Evaluation and Prediction of Water Yield Services in Shaanxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview of Soil in Shaanxi Province
2.3. Research Methods
2.3.1. Evaluation Method of the Water Yield Services
2.3.2. SDSM Model
2.3.3. PLUS Model
2.4. Precipitation Change and Land Use Scenario Analysis
2.5. Data Sources and Preparation
2.6. Research Ideas
3. Results and Discussion
3.1. Characteristics of Interannual Variation in Water Yield
3.2. Spatial Distribution of Precipitation and Actual Evapotranspiration from 2000 to 2020
3.3. Spatial Distribution of Water Yield from 2000 to 2020
3.4. Precipitation and Land Use Simulation Results
3.4.1. Simulation Results of Precipitation Based on the SDSM Model
3.4.2. Land Use Simulation Results Based on the PLUS Model
3.5. Impact of Future Precipitation and Land Use Change on Water Yield Services
3.5.1. Influence of Precipitation Change on Water Yield
3.5.2. Influence of Land Use Change on Water Yield
3.5.3. The Contribution Rate of Precipitation Change and Land Use Change Scenarios
3.6. Discussion
3.6.1. Correlation Analysis between Different Calculation Parameters and Water Yield
3.6.2. Calibration and Limitations of Water Yield Assessment
3.6.3. Reflections on the InVEST Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olander, L.P.; Johnston, R.J.; Tallis, H.; Kagan, J.; Maguire, L.A.; Polasky, S.; Urban, D.; Boyd, J.; Wainger, L.; Palmer, M. Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecol. Indicat. 2018, 85, 1262–1272. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; van den Belt, M. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystem and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lü, Y.; Chen, W.; Fu, B. Temporal variation and spatial scale dependency of ecosystem service interactions: A case study on the central Loess Plateau of China. Landsc. Ecol. 2017, 32, 1201–1217. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Shahfahad Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indicat. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Ahmed, M.; Abd-Eleahman, A.; Escobedo, F.J.; Cropper, W.P.; Martin, T.A.; Timilsina, N. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 2017, 199, 158–171. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indicat. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Robert, H.; Heejun, C. Assessment of fresh water ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi River Basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Y. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 2009, 28, 529–534. (In Chinese) [Google Scholar]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Đukić, V.; Erić, R.; Dumbrovsky, M.; Sobotkova, V. Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic. J. Hydrol. Hydromech. 2021, 69, 1–12. [Google Scholar] [CrossRef]
- Đukić, V.; Erić, R. SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic). Water 2021, 6, 872. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA 2019, 181, 104082. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzak, M.; Batker, D. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [Green Version]
- Bagstad, K.J.; Villa, F.; Batker, D.; Harrison-Cox, J.; Voigt, B.; Johnson, G.W. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol. Soc. 2014, 19, 64. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; He, Z.; Du, J.; Chen, L.F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indicat. 2018, 98, 29–38. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, 148–155. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.10.2.post21+ug.gb784d7e User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Hamel, P.; Valencia, J.; Schmitt, R.; Shrestha, M.; Piman, T.; Sharp, R.P.; Francesconi, W.; Guswa, A.J. Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar. J. Environ. Manag. 2020, 270, 110792. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Y.; Wang, H.; Zuo, L. Identification of Dominant Factors Affecting Soil Erosion and Water Yield within Ecological Red Line Areas. Remote Sens. 2020, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Gao, M. Batunacun. Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environ. Dev. 2020, 34, 100488. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Cohen, S.; Kettner, A.J.; Syvitski, J.P.M. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity. Global Planet. Change 2014, 115, 44–58. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Sheffield, J.; Maurer, E.P.; Nijssen, B.; Wood, E.F.; Lettenmaier, D.P.L. Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. J. Clim. 2003, 16, 535–547. [Google Scholar] [CrossRef]
- Ennaanay, D. Impacts of Land Use Changes on the Hydrologic Regime in the Minnesota River Basin; University of Minnesota: Minneapolis, MN, USA, 2006. [Google Scholar]
- Li, Y.; Yao, S.; Deng, Y.; Jia, L.; Hou, M.; Gong, Z. Spatio-Temporal Study on Supply and Demand Matching of Ecosystem Water Yield Service—A Case Study of Wei River Basin. Pol. J. Environ. Stud. 2021, 30, 1677–1693. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, Q.; Hua, Y.; Li, X.; Liu, K. Linking ecological red lines and public perceptions of ecosystem services to manage the ecological environment: A case study in the Fenghe River watershed of Xi’an. Ecol. Indicat. 2020, 113, 106218. [Google Scholar] [CrossRef]
- Yang, X.; Chen, R.; Michael, E.M.; Ji, G.; Xu, J.H. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Zhang, Y. The concept and function of “sponge city”. Soil Water Conserv. Sci. Technol. Shanxi 2021, 173, 1–2+21. (In Chinese) [Google Scholar]
- Dou, P.; Zuo, S.; Ren, Y. The impacts of climate and land use/land cover changes on water yield service in Ningbo region. Acta Sci. Circumstantiae 2019, 39, 2398–2409. [Google Scholar]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Fu, B.P. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 145–157. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Clim. Dynam. 2002, 19, 167–180. [Google Scholar]
- Chen, W.; Jiang, Z.; Huang, Q. Projection and simulation of climate extremes over the Yangtze and Huaihe River Basins based on a Statistical Downscaling Model. Trans. Atmos. Sci. 2012, 35, 578–590. [Google Scholar]
- Zhang, X. Runoff Simulation in the Biliu River Basin and Its Response to Future Climate Change; Taiyuan University of Technology: Taiyuan, China, 2018. (In Chinese) [Google Scholar]
- Qiu, B.; Jiang, J.; Sun, Z.; Wang, J. Analysis of Trends in Future Temperature and Precipitation in the Bosten Lake Basin Based on a Statistical Downscaling Model. Res. Sci. 2010, 32, 1133–1140. (In Chinese) [Google Scholar]
- Yan, W.; Yu, L.; Cheng, H. Simulation and prediction of future precipitation and temperature changes in the Poyang Lake Basin—Based on SDSM statistical downscaling method. China Rural Water Hydrop. 2015, 393, 36–43+46. (In Chinese) [Google Scholar]
- Hessami, M.; Gachon, P.; Ouarda, T.B.M.J.; St-Hilaire, A. Automated regression-based statistical downscalingtool. Environ. Model. Softw. 2008, 23, 813–834. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, K.; Zhang, S.; Huang, C.; Li, J. Evolution Analysis of Carbon Storage in Chengdu-Chongqing Economic Zone Based on PLUS Model and InVEST Model. Ecol. Environ. Monit. Three Gorges 2022, 7, 1–18. (In Chinese) [Google Scholar]
- Hu, Y.; Yu, X.; Liao, W.; Liu, X. Spatio-temporal Patterns of Water Yield and Its Influencing Factors in the Han River Basin. Resour. Environ. Yangtze Basin 2021, 31, 1–15. (In Chinese) [Google Scholar]
- Bao, Y.; Li, T.; Liu, H.; Ma, T.; Wang, H.; Liu, K.; Shen, X.; Liu, X. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi province by InVEST model. Geogr. Res. 2016, 35, 664–676. (In Chinese) [Google Scholar]
- Ma, J.; Li, H.; Wang, J.; Shao, D. Comparison of RCM precipitation correction methods for hydrologic simulation in cold region. Remote Sens. Technol. Appl. 2019, 34, 655–666. (In Chinese) [Google Scholar]
- Wu, H.; Dong, X.; Dong, L.; Gong, C.; Ouyang, X.; Yu, D. Research on the Temporal and Spatial Variation Characteristics of Precipitation in the Yalong River Basin under Climate Change. China Rural Water Hydrop. 2022, 474, 8–16+24. (In Chinese) [Google Scholar]
- Cao, Z.; Zhu, W.; Luo, P.; Wang, S.; Tang, Z.; Zhang, Y.; Guo, B. Spatially Non-Stationary Relationships between Changing Environment and Water Yield Services in Watersheds of China’s Climate Transition Zones. Remote Sens. 2022, 14, 5078. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long time-series global land surface satellite leaf area index product derived from MODIS and AVHRR data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Fang, H.L.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Yang, X.; Chen, R.; Ji, G.; Wang, C.; Yang, Y.; Xu, J. Assessment of Future Water Yield and Water Purification Services in Data Scarce Region of Northwest China. Int. J. Environ. Res. Public Health 2021, 18, 8960. [Google Scholar] [CrossRef]
Lucode | LULC_desc | LULC_veg | Root_depth | Kc |
---|---|---|---|---|
1 | Cropland | 1 | 300 | 0.65 |
2 | Forest | 1 | 5000 | 1 |
3 | Grassland | 1 | 500 | 0.65 |
4 | Water area | 0 | 1 | 1 |
5 | Built up area | 0 | 1 | 0.3 |
6 | Unused land | 0 | 1 | 0.5 |
Data | Data Sources/Parameters Settings |
---|---|
Precipitation, Reference evapotranspiration, Temperature | China National Earth System Science Data Center (http://www.geodata.cn/data accessed on 3 May 2022) |
Depth to root restriction layer | China National Tibetan Plateau Data Center (http://www.tpdc.ac.cn/zh-hans/data/ accessed on 5 May 2022) |
Soil data, Land use, Watershed, Socioeconomic data | Resource and Environment Science and Data Center, Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 6 May 2022) |
Plant available water fraction | PAWC = FMC − WC, FMC is the field water capacity, and WC is the wilting coefficient; both are calculated from soil texture data. |
Z parameter | Z is the seasonal constant, which was obtained by repeated verification according to the recorded water resources in the Shaanxi Provincial Water Resources Bulletin and simulated water yield, where Z1 = 15.7, Z2 = 14.29, and Z3 = 3.55 |
Digital Elevation Model (DEM) | Geospatial Data Cloud, Chinese Academy of Sciences (https://www.gscloud.cn/ accessed on 6 May 2022) |
The road data | OpenStreetMap (https://www.openstreetmap.org/ accessed on 8 May 2022.). |
Station | Predictors-PRE | Station | Predictors-PRE |
---|---|---|---|
Fugu | Mslp, p500, p8_z | Xi’an | mslp, p1_v, p500, prcp, s500 |
Yulin | mslp, p500, p8_z | Lintong | mslp, p500, prcp, s500 |
Shenmu | mslp, p500, s500 | Weinan | p1_v, p500, prcp, s500 |
Dingbian | mslp, p1_v, p500 | Lantian | mslp, p500, p8_v, s500 |
Zichang | mslp, p1_v, p500 | Xianyang | mslp, p1_u, p500, prcp, s500 |
Suide | mslp, p5_v, p500, s500 | Tongguan | mslp, p1_v, p8_z, prcp |
Qingjian | mslp, p1_v, p500, s500 | Luonan | mslp, p1_v, p500, prcp |
Zhidan | mslp, p500, prcp, s500 | Fengxian | mslp, p1_v, p500, p8_v, prcp |
Yanan | mslp, p500, prcp, s500 | Liuba | mslp, p1_v, p500, prcp |
Changwu | mslp, p1_v, p500, prcp | Xixiang | mslp, p1_v, p500, p8_z |
Luochuan | mslp, p500, p8_z, s500 | Huxian | mslp, p1_v, p500, prcp, s500 |
Huanglong | mslp, p1_v, p500, p8_z | Foping | mslp, p1_v, p500, prcp |
Tongchuan | mslp, p1_v, p500 | Ningshan | p1zh, p500, p8_z |
Baoji | mslp, p5_v, p500, p8_v, prcp | Shangzhou | mslp, p1_v, p500, prcp |
Qianyang | mslp, p5_v, p500, prcp | Shanyang | mslp, p1_v, p500, prcp |
Qishan | mslp, p5_v, p500, prcp | Ningqiang | mslp, p500, p8_z, s500 |
Fengxiang | mslp, p5_v, p500, prcp | Ziyang | mslp, p1_v, p500, p8_z, s500 |
Fufeng | mslp, p1_v, p500, prcp | Shiquan | mslp, p1_v, p500, p8_z |
Meixian | mslp, p5_v, p500, prcp | Zhenba | p1_v, p500, p8_v, p8_z |
Taibai | mslp, p5_v, p500, p8_v, prcp | Ankang | mslp, p500, p8_z |
Yongshou | mslp, p5_v, p500, p8_v, prcp | Pingli | mslp, p1_v, p500, p8_z |
Wugong | p5_v, p500, p8_v, prcp | Baihe | mslp, p500, p8_z |
Qianxian | mslp, p5_v, p500, p8_v, prcp | Zhenping | mslp, p1_v, p500, p8_z |
Area | Northern Shaanxi | Guanzhong | Southern Shaanxi |
---|---|---|---|
Kappa coefficient | 0.74 | 0.86 | 0.78 |
Scenarios | Area | 2030s | 2050s |
---|---|---|---|
Precipitation change scenario | Northern Shaanxi | 0.29 | 0.63 |
Guanzhong | 0.23 | 0.94 | |
Southern Shaanxi | 0.93 | 0.91 | |
Land use change scenario | Northern Shaanxi | 0.71 | 0.37 |
Guanzhong | 0.77 | 0.06 | |
Southern Shaanxi | 0.07 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; He, Y.; Liu, W.; Jia, L.; Zhang, Y. Evaluation and Prediction of Water Yield Services in Shaanxi Province, China. Forests 2023, 14, 229. https://doi.org/10.3390/f14020229
Li Y, He Y, Liu W, Jia L, Zhang Y. Evaluation and Prediction of Water Yield Services in Shaanxi Province, China. Forests. 2023; 14(2):229. https://doi.org/10.3390/f14020229
Chicago/Turabian StyleLi, Yanlin, Yi He, Wanqing Liu, Liping Jia, and Yaru Zhang. 2023. "Evaluation and Prediction of Water Yield Services in Shaanxi Province, China" Forests 14, no. 2: 229. https://doi.org/10.3390/f14020229
APA StyleLi, Y., He, Y., Liu, W., Jia, L., & Zhang, Y. (2023). Evaluation and Prediction of Water Yield Services in Shaanxi Province, China. Forests, 14(2), 229. https://doi.org/10.3390/f14020229