Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability
Abstract
:1. Introduction
- How has fire of different severity impacted the structure of rainforests 1.5 years after burn, particularly the percentage coverage of each strata?
- Is the regeneration different depending on fire severity?
- Has the flammability of regenerating vegetation increased in relation to fire intensity and the openness of the canopy, and could this make the site more flammable or less flammable to a second fire?
- Did rainforest burn with higher severity in previously disturbed locations?
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Remote Sensing and GIS Data
2.4. Field Data Collection: Fire Severity
2.5. Field Data Collection: Vegetation
2.6. Vegetation Flammability
2.7. Disturbance Mapping
2.8. Data Analysis
3. Results
4. Discussion
4.1. Vegetation Structure and Fire Severity
4.2. The Effect of Canopy Cover and Fire Severity on Fire-Promoting Regrowth
4.3. The Effect of Canopy Cover and Fire Severity on Fire-Suppressing Regrowth
4.4. Effect of Disturbance
4.5. Implications of Future Flammability for Rainforest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. (Eds.) IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Bond, W.J. Large parts of the world are brown or black: A different view on the ‘Green World’ hypothesis. J. Veg. Sci. 2005, 16, 261–266. [Google Scholar] [CrossRef]
- Olsen, P.; Weston, M. Fire and Birds: Fire Management for Biodiversity. Wingspan 2005, 15, 10367810. [Google Scholar]
- Whelan, R.; Kanowski, K.; Gill, M.; Andersen, A. Living in a Land of Fire; Australia State of the Environment Committee Department of Environment and Heritage: Canberra, Australia, 2006.
- Bowman DM, J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Pyke, D.; Brooks, M.; D’Antonio, C. Fire as a Restoration Tool: A Decision Framework for Predicting the Control or Enhancement of Plants Using Fire. Restor. Ecol. 2010, 18, 274–284. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019–2020 season of mega-fires. Glob. Chang. Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef]
- Greenwood, D.; Christophel, D. The origins and Tertiary history of Australian “Tropical” rainforests. In Tropical Rainforests: Past, Present and Future; Bermingham, E., Dick, C.W., Moritz, C., Eds.; University of Chicago Press: Chicago, IL, USA, 2005; pp. 336–373. [Google Scholar]
- Hardesty, J.; Myers, R.; Fulks, W. Fire, ecosystems, and people: A preliminary assessment of fire as a global conservation issue. Georg. Wright Forum 2005, 22, 78–87. [Google Scholar]
- Pivello, V. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Silva Junior, C.; Anderson, L.; Silva, A.; Almeida, C.; Dalagnol, R.; Pletsch, M.; Penha, T.; Paloschi, R.; Aragão, L. Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Front. Earth Sci. 2019, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.; Bradstock, R.; Clarke, H.; Clarke, M.; Nolan, R.; Penman, T. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 2021, 16, 044029. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Whitehead, P.J.; Cook, G.D.; Hoare, J.L. Response of Eucalyptus-dominated savanna to frequent fires: Lessons from Munmarlary, 1973–1996. Ecol. Mono 2003, 73, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.M.; Zylstra, P. Flammability of Australian forests. Aust. For. 2005, 68, 87–93. [Google Scholar] [CrossRef] [Green Version]
- White, R.H.; Zipperer, W.C. Testing and classification of individual plants for fire behaviour: Plant selection for the wildland-urban interface. Int. J. Wildland Fire 2010, 19, 213–227. [Google Scholar] [CrossRef]
- Varner, J.; Kane, J.; Kreye, J.; Engber, E. The Flammability of Forest and Woodland Litter: A Synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Pausas, J.; Keeley, J.; Schwilk, D. Flammability as an ecological and evolutionary driver. J. Ecol. 2016, 105, 289–297. [Google Scholar] [CrossRef]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Tumino, B.J.; Duff, T.J.; Goodger, J.; Cawson, J.G. Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest. PLoS ONE 2019, 14, 221–403. [Google Scholar] [CrossRef]
- Gill, A.M.; Bradstock, R.A. A national register for the fire responses of plant species. Cunninghamia 1992, 2, 653–660. [Google Scholar]
- Baeza, M.J.; Valdecantos, A.; Alloza, J.A.; Vallejo, V.R. Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests. J. Veg. Sci. 2007, 18, 243–252. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Neptstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Xaud, H.A.M.; Martins, F.; Dos Santos, J.R. Tropical forest degradation by mega-fires in the northern Brazilian Amazon. For. Ecol. Manag. 2013, 294, 97–106. [Google Scholar] [CrossRef]
- Murphy, B.; Bradstock, R.; Boer, M.; Carter, J.; Cary, G.; Cochrane, M.; Fensham, R.; Russell-Smith, J.; Williamson, G.; Bowman, D. Fire regimes of Australia: A pyrogeographic model system. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Shlisky, A.; Alencar, A.A.C.; Nolasco, M.M.; Curran, L.M. Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics. In Tropical Fire Ecology; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing human dominance of tropical forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef]
- Juárez-Orozco, S.; Siebe, C.; Fernández y Fernández, D. Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Trop. Conserv. Sci. 2017, 10, 1940082917737207. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Allen, S.; Mackenzie, B.D.E.; Yates, C.J.; Gosper, C.R.; Keith, D.A.; Merow, C.; White, M.D.; Wenk, E.; Maitner, B.S.; et al. High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Divers. Distrib. 2021, 27, 1166–1179. [Google Scholar] [CrossRef]
- Godfree, R.C.; Knerr, N.; Encinas-Viso, F.; Albrecht, D.; Bush, D.; Cargill, D.C.; Clements, M.; Gueidan, C.; Guja, L.K.; Harwood, T.; et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 2021, 12, 1023. [Google Scholar] [CrossRef]
- Baker, A.G.; Catteral, C.; Wiseman, M. Rainforest persistence and recruitment after Australia’s 2019–2020 fires in subtropical, temperate, dry and littoral rainforests. Aust. J. Bot. 2021, 70, 189–203. [Google Scholar] [CrossRef]
- Thorley, J.; Srivastava, S.K.; Shapcott, A. What type of rainforest burnt in the South East Queensland’s 2019/20 bushfires and how might this impact biodiversity. Aust. Ecol. 2023; accepted. [Google Scholar]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Cheney, N.; Gould, J.S.; McCaw, W.L.; Anderson, W.R. Predicting fire behaviour in dry eucalypt forest in southern Australia. For. Ecol. Manag. 2012, 280, 120–131. [Google Scholar] [CrossRef]
- Keith, D.A. Fire-driven extinction of plant populations: A synthesis of theory and review of evidence from Australian vegetation. Proc. Linn. Soc. N. S. W. 1996, 116, 37–78. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Poorter, L.; Rose, S.A. Light-dependent changes in the relationship between seed mass and seedling traits: A meta-analysis for rain forest tree species. Oecologia 2005, 142, 378–387. [Google Scholar] [CrossRef]
- Cheal, D. Growth Stages and Tolerable Fire Intervals for Victoria’s Native Vegetation Data Sets: Fire and Adaptive Management; Report No. 84; Department of Sustainability and Environment: East Melbourne, VIC, Australia, 2010.
- Coop, J.D.; Parks, S.A.; McClernan, S.R.; Holsinger, L.M. Influences of prior wildfires on vegetation response to subsequent fire in a reburned southwestern landscape. Ecol. Appl. 2016, 26, 346–354. [Google Scholar] [CrossRef]
- Collins, L. Eucalypt forests dominated by epicormic resprouters are resilient to repeated canopy fires. J. Ecol. 2020, 108, 310–324. [Google Scholar] [CrossRef]
- Cochrane, M.A. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol. 2001, 15, 1515–1521. [Google Scholar] [CrossRef]
- Bonal, D.; Burban, B.; Stahl, C. The response of tropical rainforests to drought—Lessons from recent research and future prospects. Ann. For. Sci. 2016, 73, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Sousa, W.P. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst. 1984, 15, 353–391. [Google Scholar] [CrossRef]
- Glenn-Lewin, D.C.; Van der Maarel, E. Patterns and processes of vegetation dynamics. In Plant Succession: Theory and Prediction; Glenn-Lewin, D.C., Peet, R.K., Veblen, T.T., Eds.; Chapman and Hall: London, UK, 1992; pp. 11–59. [Google Scholar]
- Blossey, B.; Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Hunneke, L.F. Disturbance, diversity, and invasion: Implications for conservation. Conserv. Biol. 1992, 6, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A.; Schulze, M.D. Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica 1999, 31, 2–16. [Google Scholar] [CrossRef]
- Ross, K.A.; Fox, B.J.; Fox, M.D. Changes to plant species richness in forest fragments: Fragment age, disturbance and fire history may be as important as area. J. Biogeogr. 2002, 29, 749–765. [Google Scholar] [CrossRef]
- Hiremath, A.; Sundaram, B. The fire-lantana cycle hypothesis in Indian forests. Conserv. Soc. 2005, 3, 26–42. [Google Scholar]
- Gooden, B.; French, K.; Turner, P. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in Southeastern Australia. For. Ecol. Manag. 2009, 257, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Berry, Z.; Wevill, K.; Curran, T. The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Res. 2011, 51, 525–533. [Google Scholar] [CrossRef]
- Simpson, K.J.; Ripley, B.S.; Christin, P.A.; Belcher, C.M.; Lehmann, C.E.R.; Thomas, G.H.; Osborne, C.P. Determinants of flammability in savanna grass species. J. Ecol. 2016, 104, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.J.; Jardine, E.C.; Archibald, S.; Forrestel, E.J.; Lehmann, C.E.R.; Thomas, G.H.; Osborne, C.P. Resprouting grasses are associated with less frequent fire than seeders. New Phytol. 2021, 230, 832–844. [Google Scholar] [CrossRef]
- Tierney, D.; Watson, P. Fire and the Vegetation of the Namoi CMA. A Report Prepared by the Hotspots Project; Nature Conservation Council: Sydney, NSW, Australia, 2009. [Google Scholar] [CrossRef]
- Chu, J.K.Y. Weed ID Phytolacca Octandra. 2005. Available online: https://www.iewf.org/weedid/Phytolacca_octandra.htm (accessed on 18 January 2023).
- Kohout, M.; Coupar, P.; Elliot, M. Battling an “aggressive pioneer” after fire: Phytolacca octandra (Inkweed). Australas. Plant Conserv. 2020, 29, 7–8. [Google Scholar]
- Ondei, S.; Prior, L.D.; Vigilante, T.; Bowman, D.M. Post-fire resprouting strategies of rainforest and savanna saplings along the rainforest–savanna boundary in the Australian monsoon tropics. Plant Ecol. 2016, 217, 711–724. [Google Scholar] [CrossRef]
- Narsey, S.; Laidlaw, M.; Colman, R.; Pearce, K.; Hopkins, M.; Dowdy, A. Impact of Climate Change on Cloud Forests in the Gondwana Rainforests of Australia. World Heritage Area; Earth Systems and Climate Change Hub Report No. 20; NESP Earth Systems and Climate Change Hub: Brisbane, QLD, Australia, 2020. [Google Scholar]
- Hines, H.B.; Laidlaw, M.J.; Buch, W.; Olyott, L.; Levy, S.; Melzer, R.; Meiklejohn, A. Post-Fire Assessment Report—Natural Values: 2019 Bushfire, Lamington National Park, South East Queensland Region; Brisbane Department of Environment and Science, Queensland Government: Brisbane, QLD, Australia, 2020.
- Srivastava, S.; Lewis, T.; Behrendorff, L.; Phinn, S. Spatial databases and techniques to assist with prescribed fire management in the south-east Queensland bioregion. Int. J. Wildland Fire 2021, 30, 90. [Google Scholar] [CrossRef]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Relationship between soil burn severity in forest fires measured in situ and through spectral indices of remote detection. Forests 2019, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Jia, S.; Han, R.; Liu, Y.; Lu, X.; Zhang, H. RS and GIS Supported Urban LULC and UHI Change Simulation and Assessment. J. Sens. 2020, 2020, 5863164. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Queensland Government. Queensland Spatial Catalogue—QSpatial. 2022. Available online: http://qldspatial.information.qld.gov.au/catalogue/ (accessed on 17 November 2022).
- Neldner, V.J.; Wilson, B.A.; Dillewaard, H.A.; Ryan, T.S.; Butler, D.W.; McDonald, W.J.F.; Addicott, E.P.; Appelman, C.N. Methodology for Survey and Mapping of Regional Ecosystems and Vegetation Communities in Queensland; Queensland Herbarium, Science and Technology Division, Department of Environment and Science: Brisbane, QLD, Australia, 2020.
- Lindenmayer, E.; Burns Thurgate, N.; Lowe, A. Biodiversity and Environmental Change; CSIRO Publishing: Melbourne, VIC, Australia, 2014. [Google Scholar]
- Gordon, C.E.; Price, O.F.; Tasker, E.M. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR. Ecol. Appl. 2017, 27, 1618–1632. [Google Scholar] [CrossRef] [Green Version]
- Gillison, A.N. A Field Manual for Rapid Vegetation Survey and Classification for General Purpose; CIFOR and ACIAR Bogor: Jawa Barat, Indonesia, 2001; ISBN 979-8764-62-5. [Google Scholar]
- Hnatiuk, R.J.; Thackway, R.; Walker, J. Vegetation. In Australian Soil and Land Survey Field Handbook, 3rd ed.; The National Committee on Soil and Terrain, Ed.; CSIRO Publishing: Melbourne, VIC, Australia, 2009; pp. 73–126. ISBN 9780643093959. [Google Scholar]
- Korhonen, L.; Korhonen, K.T.; Rautiatinen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fenn. 2006, 40, 577–588. [Google Scholar] [CrossRef] [Green Version]
- IBM. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.M.; Catling, P.C. Fire regimes and biodiversity of forested landscapes of southern Australia. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Melbourne, VIC, Australia, 2002; pp. 351–369. [Google Scholar]
- Clarke, P.J.; Lawes, M.J.; Murphy, B.P.; Russell-Smith, J.; Nano, C.E.M.; Bradstock, R.; Enright, N.J.; Fontaine, J.B.; Gosper, C.R.; Radford, I.; et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 2015, 534, 31–42. [Google Scholar] [CrossRef]
- Gill, A.M.; McCarthy, M.A. Intervals between prescribed fires in Australia: What intrinsic variation should apply? Biol. Conserv. 1998, 85, 161–169. [Google Scholar] [CrossRef]
- Bennett, L.T.; Bruce, M.J.; Machunter, J.; Kohout, M.; Krishnaraj, S.J.; Aponte, C. Assessing fire impacts on the carbon stability of fire-tolerant forests. Ecol. Appl. 2017, 27, 2497–2513. [Google Scholar] [CrossRef] [PubMed]
- Lowman, M.D. Light interception and its relation to structural differences in three Australian rainforest canopies. Aust. J. Ecol. 1986, 11, 163–170. [Google Scholar] [CrossRef]
- Duggin, J.; Gentle, C. Experimental evidence on the importance of disturbance intensity for invasion of Lantana camara L. in dry rainforest–open forest ecotones in north-eastern NSW, Australia. For. Ecol. Manag. 1998, 109, 279–292. [Google Scholar] [CrossRef]
- Sundaram, B.; Krishnan, S.; Hiremath, A.; Joseph, G. Ecology and Impacts of the Invasive Species, Lantana camara, in a social-ecological system in South India: Perspectives from Local Knowledge. Hum. Ecol. 2012, 40, 931–942. [Google Scholar] [CrossRef]
- Debuse, V.J.; Lewis, T. Long-term repeated burning reduces Lantana camara regeneration in a dry eucalypt forest. Biol. Invasions 2014, 16, 2697–2711. [Google Scholar] [CrossRef]
- Holl, K.D.; Loik, M.E.; Lin, E.H.; Samuels, I.A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 2000, 8, 339–349. [Google Scholar] [CrossRef]
- Douglas, M.; Setterfield, S.; McGuinness, K.; Lake, P. The impact of fire on riparian vegetation in Australia’s tropical savanna. Freshw. Sci. 2015, 34, 1351–1365. [Google Scholar] [CrossRef]
- McDonald, W.J.F. National Recovery Plan for the “Semi-Evergreen Vine Thickets of the Brigalow Belt (North and South) and Nandewar Bioregions” Ecological Community. Report to Department of the Environment, Water, Heritage and the Arts, Canberra. Queensland Department of Environment and Resource Management, Brisbane. 2010. Available online: http://www.environment.gov.au/resource/national-recovery-plan-semi-evergreen-vine-thickets-brigalow-belt-north-and-south-and (accessed on 20 November 2022).
- Morris, R.J. Anthropogenic impacts on tropical forest biodiversity: A network structure and ecosystem functioning perspective. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3709–3718. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, H.C.; Auld, T.D.; Hughes, L.; Offord, C.A.; Baker, P.J. Fuel flammability and fire responses of juvenile canopy species in a temperate rainforest ecosystem. Int. J. Wildland Fire 2015, 24, 349–360. [Google Scholar] [CrossRef]
- Cury, R.; Montibeller-Santos, C.; Balch, J.; Brando, P.; Torezan, J. Effects of fire frequency on seed sources and regeneration in Southeastern Amazonia. Front. For. Glob. Chang. 2020, 3, 82. [Google Scholar] [CrossRef]
- Thusithana, V.; Bellairs, S.; Bach, C. Seed germination of coastal monsoon vine forest species in the Northern Territory, Australia, and contrasts with evergreen rainforest. Aust. J. Bot. 2018, 66, 218–229. [Google Scholar] [CrossRef]
- Hill, R.; Read, J. Post-fire regeneration of rainforest and mixed forest in western Tasmania. Aust. J. Bot. 1984, 32, 481. [Google Scholar] [CrossRef]
- Hamilton, K.; Offord, C.; Cuneo, P.; Deseo, M. A comparative study of seed morphology in relation to desiccation tolerance and other physiological responses in 71 Eastern Australian rainforest species. Plant Species Biol. 2012, 28, 51–62. [Google Scholar] [CrossRef]
- Abedi Gheshlaghi, H.; Feizizadeh, B.; Blaschke, T.; Lakes, T.; Tajbar, S. Forest fire susceptibility modeling using hybrid approaches. Trans. GIS 2021, 25, 311–333. [Google Scholar] [CrossRef]
- Collins, L.; Gibson, R. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111–702. [Google Scholar]
- Artés, T.; Oom, D.; de Rigo, D. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- Barker, P. A Technical Manual for Vegetation Monitoring. Resource Management and Conservation; Department of Primary Industries, Water and Environment: Hobart Tasmania, TAS, Australia, 2001.
- Prestes, N.; Massi, K.; Silva, E.; Nogueira, D.; de Oliveira, E.; Freitag, R.; Marimon, B.; Marimon-Junior, B.; Keller, M.; Feldpausch, T. Fire Effects on Understory Forest Regeneration in Southern Amazonia. Front. For. Glob. Chang. 2020, 3, 10. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Gill, A.M.; Lindenmayer, D.B. Fire Regimes in Mountain ash forest: Evidence from forest age structure, extinction models and wildlife habitat. For. Ecol. Manag. 1999, 124, 193–203. [Google Scholar] [CrossRef]
- Cary, G.J. Importance of a changing climate for fire regimes in Australia. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R.A., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Melbourne, VIC, Australia, 2002; pp. 26–46. [Google Scholar]
FS | N | S | HL | SL | SC | C | |
---|---|---|---|---|---|---|---|
Pooled NP | 1 | 23 | 9.6 (11.3) | 54.8 (26.3) | 19.3 (16.7) | 36.7 (24.3) | 48.7 (16.8) |
2 | 29 | 9.7 (9.6) | 61.4 (27.4) | 31.9 (18.9) | 28.6 (23.8) | 42.3 (22.3) | |
3 | 20 | 9.0 (11.2) | 73.5 (21.8) | 38.3 (24.6) | 6.3 (10.1) | 10.5 (11.1) | |
4 | 18 | 12.2 (16.5) | 76.4 (26.8 | 34.7 (22.3) | 2.8 (3.1) | 3.3 (3.4) | |
F | 0.27 | 3.26 | 3.53 | 16.35 | 41.43 | ||
P | 0.847 | 0.025 | 0.018 | 0.000 | 0.000 | ||
BUL | 1 | 9 | 4.4 (3.9) | 53.3 (32.5) | 22.2 (15.4) | 52.2 (22.4) | 51.1 (17.9) |
2 | 8 | 7.5 (4.6) | 75.0 (25.2) | 26.9 (27.1) | 38.1 (27.1) | 46.6 (29.2) | |
3 | 7 | 12.1 (15.2) | 67.1 (31.7) | 42.9 (30.1) | 8.6 (11.4) | 10.0 (15.5) | |
4 | 7 | 10.0 (12.2) | 85.7 (18.6) | 24.3 (20.7) | 1.4 (2.4) | 2.1 (2.7) | |
F | 0.92 | 1.92 | 1.45 | 12.33 | 12.70 | ||
P | 0.444 | 0.151 | 0.250 | 0.000 | 0.000 | ||
MR | 1 | 8 | 15.6 (15.2) | 62.5 (16.9) | 15.0 (18.5) | 26.9 (21.3) | 50.0 (17.5) |
2 | 6 | 18.3 (16.9) | 65.0 (20.0) | 36.7 (24.6) | 17.5 (17.8) | 41.7 (19.1) | |
3 | 5 | 14.0 (10.8) | 71.0 (20.1) | 28.0 (24.9) | 4.0 (8.9) | 11.0 (8.9) | |
4 | 6 | 21.7 (23.4) | 55.8 (32.6) | 30.8 (15.3) | 4.2 (3.8) | 4.2 (4.9) | |
F | 0.22 | 0.37 | 1.39 | 3.08 | 15.52 | ||
p | 0.881 | 0.778 | 0.274 | 0.050 | 0.000 | ||
LAM | 1 | 6 | 9.2 (10.2) | 46.7 (21.6) | 20.8 (17.7) | 26.7 (19.1) | 43.3 (15.7) |
2 | 15 | 7.3 (5.6) | 52.7 (29.1) | 32.7 (17.8) | 28.0 (23.4) | 40.7 (20.6) | |
3 | 8 | 3.1 (2.6) | 80.6 (9.8) | 40.6 (20.3) | 5.6 (10.5) | 10.6 (9.0) | |
4 | 5 | 4.0 (4.2) | 88.0 (15.7) | 54.0 (22.2) | 3.0 (2.7) | 4.0 (2.2) | |
F | 1.59 | 5.55 | 3.07 | 4.14 | 11.71 | ||
P | 0.212 | 0.004 | 0.043 | 0.014 | 0.000 | ||
Between | F | 8.11 | 0.51 | 1.53 | 2.24 | 0.01 | |
Parks | P | 0.001 | 0.601 | 0.222 | 0.113 | 0.994 |
HL | SL | SC | C | SE | I | L | F | FP | FS | |
---|---|---|---|---|---|---|---|---|---|---|
Pooled NP | ||||||||||
Rho | 0.326 | 0.254 | −0.64 | −0.747 | −0.518 | 0.321 | 0.49 | −0.369 | 0.49 | −0.144 |
(P) | 0.002 | 0.016 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.177 |
LAM | ||||||||||
Rho | 0.612 | 0.358 | −0.576 | −0.749 | −0.357 | 0.335 | 0.595 | −0.272 | 0.41 | −0.131 |
(P) | 0.000 | 0.038 | 0.000 | 0.000 | 0.038 | 0.053 | 0.000 | 0.12 | 0.16 | 0.46 |
BUL | ||||||||||
Rho | 0.345 | 0.063 | −0.765 | −0.706 | −0.571 | 0.1 | 0.653 | −0.154 | 0.46 | −0.412 |
(P) | 0.057 | 0.737 | 0.000 | 0.000 | 0.000 | 0.592 | 0.000 | 0.407 | 0.009 | 0.021 |
MR | ||||||||||
Rho | 0.035 | 0.418 | −0.478 | −0.706 | −0.659 | 0.596 | 0.26 | −0.816 | 0.104 | −0.66 |
(P) | 0.868 | 0.038 | −0.016 | 0.000 | 0.000 | 0.000 | 0.209 | 0.000 | 0.62 | 0.000 |
FS | N | L | WV | WVC | G | D | |
---|---|---|---|---|---|---|---|
Pooled | |||||||
NP | 1 | 23 | 0 (0.3) | 2 (1.3) | 0 (0.9) | 6.5 (21.5) | 0 (1.2) |
2 | 29 | 0 (0.7) | 3 (1.5) | 1 (0.9) | 2.4 (11.2) | 2 (1.3) | |
3 | 20 | 0 (1.3) | 2 (1.3) | 1.(0.8) | 15.0 (30.6) | 0 (1.3) | |
4 | 18 | 1.5 (1.5) | 2 (1.2) | 1 (0.7) | 19.2 (32.4) | 1.5 (1.3) | |
H | 22.17 | 2.47 | 4.73 | 8.52 | 4.79 | ||
P | 0.000 | 0.482 | 0.193 | 0.036 | 0.188 | ||
BUL | |||||||
1 | 9 | 0 (0.3) | 2 (1.0) | 0 (0.9) | 17 (32.8) | 0 (1.6) | |
2 | 8 | 1 (1.1) | 3 (1.0) | 2 (0.9) | 9 (22.4) | 3 (1.3) | |
3 | 7 | 2 (1.3) | 2 (1.4) | 1 (0.9) | 43 (39.8) | 0 (1.5) | |
4 | 7 | 3 (1.5) | 3 (0.5) | 2 (0.5) | 49 (35.3) | 1 (1.4) | |
H | 14.15 | 5.23 | 6.07 | 10.24 | 3.79 | ||
P | 0.003 | 0.156 | 0.108 | 0.017 | 0.286 | ||
MR | |||||||
1 | 8 | 0 (0.4) | 1 (1.7) | 0.5 (1.2) | 0 (0.0) | 0 (0.0) | |
2 | 6 | 0 (0.0) | 1 (1.8) | 2 (1.0) | 0 (0.0) | 0 (0.0) | |
3 | 5 | 0 (1.7) | 1 (1.7) | 2 (1.1) | 0 (0.0) | 0 (0.0) | |
4 | 6 | 0 (0.5) | 0.5 (0.8) | 0.5 (0.5) | 0 (0.0) | 0 (1.5) | |
H | 3.74 | 4.40 | 3.80 | 0.00 | 6.61 | ||
P | 0.291 | 0.221 | 0.284 | 1.000 | 0.085 | ||
LAM | |||||||
1 | 6 | 0 (0.0) | 2 (1.4) | 0 (0.4) | 0 (0.0) | 1 (0.0) | |
2 | 15 | 0 (0.3) | 2 (1.5) | 0 (0.8) | 0 (0.0) | 3 (0.0) | |
3 | 8 | 0 (0.4) | 2 (1.1) | 0 (1.0) | 0 (0.0) | 3 (0.0) | |
4 | 5 | 3 (1.3) | 2 (1.3) | 1 (0.4) | 0 (0.0) | 3 (0.6) | |
H | 17.70 | 0.73 | 2.96 | 0.00 | 4.67 | ||
P | 0.001 | 0.865 | 0.398 | 1.000 | 0.198 | ||
Between Parks | |||||||
H | 14.90 | 9.77 | 6.80 | 8.52 | 23.45 | ||
P | 0.001 | 0.008 | 0.033 | 0.036 | 0.000 |
FS | SE | R | F | I | FM | NWV | |
---|---|---|---|---|---|---|---|
1 | 4 (0.5) | 1 (0.2) | 1 (0.7) | 5 (15.5) | 8 (11.9) | 2 (1.0) | |
Pooled NP | 2 | 4 (0.7) | 1 (0.2) | 1 (0.5) | 12 (21.3) | 8 (9.3) | 2 (1.0) |
3 | 3 (1.0) | 1 (0.2) | 0.5 (0.7) | 16 (26.6) | 9 (14.4) | 2 (1.0) | |
4 | 2 (0.5) | 1 (0.0) | 0 (0.5) | 20 (28.3) | 6 (7.9) | 2 (0.7) | |
H | 23.79 | 0.858 | 14.84 | 7.105 | 1.384 | 4.871 | |
P | 0 | 0.836 | 0.002 | 0.069 | 0.709 | 0.18 | |
BUL | 1 | 4 (0.5) | 1 (0.0) | 0 (0.5) | 1 (1.7) | 4 (5.8) | 2 (0.9) |
2 | 4 (0.5) | 1 (0.0) | 0.5 (0.5) | 1 (1.9) | 5 (5.8) | 2 (1.0) | |
3 | 3 (0.7) | 1 (0.0) | 0 (0.5) | 0 (0.0) | 4 (10.5) | 2 (0.6) | |
4 | 2 (0.5) | 1 (0.0) | 0 (0.4) | 1 (3.8) | 6 (10.7) | 2 (0.4) | |
H | 13.31 | 0.00 | 2.16 | 1.02 | 2.25 | 0.27 | |
P | 0.004 | 1.000 | 0.539 | 0.795 | 0.522 | 0.967 | |
MR | 1 | 3 (0.5) | 1 (0.4) | 1.5 (0.5) | 10 (24.3) | 13 (17.5) | 1 (0.7) |
2 | 3 (0.9) | 1 (0.4) | 1 (0.4) | 43 (28.9) | 13 (10.4) | 2 (1.0) | |
3 | 2 (0.5) | 1 (0.4) | 0 (0.5) | 57 (17.5) | 17 (19.9) | 2 (1.2) | |
4 | 2 (0.4) | 1 (0.0) | 0 (0.4) | 46 (35.0) | 6 (6.3) | 1 (0.9) | |
H | 15.10 | 1.20 | 15.14 | 8.98 | 1.69 | 4.89 | |
P | 0.002 | 0.754 | 0.002 | 0.030 | 0.639 | 0.180 | |
LAM | 1 | 4 (0.5) | 1 (0.0) | 1 (0.4) | 5 (12.2) | 8 (8.7) | 1 (1.1) |
2 | 4 (0.6) | 1 (0.0) | 1 (0.3) | 5 (7.7) | 8 (10.3) | 2 (1.1) | |
3 | 4 (0.7) | 1 (0.0) | 1 (0.8) | 4 (10.6) | 9 (12.7) | 2 (1.1) | |
4 | 3 (0.4) | 1 (0.0) | 1 (0.4) | 16 (14.7) | 6 (6.5) | 2 (0.0) | |
H | 6.86 | 0.00 | 1.88 | 6.08 | 0.30 | 2.84 | |
P | 0.077 | 1.000 | 0.598 | 0.108 | 0.959 | 0.417 | |
Between Parks | H | 12.73 | 7.98 | 23.50 | 7.11 | 1.38 | 11.52 |
P | 0.002 | 0.019 | 0.000 | 0.069 | 0.709 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ross, T.; Srivastava, S.K.; Shapcott, A. Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability. Forests 2023, 14, 222. https://doi.org/10.3390/f14020222
Ross T, Srivastava SK, Shapcott A. Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability. Forests. 2023; 14(2):222. https://doi.org/10.3390/f14020222
Chicago/Turabian StyleRoss, Thalia, Sanjeev K. Srivastava, and Alison Shapcott. 2023. "Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability" Forests 14, no. 2: 222. https://doi.org/10.3390/f14020222
APA StyleRoss, T., Srivastava, S. K., & Shapcott, A. (2023). Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability. Forests, 14(2), 222. https://doi.org/10.3390/f14020222