536 (25.3%) | 1479.1 (24.4%) | 1375 (22.7%) | −24.1 | −24.1 | −3.7 | −32.1 |
Urban | 102.2 (1.7%) | 125.1 (2.1%) | 144.8 (2.4%) | 205.3 (3.4%) | 22.4 | 22.4 | 15.7 | 100.8 |
CRP | 65.3 (0.1%) | 148.7 (2.5%) | 113.8 (1.9%) | 80.5 (1.3%) | 127.6 | 127.6 | −23.4 | 23.2 |
Total area | 6062.9 | 6062.9 | 6062.9 | 6062.9 | ||||
DISTRICT 5 | ||||||||
Timberland | 5316 (78.9%) | 5223.1 (77.5%) | 5424.3 (80.5%) | 5521 (81.9%) | −1.7 | 3.8 | 1.8 | 3.9 |
Agriculture | 1369.1 (20.3%) | 1416.8 (21%) | 1218.8 (18.1%) | 1141.8 (16.9%) | 3.5 | −14.0 | −6.3 | −16.6 |
Urban | 43.9 (0.7%) | 47.6 (0.7%) | 47.7 (0.7%) | 56.4 (0.8%) | 8.3 | 0.2 | 18.5 | 28.6 |
CRP | 12.8 (0.2%) | 53.6 (0.8%) | 51 (0.8%) | 22.4 (0.3%) | 320.3 | −5.0 | −51.6 | 75.7 |
Total area | 6741.8 | 6741.8 | 6741.8 | 6741.8 | ||||
DISTRICT 6 | ||||||||
Timberland | 2506.1 (63.6%) | 2698.3 (68.5%) | 2691.4 (68.3%) | 2708 (68.9%) | 7.7 | −0.3 | 0.6 | 8 |
Agriculture | 1344.9 (34.1%) | 1021 (25.9%) | 991.3 (25.2%) | 1016 (25.8%) | −24.1 | −2.9 | 2.5 | −24.4 |
Urban | 70.0 (1.8%) | 86.2 (2.2%) | 117.1 (3%) | 139.6 (3.5%) | 23.1 | 35.8 | 16.4 | 94.6 |
CRP | 19.8 (0.5%) | 135.4 (3.4%) | 141.1 (3.6%) | 77.4 (2%) | 582.4 | 3.5 | −44.7 | 290.3 |
Total area | 3940.9 | 3940.9 | 3940.9 | 3940.9 |
Independent Variables 2 | Dependent Variables | |||
---|---|---|---|---|
Timberland | Agricultural Land | Urban Land | CRP Land | |
Population density | −0.1598 *** (0.0077) | 0.4338 *** (0.1777) | 0.2421 *** (0.0452) | 0.0365 (0.0829) |
Income per capita | 0.0951 *** (0.0149) | −0.3736 *** (0.0338) | 0.3446 *** (0.0877) | −0.2967 *** (0.1595) |
Land quality I–II | 0.0135 (0.0124) | 0.0464 *** (0.0285) | −0.1549 ** (0.0732) | −0.1193 (0.1195) |
Land quality III–IV | 0.0147 (0.0259) | 0.1217 *** (0.0558) | 0.4921 *** (0.1505) | 1.8422 *** (0.2758) |
Land quality V–VIII | 0.1108 *** (0.0234) | −0.0429 *** (0.0512) | 0.8745 *** (0.1321) | 1.33 *** (0.2432) |
Crop price index | −0.0537 *** (0.016) | 0.0437 *** (0.0148) | −1.257 *** (0.0256) | −2.0113 *** (0.675) |
Timber price | 0.0745 *** (0.0141) | −0.1847 *** (0.0308) | −0.6584 *** (0.0807) | 1.3517 *** (0.1384) |
Interest rate | −0.0121 *** (0.0032) | 0.0235 *** (0.007) | 0.0083 (0.0189) | −0.3754 *** (0.0336) |
Disaster | 0.0522 *** (0.0188) | 0.018 (0.0439) | 0.0376 (0.1095) | 0.2837 (0.2041) |
Root MSE | 0.1417 | 0.2949 | 0.4709 | 0.9298 |
R-square | 0.6467 | 0.6649 | 0.4033 | 0.5761 |
Chi2 | 431.98 | 468.36 | 159.53 | 320.75 |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adjei, E.; Li, W.; Narine, L.; Zhang, Y. What Drives Land Use Change in the Southern U.S.? A Case Study of Alabama. Forests 2023, 14, 171. https://doi.org/10.3390/f14020171
Adjei E, Li W, Narine L, Zhang Y. What Drives Land Use Change in the Southern U.S.? A Case Study of Alabama. Forests. 2023; 14(2):171. https://doi.org/10.3390/f14020171
Chicago/Turabian StyleAdjei, Eugene, Wenying Li, Lana Narine, and Yaoqi Zhang. 2023. "What Drives Land Use Change in the Southern U.S.? A Case Study of Alabama" Forests 14, no. 2: 171. https://doi.org/10.3390/f14020171
APA StyleAdjei, E., Li, W., Narine, L., & Zhang, Y. (2023). What Drives Land Use Change in the Southern U.S.? A Case Study of Alabama. Forests, 14(2), 171. https://doi.org/10.3390/f14020171