Gliricidia sepium (Jacq.) Walp Applications for Enhancing Soil Fertility and Crop Nutritional Qualities: A Review
Abstract
:1. Introduction
2. Impact of Gliricidia sepium on Soil Fertility
2.1. Impact of G. sepium on Soil Microbial Composition
2.2. Impact of G. sepium on Soil Carbon
2.3. Impact of G. sepium on Soil Nitrogen Fixation
2.4. Impact of G. sepium on Other Soil Fertility Components
3. Impact of Gliricidia sepium on Crop Performance and Crop Nutritional Properties
Crop | Gliricidia Application Mode | Gliricidia Application Effect | Location | Reference |
---|---|---|---|---|
Maize | Intercropping | Enhanced soil health and maize yield | Malawi | [48] |
Maize | Intercropping | Soil fertility and maize yield improved | Malawi | [49] |
Maize | *** | Improved food crops and household food security | Malawi | [47] |
Maize | Intercropping | Yield enhanced | Malawi | [52] |
Quality Protein Maize | Intercropping | Nutritional value improved | Brazil | [78] |
Maize | Intercropping | Improved yield | Brazil | [79] |
Maize | Intercropping | Improved yield | Brazil | [54] |
Maize | Intercropping | Improved yield | Brazil | [51] |
Maize | Mulching | Improved Yield | Nigeria | [53] |
Sweet corn | Leaf pruning | Nitrogen uptake improved | Malaysia | [50] |
Tomato | Woody biochar | Facilitated nutrient uptake and increased plant biomass | Sri Lanka | [39] |
Cotton | Intercropping | Nutrient accumulation and biomass productivity was enhanced | Malawi | [62] |
Cacao | Intercropping | Leaf longevity | Indonesia | [69] |
Maize, soybean and groundnut | Intercropping | Improved yield and nutritional properties | Zambia | [29] |
Yield | ||||
---|---|---|---|---|
Crop | Gliricidia Plot | Sole Maize Plot | Inorganic Fertilizer Plot | Reference |
Maize | 5.52 t ha−1 | 1.48 t ha−1 | NE | [48] |
Maize | 597.67 kg acre−1 | 478.75 kg acre−1 | NE | [47] |
Maize | 3.62 t ha−1 | 2.73 t ha−1 | NE | [52] |
Maize | * 2.5 Mg ha−1(GA)/ 2.6 Mg ha−1 (GC) | 0.4 Mg ha−1 | 0.6 Mg ha−1 | [78] |
Maize | 5.618 kg ha−1 | 6.714 kg ha−1 | NE | [79] |
Maize | 5.21 Mg ha−1 | 3.03 Mg ha−1 | 2.81 Mg ha−1 | [54] |
Maize | 1.41 t ha−1 | 0.63 t ha−1 | 2.19 t ha−1 | [53] |
Maize | 4520 kg ha−1 | 1227 kg ha−1 | 5954 kg ha−1 | [29] |
4. Knowledge Gaps and Recommendations
5. Method Summary
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Medinski, T.; Freese, D. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany. Geophys. Res. Abstr. 2012, 14, 9532. [Google Scholar]
- De Moura, E.G.; Portela, S.B.; Macedo, V.R.A.; Sena, V.G.L.; Sousa, C.C.M.; Aguiar, A.D.C.F. Gypsum and legume residue as a strategy to improve soil conditions in the sustainability of agrosystems of the humid tropics. Sustainability 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Wolz, K.J.; DeLucia, E.H. Alley cropping: Global patterns of species composition and function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- Sena, V.G.L.; de Moura, E.G.; Macedo, V.R.A.; Aguiar, A.C.F.; Price, A.H.; Mooney, S.J.; Calonego, J.C. Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency. Ecosphere 2020, 11, e03028. [Google Scholar] [CrossRef] [Green Version]
- Aleixo, S.; Gama-Rodrigues, A.C.; Gama-Rodrigues, E.F.; Campello, E.F.C.; Silva, E.C.; Schripsema, J. Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci. Total Environ. 2020, 712, 136405. [Google Scholar] [CrossRef]
- Nyoka, B.I.; Simons, A.J.; Akinnifesi, F.K. Genotype–environment interaction in Gliricidia sepium: Phenotypic stability of provenances for leaf biomass yield. Agric. Ecosyst. Environ. 2012, 157, 87–93. [Google Scholar] [CrossRef]
- Edwards, A.; Mlambo, V.; Lallo, C.H.O.; Garcia, G.W. Yield, chemical Composition and In Vitro Ruminal Fermentation of the Leaves of Leucaena Leucocephala, Gliricidia Sepium and Trichanthera Gigantea as Influenced by Harvesting Frequency. J. Anim. Sci. Adv. 2012, 2 (Suppl. 3.2), 321–331. [Google Scholar]
- Susanto, D.; Auliana, A.; Amirta, R. Growth evaluation of several types of energy crops from tropical shrubs species. F1000Research 2019, 8, 329. [Google Scholar] [CrossRef]
- Aulanni’am, A.; Ora, K.M.; Ariandini, N.A.; Wuragil, D.K.; Permata, F.S.; Riawan, W.; Beltran, M.A.G. Wound healing properties of Gliricidia sepium leaves from Indonesia and the Philippines in rats (Rattus norvegicus). Vet. World 2021, 14, 820–824. [Google Scholar] [CrossRef]
- Grygier, A.; Chakradhari, S.; Ratusz, K.; Rudzinska, M.; Patel, K.S.; Lazdin, D.; Gornas, P. Seven underutilized species of the Fabaceae family with high potential for industrial application as alternative sources of oil and lipophilic bioactive compounds. Ind. Crops Prod. 2022, 186, 115251. [Google Scholar] [CrossRef]
- Rahman, M.; Das, A.; Saha, S.; Uddin, M.; Rahman, M. Morphophysiological response of Gliricidia sepium to seawater-induced salt stress. Agriculturists 2019, 17, 66–75. [Google Scholar] [CrossRef]
- Braga, Í.O.; Carvalho da Silva, T.L.; Belo Silva, V.N.; Rodrigues Neto, J.C.; Ribeiro, J.A.A.; Abdelnur, P.V.; de Sousa, C.A.F.; Souza, M.T., Jr. Deep Untargeted Metabolomics Analysis to Further Characterize the Adaptation Response of Gliricidia sepium (Walp.) to Very High Salinity Stress. Front. Plant Sci. 2022, 13, 869105. [Google Scholar] [CrossRef]
- Elevitch, C.R.; Francis, J.K. Gliricidia sepium (Gliricidia), ver. 2.1. In Species Profile for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006; Available online: https://www.traditionaltree.org (accessed on 28 February 2023).
- Keerthanan, S.; Rajapaksha, S.M.; Trakal, L.; Vithanage, M. Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties. Environ. Res. 2020, 189, 109865. [Google Scholar] [CrossRef]
- Jayakumar, M.; Emana, A.N.; Subbaiya, R.; Ponraj, M.; Kumar, K.K.A.; Muthusamy, G.; Kim, W.; Karmegam, N. Detoxification of coir pith through refined vermicomposting engaging Eudrilus eugeniae. Chemosphere 2022, 291, 132675. [Google Scholar] [CrossRef]
- Krishnappa, K.; Dhanasekaran, S.; Elumalai, K. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.)(Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). Asian Pac. J. Trop. Med. 2012, 5, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.; Areche, C.; Cubides-Cárdenas, J.; Escobar, N.; García-Beltrán, O.; Simirgiotis, M.J.; Céspedes, Á. In vitro anthelmintic evaluation of Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce: Fingerprint analysis of extracts by UHPLC-orbitrap mass spectrometry. Molecules 2020, 25, 3002. [Google Scholar] [CrossRef]
- Wabo Poné, J.; Kenne, T.F.; Mpoame, M.; Pamo, T.E.; Bilong, C.F. In vitro activities of acetonic extract from leaves of three forage legumes (Calliandra calotyrsus, Gliricidia sepium and Leucaena diversifolia) on Haemonchus contortus. Asian Pac. J. Trop. Med. 2011, 4, 125–128. [Google Scholar]
- Amodu, J.T.; Onifade, O.S.; Adeyinka, I.A.; Jegede, J.O.; Afolayan, S.B. The effect of stocklength, stock diameter and planting angle on early establishment of Gliricidia sepium. Pak. J. Biol. Sci. 2007, 10, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Wartenberg, A.C.; Blaser, W.J.; Gattinger, A.; Roshetko, J.M.; Van Noordwijk, M.; Six, J. Does shade tree diversity increase soil fertility in cocoa plantations? Agric. Ecosyst. Environ. 2017, 248, 190–199. [Google Scholar] [CrossRef]
- Barros, F.M.; Fracetto, F.J.C.; Lira Junior, M.A.; Bertini, S.C.B.; Fracetto, G.G.M. Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Appl. Soil Ecol. 2021, 158, 103797. [Google Scholar] [CrossRef]
- Nirukshan, G.S.; Ranasinghe, S.; Sleutel, S. The effect of biochar on mycorrhizal fungi mediated nutrient uptake by coconut (Cocos nucifera L.) seedlings grown on a Sandy Regosol. Biochar 2022, 4, 68. [Google Scholar] [CrossRef]
- Riyanto, D. The utilization of agricultural and livestock waste and the effect on new rice varieties yield on rainfed rice land of Ponjong—Gunungkidul. BIO Web Conf. 2021, 33, 05004. [Google Scholar] [CrossRef]
- Moura, E.G.; Aguiar, A.C.F.; Piedade, A.R.; Rousseau, G.X. Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Appl. Soil Ecol. 2015, 86, 91–99. [Google Scholar] [CrossRef]
- Beedy, T.L.; Snap, S.S.; Akinnifesi, F.K.; Sileshi, G.W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 2010, 138, 139–146. [Google Scholar] [CrossRef]
- Coser, T.R.; de Figueiredo, C.C.; Jovanovic, B.; Moreira, T.N.; Leite, G.G.; Cabral Filho, S.L.S.; Kato, E.; Malaquias, J.V.; Marchão, R.L. Short-term build-up of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agric. Syst. 2018, 166, 184–195. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Datta, M.; Meena, R.S.; Patil, S.B.; Singh, R. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agroecosystem of the Eastern Himalayas, India. Agric. Ecosyst. Environ. 2019, 275, 81–92. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. No Till and mulching enhance energy use efficiency and reduce the carbon footprint of a direct-seeded upland rice production system. J. Clean. Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
- Tesfai, M.; Emmanuel, A.O.; Njoloma, J.B.; Nagothu, U.S.; Ngumayo, J. Agroecological farming approaches that enhance resilience and mitigation to climate change in vulnerable farming systems. In Climate Neutral and Resilient Farming Systems; Routledge: London, UK, 2022; pp. 147–168. [Google Scholar]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Parthasarathy, V.A.; Aipe, K.C. Physico-chemical, biochemical and microbial properties of the rhizospheric soils of tree species used as supports for black pepper cultivation in the humid tropics. Geoderma 2010, 158, 252–258. [Google Scholar] [CrossRef]
- Bai, S.H.; Trueman, S.J.; Nevenimo, T.; Hannet, G.; Bapiwai, P.; Poienou, M.; Wallace, H.M. Effects of shade-tree species and spacing on soil and leaf nutrient concentrations in cocoa plantations at 8 years after establishment. Agric. Ecosyst. Environ. 2017, 246, 134–143. [Google Scholar] [CrossRef]
- Makumba, W.; Janssen, B.; Oenema, O.; Akinnifesi, F.K.; Mweta, D.; Kwesiga, F. Long-term impact of a Gliricidia + maize intercropping system on carbon sequestration in southern Malawi. Agric. Ecosyst. Environ. 2007, 118, 237–243. [Google Scholar] [CrossRef]
- Faming, W.; Li, Z.; Xia, H.; Zou, B.; Li, N.; Liu, J.; Zhu, W. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Sci. Plant Nutr. 2010, 56, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Bautista, J.; Fernández-Luqueño, F.; López-Valdez, F.; Mendoza-Cristino, R.; Montes-Molina, J.A.; Gutierrez-Miceli, F.A.; Dendooven, L. Effect of pest controlling neem (Azadirachta indica A. Juss) and mata-raton (Gliricidia sepium Jacquin) leaf extracts on emission of greenhouse gases and inorganic-N content in urea-amended soil. Chemosphere 2009, 76, 293–299. [Google Scholar] [CrossRef]
- Omari, R.A.; Aung, H.P.; Hou, M.; Yokoyama, T.; Onwona-Agyeman, S.; Oikawa, Y.; Fujii, Y.; Bellingrath-Kimura, S.D. Influence of different plant materials in combination with chicken manure on soil carbon and nitrogen contents and vegetable yield. Pedosphere 2016, 26, 510–521. [Google Scholar] [CrossRef]
- Partey, S.T.; Zougmore, R.B.; Thevathasan, N.V.; Preziosi, R.F. Effects of plant residue decomposition on soil N availability, microbial biomass and β-glucosidase activity during soil fertility improvement in Ghana. Pedosphere 2019, 29, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Bautista, J.; Fernández-Luqueño, F.; López-Valdez, F.; Mendoza-Cristino, R.; Montes-Molina, J.A.; Gutierrez-Miceli, F.A.; Dendooven, L. Effect of pest controlling neem and mata-raton leaf extracts on greenhouse gas emissions from urea-amended soil cultivated with beans: A greenhouse experiment. Sci. Total Environ. 2010, 408, 4961–4968. [Google Scholar] [CrossRef]
- Vithanage, M.; Rajapaksha, A.U.; Oze, C.; Rajakaruna, N.; Dissanayake, C. Metal release from serpentine soils in Sri Lanka. Environ. Monit. Assess. 2014, 186, 3415–3429. [Google Scholar] [CrossRef] [Green Version]
- Bandara, T.; Herath, I.; Kumarathilaka, P.; Hseu, Z.-Y.; Ok, Y.S.; Vithanage, M. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ. Geochem. Health 2016, 39, 391–401. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Luo, L.; Xu, C.; Chen, Z.; Zhang, S. Properties of biomass-derived biochars: Combined effects of operatingconditions and biomass types. Bioresour. Technol. 2015, 192, 83–89. [Google Scholar] [CrossRef]
- Kuntashula, E.; Mafongoya, P.L. Farmer participatory evaluation of agroforestry trees in eastern Zambia. Agric. Syst. 2005, 84, 39–53. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Hale, S.E.; Nurida, N.L.; Cornelissen, G. The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS ONE 2018, 13, e0196794. [Google Scholar] [CrossRef] [PubMed]
- Kaba, J.S.; Yamoah, F.A.; Acquaye, A. Towards sustainable agroforestry management: Harnessing the nutritional soil value through cocoa mix waste. Waste Manag. 2021, 124, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Akinnifesi, F.K.; Ajayi, O.C.; Sileshi, G.; Chirwa, P.W.; Chianu, J. Fertiliser trees for sustainable food security in the maize-based production systems of East and Southern Africa. A review. Agron. Sustain. Dev. 2010, 30, 615–629. [Google Scholar] [CrossRef]
- Aweto, A.O. Trees in shifting and continuous cultivation farms in Ibadan area, southwestern Nigeria. Landsc. Urban Plan. 2001, 53, 163–171. [Google Scholar] [CrossRef]
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Nyirenda, H. Achieving sustainable agricultural production under farmer conditions in maize-Gliricidia intercropping in Salima District, central Malawi. Heliyon 2019, 5, e02632. [Google Scholar] [CrossRef] [Green Version]
- Makumba, W.; Janssen, B.; Oenema, O.; Akinnifesi, F.K.; Mweta, D.; Kwesiga, F. The long-term effects of a Gliricidia–maize intercropping system in Southern Malawi, on Gliricidia and maize yields, and soil properties. Agric. Ecosyst. Environ. 2006, 116, 85–92. [Google Scholar] [CrossRef]
- Bah, A.R.; Rahman, Z.A. Gliricidia (Gliricidia sepium) green manures as a potential source of N for maize production in the tropics. Sci. World J. 2001, 1, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Moura, E.G.; Sousa, R.M.; Campos, L.S.; Cardoso-Silva, A.J.; Mooney, S.J.; Aguiar, A.C.F. Could more efficient utilization of ecosystem services improve soil quality indicators to allow sustainable intensification of Amazonian family farming? Ecol. Indic. 2021, 127, 107723. [Google Scholar] [CrossRef]
- Coe, R.; Njoloma, J.; Sinclair, F. Loading the Dice in Favour of the Farmer: Reducing the Risk of Adopting Agronomic Innovations. Exp. Agric. 2016, 55, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Awopegba, M.; Oladele, S.; Awodun, M. Effect of mulch types on nutrient composition, maize (Zea mays L.) yield and soil properties of a tropical Alfisol in Southwestern Nigeria. Eurasian J. Soil Sci. 2017, 6, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Feitosa, A.L.P.M.; Siqueira, G.M.; Moura, E.G.; Silva, A.J.C.; Aguiar, A.C.F. Effect of different soil fertilization regimes on soil chemical properties and maize grains yield in humid tropic. Res. Soc. Dev. 2022, 11, e4511527635. [Google Scholar] [CrossRef]
- Oke, D.O. Weed Suppression and Maize Growth in Gliricidia + maize Intercrop as Influenced by Leaf Mulch Application and Inorganic Phosphorus Fertilization. Int. J. Appl. Agric. Res. 2012, 7, 119–127. [Google Scholar]
- Araújo, B.B., Jr.; Silva, P.S.L.; Oliveira, O.F.; Espinola Sobrinho, J. Weed control in maize crop with Gliricidia intercropping. Planta Daninha 2012, 30, 767–774. [Google Scholar]
- Silva, P.S.L.; Silva, E.M.; Silva, P.I.B.; Fernandes, J.P.P.; Chicas, L.S. Intercropping Corn with a Combination of Tree Species to Control Weeds. Planta Daninha 2015, 33, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Tavella, L.B.; Silva, P.S.L.; Monteiro, A.L.; Oliveira, V.R.; Siqueira, P.L.O.F. Weed Control in Maize with Gliricidia Intercropping. Planta Daninha 2015, 33, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.W.; Debusho, L.K.; Akinnifesi, F.K. Can Integration of Legume Trees Increase Yield Stability in Rainfed Maize Cropping Systems in Southern Africa? Agron. J. 2012, 104, 1392–1398. [Google Scholar] [CrossRef] [Green Version]
- Swamila, M.; Philip, D.; Akyoo, A.M.; Sieber, S.; Bekunda, M.; Kimaro, A.A. Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania. Agriculture 2020, 10, 306. [Google Scholar] [CrossRef]
- Swamila, M.; Philip, D.; Akyoo, A.M.; Manda, J.; Mwinuka, L.; Smethurst, P.J.; Sieber, S.; Kimaro, A.A. Profitability of Gliricidia + maize System in Selected Dryland Areas of Dodoma Region, Tanzania. Sustainability 2022, 14, 53. [Google Scholar] [CrossRef]
- Mngomba, S.A.; Akinnifesi, F.K.; Kerr, A.; Salipira, K.; Muchugi, A. Growth and yield responses of cotton (Gossypium hirsutum) to inorganic and organic fertilizers in southern Malawi. Agrofor. Syst. 2016, 91, 249–258. [Google Scholar] [CrossRef]
- Primo, D.C.; Menezes, R.S.C.; Oliveira, F.F.D.; Dubeux Júnior, J.C.B.; Sampaio, E.V.S.B. Timing and placement of cattle manure and Gliricidia affects cotton and sunflower nutrient accumulation and biomass productivity. An. Acad. Bras. Ciências 2018, 90, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Montes-Molina, J.A.; Luna-Guido, M.L.; Espinoza-Paz, N.; Govaerts, B.; Gutierrez-Miceli, F.A.; Dendooven, L. Are extracts of neem (Azadirachta indica A. Juss. (L.)) and Gliricidia sepium (Jacquin) an alternative to control pests on maize (Zea mays L.)? Crop Prot. 2008, 27, 763–774. [Google Scholar] [CrossRef]
- Montes-Molina, J.A.; Nuricumbo-Zarate, I.H.; Hernández-Díaz, J.; Gutiérrez-Miceli, F.A.; Dendooven, L.; Ruíz-Valdiviezo, V.M. Characteristics of tomato plants treated with leaf extracts of neem (Azadirachta indica A. Juss. (L.)) and mata-raton (Gliricidia sepium (Jacquin)): A greenhouse experiment. J. Environ. Biol. 2014, 35, 935–942. [Google Scholar] [PubMed]
- Utomo, B.; Prawoto, A.A.; Bonnet, S.; Bangviwat, A.; Gheewala, S.H. Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J. Clean. Prod. 2016, 134, 583–591. [Google Scholar] [CrossRef]
- Abou Rajab, Y.; Leuschner, C.; Barus, H.; Tjoa, A.; Hertel, D. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses. PLoS ONE 2016, 11, e0149949. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.H.; Trueman, S.J.; Nevenimo, T.; Hannet, G.; Randall, B.; Wallace, H.M. The effects of tree spacing regime and tree species composition on mineral nutrient composition of cocoa beans and canarium nuts in 8-year-old cocoa plantations. Environ. Sci. Pollut. Res. 2019, 26, 22021–22029. [Google Scholar] [CrossRef]
- Bai, S.H.; Gallart, M.; Singh, K.; Hannet, G.; Komolong, B.; Yinil, D.; Field, D.J.; Muqaddas, B.; Wallace, H.M. Leaf litter species affects the decomposition rate and nutrient release in a cocoa plantation. Agric. Ecosyst. Environ. 2022, 324, 107705. [Google Scholar] [CrossRef]
- Carvalho, D.F.; Gomes, D.P.; Oliveira, N.D.H.; Guerra, J.G.M.; Rouws, J.R.C.; Oliveira, F.L. Carrot yield and water-use efficiency under different mulching, organic fertilization and irrigation levels. Rev. Bras. Eng. Agrícola E Ambient. 2018, 22, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Ilangamudali, I.M.P.S.; Senarathne, S.H.S.; Egodawatta, W.C.P. Evaluation of Coconut Based Gliricidia sepium Agroforestry Systems to Improve the Soil Properties of Intermediate and Dry Zone Coconut Growing Areas. Int. J. Res. Agric. Sci. 2014, 1, 34–42. [Google Scholar]
- Kumara, R.P.D.N.; De Silva, C.S. The Efficacy of Different Mulching Materials in Influencing Growth, Yield, Soil and Quality Parameters of Ginger Cultivated in Low Country Intermediate Zone (IL1) of Sri Lanka. OUSL J. 2019, 14, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.; Gabhane, V.V.; Shelke, A.; Rathod, A.; Satpute, U.; Chandel, A. Effect of potash management through Gliricidia green leaf manuring on soil fertility and yield of soybean in Vertisols. J. Pharmacogn. Phytochem. 2020, 9, 1033–1037. [Google Scholar]
- Okon, I.E.; Solomon, M.G.; Osonubi, O. The Effects of Arbuscular Mycorrhizal Fungal Inoculation and Mulch of Contrasting Chemical Composition on the Yield of Cassava under Humid Tropical Conditions. Sci. World J. 2010, 10, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.F.d.S.; Vaz, A.F.d.S.; Martelleto, L.A.P.; Leal, M.A.d.A.; Alves, R.d.S.; Ferreira, T.d.S.; Rumjanek, N.G.; Correia, M.E.F.; Rosa, R.C.C.; Guerra, J.G.M. Sustainable organic substrate production using millicompost in combination with different plant residues for the cultivation of Passiflora edulis seedlings. Environ. Technol. Innov. 2022, 28, 102612. [Google Scholar] [CrossRef]
- Carpenter, F.L.; Nichols, J.D.; Pratt, R.T.; Young, K.C. Methods of facilitating reforestation of tropical degraded land with the native timber tree, Terminalia amazonia. For. Ecol. Manag. 2004, 202, 281–291. [Google Scholar] [CrossRef]
- Hartemink, A.E. Sweet potato yields and nutrient dynamics after short-term fallows in the humid lowlands of Papua New Guinea. NJAS 2003, 50, 297–319. [Google Scholar] [CrossRef] [Green Version]
- De Moura-Silva, A.G.; das Chagas Ferreira Aguiar, A.; de Moura, E.G.; Jorge, N. Influence of soil cover and N and K fertilization on the quality of biofortified QPM in the humid tropics. J. Sci. Food Agric. 2016, 96, 3807–3812. [Google Scholar] [CrossRef]
- Oliveira, V.R.D.; Silva, P.S.L.; Paiva, H.N.D.; Antonio, R.P. Crescimento De Leguminosas Arbóreas E Rendimento Do Milho Em Sistemas Agroflorestais. Rev. Árvore 2016, 40, 679–688. [Google Scholar] [CrossRef] [Green Version]
Soil Traits Evaluated | Gliricidia Application Mode | Gliricidia Application Effect | Reference |
---|---|---|---|
Emissions of CH4, CO2, and N2O | Aqueous leaf extracts | Soil available N increased | [9] |
Heavy metals | Woody biochar of Gliricidia biomass | Calcium uptake improved, and heavy metals immobilized | [39] |
Microbial population | Intercropping | Improved the population and heterogeneity of the soil nitrogen-cycling bacterial | [21] |
Organic carbon and organic matter | Intercropping | Improved soil organic matter and carbon sequestration | [26] |
Soil fertility | Plant pruning | Increased soil mineral nitrogen | [35] |
Soil fertility | Plant biomass | Improved soil fertility | [36] |
Soil fertility | Gliricidia mulch | Curtailed energy use, carbon footprint | [27] |
Soil health | Gliricidia leaf biomass | Improved soil organic matter and soil carbon stocks. | [29] |
Soil properties | Intercropping | An improvement in soil organic matter, particulate organic matter, and cation exchange capacity. | [25] |
Soil quality | Intercropping | Enhanced soil organic carbon, dissolved organic carbon, -nitrogen, and mineral nitrogen in black pepper rhizosphere | [30] |
Availability of soil nutrients | Intercropping | Soil total carbon and total nitrogen improved | [31] |
Carbon sequestration | Intercropping | Soil carbon sequestered and carbon (IV) oxide evolution also improved | [32] |
Cocoa leaf decomposition and soil nutrients | Gliricidia leaves | Cocoa leaf waste decomposition and nutrient released rate improved | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamu, E.O.; Adesokan, M.; Fawole, S.; Maziya-Dixon, B.; Mehreteab, T.; Chikoye, D. Gliricidia sepium (Jacq.) Walp Applications for Enhancing Soil Fertility and Crop Nutritional Qualities: A Review. Forests 2023, 14, 635. https://doi.org/10.3390/f14030635
Alamu EO, Adesokan M, Fawole S, Maziya-Dixon B, Mehreteab T, Chikoye D. Gliricidia sepium (Jacq.) Walp Applications for Enhancing Soil Fertility and Crop Nutritional Qualities: A Review. Forests. 2023; 14(3):635. https://doi.org/10.3390/f14030635
Chicago/Turabian StyleAlamu, Emmanuel Oladeji, Michael Adesokan, Segun Fawole, Busie Maziya-Dixon, Tesfai Mehreteab, and David Chikoye. 2023. "Gliricidia sepium (Jacq.) Walp Applications for Enhancing Soil Fertility and Crop Nutritional Qualities: A Review" Forests 14, no. 3: 635. https://doi.org/10.3390/f14030635
APA StyleAlamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) Walp Applications for Enhancing Soil Fertility and Crop Nutritional Qualities: A Review. Forests, 14(3), 635. https://doi.org/10.3390/f14030635