Freshwater Uptake of Mangrove Growing in an Extremely Arid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Collection
2.2.1. Collection of Plant Sample
2.2.2. Collection of Creek Water, Soil Water, Seawater, and Rainwater Samples
2.3. Laboratory Experiment
2.3.1. Collection of Plant Body Water
2.3.2. Measurement of δ2H and δ18O
2.4. Data Analysis
2.4.1. Regression and Covariance Analysis
2.4.2. Line-Conditioned Excess
3. Results
3.1. δ2H and δ18O of Water Samples
3.2. Differences in δ18O between Environmental Water and Plant Body Water
3.3. Line-Conditioned Excess
3.4. EC and pH of Soil Water, Creek Water, or Seawater on Moucha Is.
3.5. Changes in EC and Water Temperature in Creek Water on Moucha Is.
4. Discussions
4.1. Isotopic Signature of Plant Body Water and Environmental Waters
4.2. Origin of Plant Body Water in Mangroves Growing on Moucha Is.
4.3. Line-Conditioned Excess
4.4. Creek and Soil Water on Moucha Is.
4.5. Origin of Plant Body Water in A. Marina Growing in Coastal Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Lockington, D.A.; Poh, S.; Gasparon, M.; Lovelock, C.E. Water use patterns of estuarine vegetationin a tidal creek system. Oecologia 2012, 172, 485–494. [Google Scholar] [CrossRef]
- Santini, N.S.; Reef, R.; Lockington, D.A.; Lovelock, C.E. The use of fresh and saline water sources by the mangrove. Hydrobiogia 2015, 745, 59–68. [Google Scholar] [CrossRef]
- Sternberg, L.; Swart, P.K. Utilization of freshwater and ocean water by coastal plants of Southern Florida. Ecology 1987, 68, 1898–1905. [Google Scholar] [CrossRef] [PubMed]
- Lugo, A.E.; Snedaker, S.C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Cintron, G.; Lugo, A.E.; Pool, D.J.; Moris, G. Mangrove of arid environments in Puerto Rico and adjacent islands. Biotropica 1978, 10, 110–121. [Google Scholar] [CrossRef]
- Lugo, A.E. Mangrove ecosystems: Successional or steady state? Biotropica 1980, 12, 65–72. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetland Ecosystems. In Wetlands; Mitsch, W.J., Gosselink, J.G., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 259–413. [Google Scholar]
- Lin, G.; Sternberg, L. Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). Aust. J. Plant Physiol. 1992, 19, 509–517. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Reef, R.; Ball, M.C. Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiogia 2017, 803, 133–145. [Google Scholar] [CrossRef]
- Ewe, S.; Sternberg, S.; Childers, D. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone. Oecologia 2007, 152, 607–616. [Google Scholar] [CrossRef]
- Dawson, T.E.; Ehleringer, J.R. Isotopic enrichment of water in the “woody” tissues of plants: Implications for plant water sources, water uptake, and other studies which use stable isotopic composition of cellulose. Geochim. Cosmochim. Acta 1993, 57, 3487–3492. [Google Scholar] [CrossRef]
- Lin, G.; da Sternberg, L.S.L. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In Stable Isotopes and Plant Carbon-Water Relations; Ehleringer, J.R., Hall, A.E., Farquhar, G.D., Eds.; Academic Press Inc.: New York, NY, USA, 1993; pp. 497–510. [Google Scholar]
- Ellsworth, P.Z.; Williams, D.G. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant Soil 2007, 291, 93–107. [Google Scholar] [CrossRef]
- Assowe, O.D.; Ibrahim, A.A.; Ahmed, M.M.; Osman, M.A.; Mohamed, M.W.; Camberlin, P.; Pohl, B.; Mohamed, J. Evolution and trends of meteorological drought and wet events over the Republic of Djibouti from 1961 to 2021. Climate 2022, 10, 148. [Google Scholar]
- PERSGA. The Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of Aden. In Survey of Habitats in Djibouti and Plans for Their Protection: Technical Series No.5; PERSGA: Jeddah, Saudi Arabia, 2003; pp. 17–20. [Google Scholar]
- West, A.G.; Patrickson, S.J.; Ehleringer, J.R. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun. Mass Spectrom. 2006, 20, 1317–1321. [Google Scholar] [CrossRef]
- Koeniger, P.; Marshall, J.D.; Link, T.; Mulch, A. An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry . Rapid. Commun. Mass Spectrom. 2011, 25, 3041–3048. [Google Scholar]
- Asakura, Y.; Ofleh, B.H.; Nakanishi, Y. Values of δ D and δ18O and concentrations of 3H and 14C of deep groundwater in Djibouti. In Proceedings of the DT XIV, International Conference on Arid Land Tokyo, Tokyo, Japan, 7–10 September 2021; The Japanese Association for Arid Land Studies: Tokyo, Japan in press. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Landwehr, J.; Coplen, T. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologics systems. In Isotopes in Environmental Studies Aquatic Forum 2004; IAEA, Ed.; International Atomic Energy Agency: Vienna, Austria, 2006; pp. 132–135. [Google Scholar]
- Evaristo, J.; McDonnell, J.J.; Scholl, M.A.; Bruijnzeel, L.A.; Chun, K.P. Insights into plant water uptake from xylem-water isotope measurements in two tropical catchments with contrasting moisture conditions. Hydrol. Process. 2016, 30, 3210–3227. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Gat, J.R. Properties of the isotopic species of water: The ‘Isotope Effect’. In Stable Isotope Hydrology-Deuterium and Oxygen-18 in the Water Cycle; Gat, J.R., Gonfiantin, R., Eds.; International Atomic Energy Agency: Vienna, Austria, 1981; pp. 7–20. [Google Scholar]
- Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; Volume 78, pp. 1–36. [Google Scholar]
- Ehileringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Schwinning, S.; Davis, K.; Richardson, L.; Ehleringer, J.R. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 2001, 130, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Gat, J.R.; Yasir, D.; Goodfriend, G.; Fritz, P.; Trimborn, P.; Lipp, J.; Gev, I.; Adar, E.; Waisel, Y. Stable isotope composition of water in desert plants. Plant Soil 2007, 298, 31–45. [Google Scholar] [CrossRef]
- Lambs, L.; Muller, E.; Fromard, F. Mangrove trees growing in a very saline condition but not using seawater. Rapid Commun. Mass Spectrom. 2008, 22, 2835–2843. [Google Scholar] [CrossRef]
- Coopman, R.E.; Nguyen, H.T.; Mencuccini, M.; Oliveira, R.S.; Sack, L.; Lovelock, C.E.; Ball, M.C. Harvesting water from unsaturated atmospheres: Deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. New Phytol. 2021, 231, 1401–1414. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Liu, X.; Xiao, H.; Ruan, Y.; Zhou, M. The patterns and implications of diurnal variations in the d-excess of plant water, shallow soil water and air moisture. Hydro. Earth Syst. 2014, 18, 4129–4151. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; Kohn, M.J.; Laudon, H.; McNamara, J.P.; Smith, A.; Sprenger, M.; Soulsby, C. Stable isotopes of water reveal differences in plant—Soil water relationships across northern environments. Hydrol. Process. 2020, 35, e14023. [Google Scholar] [CrossRef]
- Desantis, L.R.; Bhotika, S.; Williams, K.; Putz, F.E. Sea-Level Rise and Drought Interactions Accelerate Forest Decline on the Gulf Coast of Florida, USA. Glob. Chang. Biol. 2007, 13, 2349–2360. [Google Scholar] [CrossRef]
- McDowell, N.G.; Ball, M.; Bond-Lamberty, B.; Kirwan, M.L.; Krauss, K.W.; Megonigal, J.P.; Mencuccini, M.; Ward, N.D.; Weintraub, M.N.; Bailey, V. Processes and Mechanisms of Coastal Woody-Plant Mortality. Glob. Chang. Biol. 2022, 28, 5881–5900. [Google Scholar] [CrossRef]
- dos Garcia, J.S.; Boanares, D.; Franca, M.G.C.; Sershen; Portillo, J.L. Foliar water uptake in eight mangrove species: Implications of morpho-anatomical traits. Flora 2022, 293, 152100. [Google Scholar] [CrossRef]
- Schaepdryver, K.H.D.; Goossens, W.; Naseef, A.; Ashtamoorthy, S.K.; Steppe, K. Foliar Water Uptake Capacity in Six Mangrove Species. Forests 2022, 13, 951. [Google Scholar] [CrossRef]
Site | Location | Sample Type | δ2H | δ18O | lc-Excess † |
---|---|---|---|---|---|
mean ± SD | mean ± SD | mean ± SD | |||
A | A coastal area in Djibouti City | A.m† | –8.60 ± 3.13 | –1.57 ± 0.40 | –6.18 ± 1.83 |
R.m†† | –2.60 ± 3.75 | –0.30 ± 0.45 | –11.87 ± 3.68 | ||
A.m | 0.28 ± 1.83 | –0.21 ± 0.53 | –8.11 ± 3.91 | ||
B | Moucha Island | Soil water | 9.22 ± 0.75 | 1.39 ± 0.06 | –12.70 ± 1.29 |
Creek water | 9.71 ± 0.97 | 1.33 ± 0.10 | –12.99 ± 1.41 | ||
Sea water | 7.82 ± 0.71 | 1.29 ± 0.17 | –13.65 ± 2.50 | ||
Rain water | –27.89 ± 16.47 | –4.62 ± 1.84 | –1.01 ± 1.64 | ||
Ground water | –4.37 ± 2.23 | –1.54 ± 0.47 | 0.20 ± 2.39 |
EC (dSm−1) | pH | |||||
---|---|---|---|---|---|---|
Soil water | 56.3 | ± | 1.0 | 7.59 | ± | 0.12 |
Creek water | 58.6 | ± | 0.2 | 7.90 | ± | 0.26 |
Sea water | 56.8 | ± | 0.3 | 8.20 | ± | 0.02 |
Survey Point | Time | Ec (dSm−1) | Water Temp. (°C) | pH | ||||
---|---|---|---|---|---|---|---|---|
Beginning | End | Beginning | End | Beginning | End | Beginning | End | |
4 | 12:15 | 16:22 | 57.6 | 52.3 | 31.2 | 32.9 | 7.75 | 8.13 |
6 | 12:25 | 16:16 | 57.7 | 54.5 | 32.1 | 32.7 | 7.75 | 8.07 |
8 | 12:22 | 16:19 | 58.1 | 56.0 | 32.0 | 32.5 | 7.69 | 7.99 |
10 | 12:28 | 16:14 | 57.9 | 52.4 | 31.1 | 31.1 | 7.35 | 7.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asakura, Y.; Hinokidani, K.; Nakanishi, Y. Freshwater Uptake of Mangrove Growing in an Extremely Arid Area. Forests 2023, 14, 359. https://doi.org/10.3390/f14020359
Asakura Y, Hinokidani K, Nakanishi Y. Freshwater Uptake of Mangrove Growing in an Extremely Arid Area. Forests. 2023; 14(2):359. https://doi.org/10.3390/f14020359
Chicago/Turabian StyleAsakura, Yasuhiro, Ko Hinokidani, and Yasuhiro Nakanishi. 2023. "Freshwater Uptake of Mangrove Growing in an Extremely Arid Area" Forests 14, no. 2: 359. https://doi.org/10.3390/f14020359
APA StyleAsakura, Y., Hinokidani, K., & Nakanishi, Y. (2023). Freshwater Uptake of Mangrove Growing in an Extremely Arid Area. Forests, 14(2), 359. https://doi.org/10.3390/f14020359