Gišogenetic Variation in White-Spruce (Picea glauca (Moench) Voss) Trees of Yukon Beringia, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Tree Investigations
Altitude | Height | Coordinates | ||
---|---|---|---|---|
(m asl) | (m) | North | West | |
1311 | 8.4 | 62.1089 | −137.19905 | |
1316 | 16.2 | 62.1021 | −137.18319 | |
1320 | 10.2 | 62.1026 | −137.18467 | |
1326 | 9.4 | 62.1033 | −137.18650 | |
1328 | 9.5 | 62.1032 | −137.18633 | |
1329 | 6.8 | 62.1036 | −137.18764 |
3. Results
3.1. Gišogenesis Based on Raw Ring-Width Measurements
Height | Tree | |||||
---|---|---|---|---|---|---|
(m) | 1311 | 1316 | 1320 | 1326 | 1328 | 1329 |
16 | E | |||||
15 | N | |||||
14 | N | |||||
13 | N | |||||
12 | S | |||||
11 | S | |||||
10 | W | E | ||||
9 | N | E | * | N | ||
8 | W | N | S | E | N | |
7 | S | N | W | N | N | |
6 | S | N | N | W | S | S |
5 | E | E | N | S | S | * |
4 | S | E | N | E | W | S |
3 | W | E | E | N | W | S |
2 | W | N | W | W | N | S |
1 | E | E | S | E | N | N |
0 | S | W | S | W | N | N |
3.2. Springtime Gišogenesis Resumption in Tree 1316
3.3. Gišogenesis during 1967–2007 Based on Core Samples from Randomly Selected Trees
3.4. Pearson’s r Values for Radial Series of Raw Ring Widths
3.4.1. Same Tree, Same Trunk Height, Different Cardinal Direction r Values
Tree 1311 | Correlations between Cardinal Directions | |||||
---|---|---|---|---|---|---|
Trunk Height (m) | Pearson’s r Value for Full Chronological Series | |||||
N vs. S | N vs. E | N vs. W | S vs. E | S vs. W | E vs. W | |
1 | 0.60 | 0.79 | 0.73 | 0.69 | 0.59 | 0.73 |
2 | 0.62 | 0.82 | 0.79 | 0.63 | 0.73 | 0.81 |
3 | 0.87 | 0.86 | 0.92 | 0.86 | 0.80 | 0.82 |
4 | 0.88 | 0.94 | 0.95 | 0.86 | 0.89 | 0.93 |
5 | 0.86 | 0.84 | 0.92 | 0.89 | 0.87 | 0.85 |
6 | 0.81 | 0.88 | 0.80 | 0.87 | 0.89 | 0.83 |
7 | 0.89 | 0.90 | 0.90 | 0.91 | 0.89 | 0.87 |
8 | 0.79 | 0.83 | 0.87 | 0.87 | 0.87 | 0.86 |
Tree 1316 | Correlations between Cardinal Directions | |||||
---|---|---|---|---|---|---|
Trunk Height (m) | Pearson’s r Value for Full Chronological Series | |||||
N vs. S | N vs. E | N vs. W | S vs. E | S vs. W | E vs. W | |
1 | 0.66 | 0.44 | 0.61 | 0.56 | 0.50 | −0.08 |
2 | 0.36 | 0.69 | 0.34 | 0.48 | 0.52 | 0.18 |
3 | 0.56 | 0.66 | 0.56 | 0.68 | 0.33 | 0.13 |
4 | 0.50 | 0.66 | 0.49 | 0.60 | 0.27 | 0.43 |
5 | 0.55 | 0.69 | 0.57 | 0.61 | 0.53 | 0.31 |
6 | 0.62 | 0.73 | 0.43 | 0.65 | 0.71 | 0.26 |
7 | 0.76 | 0.83 | 0.78 | 0.85 | 0.81 | 0.76 |
8 | 0.88 | 0.86 | 0.89 | 0.86 | 0.92 | 0.85 |
9 | 0.38 | 0.48 | 0.41 | 0.91 | 0.88 | 0.92 |
10 | 0.90 | 0.85 | 0.88 | 0.90 | 0.80 | 0.75 |
11 | 0.91 | 0.83 | 0.92 | 0.83 | 0.95 | 0.85 |
12 | 0.93 | 0.90 | 0.81 | 0.86 | 0.78 | 0.72 |
13 | 0.37 | 0.56 | 0.27 | 0.59 | 0.63 | 0.45 |
14 | 0.74 | 0.79 | 0.79 | 0.62 | 0.73 | 0.67 |
15 | 0.86 | 0.82 | 0.89 | 0.88 | 0.82 | 0.84 |
16 | 0.85 | 0.60 | 0.91 | 0.77 | 0.82 | 0.40 |
3.4.2. Same Tree, Same Cardinal Direction, Different Trunk Heights: r Values
3.4.3. Between-Tree Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savidge, R.A. Tree growth and wood quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; CRC Press: Baton Rouge, FL, USA, 2003; Chapter 1; ISBN 0-8493-2819-5. [Google Scholar]
- Gattia, R.C.; Reich, P.B.; Gamarra, J.G.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.F.; De-Miguel, S.; Nabuurs, G.J.; Svenning, J.C.; et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. USA 2022, 119, e2115329119. [Google Scholar] [CrossRef]
- Lee, Z.H.; Hirakawa, T.; Yamaguchi, N.; Ito, T. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int. J. Mol. Sci. 2019, 20, 4065. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R.A.; Farrar, J.L. Cellular adjustments in the vascular cambium leading to spiral-grain formation in conifers. Can. J. Bot. 1984, 62, 2872–2879. [Google Scholar] [CrossRef]
- Dalessandro, G.; Roberts, L.W. Induction of xylogenesis in pith parenchyma expiants of Lactuca. Am. J. Bot. 1971, 58, 378–385. [Google Scholar] [CrossRef]
- Pinches, T.G. The Babylonian Tablets of the Berens Collection; Asiatic Society Monographs; Royal Asiatic Society: London, UK, 1915; Volume XVI. [Google Scholar]
- Savidge, R.A. Intrinsic regulation of cambial growth. J. Plant Growth Regul. 2001, 20, 52–77. [Google Scholar] [CrossRef]
- Savidge, R.A. Electromagnetic survey report—Mt. Nansen project #158. In Mount Nansen Project #158, Progress Report for Period June 1–30, 1971; Dickinson, R.A., Savidge, R.A., Eds.; Energy, Mines and Resources Property file Collection, ARMC012150; Government of Yukon: Whitehorse, Yukon. Available online: https://data.geology.gov.yk.ca/Reference/72584 (accessed on 30 March 2023).
- Savidge, R.A. Yukon taiga—Past, present and future. In The Biosphere; Ishwaran, N., Ed.; InTech Publisher: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R.A. Porsild spruce in Canada—An update. For. Chron. 2013, 90, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Rainville, R.A.; Gajewski, K. Holocene environmental history of the Aishihik Region, Yukon, Canada. Can. J. Earth Sci. 2013, 50, 397–405. [Google Scholar] [CrossRef]
- Anderson, L.L.; Hu, F.H.; Nelson, D.M.; Petit, R.J.; Paige, K.N. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proc. Natl. Acad. Sci. USA 2006, 103, 12447–12450. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R.A. Evidence for early glaciation of southeastern Beringia. Can. J. Earth Sci. 2020, 57, 199–226. [Google Scholar] [CrossRef]
- Smith, C.A.S.; Meikle, J.C.; Roots, C.F. Ecoregions of the Yukon Territory: Biophysical Properties of Yukon Landscapes; Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01; Minister of Supply and Services Canada: Summerland, BC, Canada, 2004; 313p, ISBN 0-660-18828-7. [Google Scholar]
- Jackson, L.E., Jr.; Barendregt, R.W.; Baker, J.; Irving, E. Early Pleistocene volcanism and glaciation in central Yukon: A new chronology from field studies and paleomagnetism. Can. J. Earth Sci. 1996, 33, 904–916. [Google Scholar] [CrossRef]
- LeBarge, W.P. Sedimentology of Placer Gravels Near Mt. Nansen, Central Yukon Territory; Bulletin 4; Exploration and Geological Services Division, Northern Affairs Program; Government of Yukon: Whitehorse, Yukon, 1995; 155p, ISBN 0-662-22923-1.
- Michelsen, A.; Schmidt, I.K.; Jonasson, S.; Dighton, J.; Jones, H.E.; Callaghan, T.V. Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts—Allelopathy or resource competition between plants and microbes? Oecologia 1995, 103, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Booysen, M.; Sikes, D.; Bowser, M.; Andrews, R. Earthworms (Oligochaeta: Lumbricidae) of interior Alaska. Biodivers. Data J. 2018, 6, e27427. [Google Scholar] [CrossRef] [PubMed]
- Preece, S.J.; Westgate, J.A.; Froese, D.G.; Pearce, N.J.G.; Perkins, W.T. A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon Territory. Can. J. Earth Sci. 2011, 48, 1386–1418. [Google Scholar] [CrossRef]
- Shah, R.; Mir, B.A. The freezing point of soils and the factors affecting its depression. In Advances in Construction Management, Lecture Notes in Civil Engineering; Loon, L.Y., Subramaniyan, M., Gunasekaran, K., Eds.; Springer: Singapore, 2022; Volume 191, pp. 157–166. [Google Scholar] [CrossRef]
- Government of Yukon, Wildland Fire Management Branch. Yukon Fire History. Available online: https://mapservices.gov.yk.ca/arcgis/rest/services/GeoYukon/GY_EmergencyManagement/MapServer/14 (accessed on 31 January 2023).
- Savidge, R.A. The tracheid differentiation factor of conifer needles. Int. J. Plant Sci. 1994, 155, 272–290. [Google Scholar] [CrossRef]
- Savidge, R.A. Cell biology of bordered-pit formation in balsam-fir trees. Botany 2014, 92, 495–511. [Google Scholar] [CrossRef]
- Matthews, J.A.; Briffa, K.R. The ‘Little Ice Age’: Re-evaluation of an evolving concept. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 17–36. [Google Scholar] [CrossRef]
- Bradley, R.S.; Jones, P.D. ‘Little Ice Age’ summer temperature variations: Their nature and relevance to recent global warming trends. Holocene 1993, 3, 367–376. [Google Scholar] [CrossRef]
- Hamilton, J.A.; El Kayal, W.; Hart, A.T.; Runcie, D.E.; Arango-Velez, A.; Cooke, J.E.K. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiol. 2016, 36, 1432–1438. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Frank, D. Divergence pitfalls in tree-ring research. Clim. Change 2009, 94, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Wilmking, M.; Singh, J. Eliminating the “divergence problem” at Alaska’s northern treeline. Clim. Past Discuss. 2008, 4, 741–759. [Google Scholar] [CrossRef] [Green Version]
- Dearborn, K.D.; Danby, R.K. Climatic drivers of tree growth at tree line in southwest Yukon change over time and vary between landscapes. Clim. Change 2018, 150, 211–225. [Google Scholar] [CrossRef]
- Szeicz, J.M.; MacDonald, G.M. Recent white spruce dynamics at the subarctic alpine treeline of northwestern Canada. J. Ecol. 1995, 83, 873–885. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Fastie, C.L. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim. Change 2002, 52, 481–509. [Google Scholar] [CrossRef]
- Gryc, V.; Hacura, J.; Vavrcík, H.; Urban, J.; Gebauer, R. Monitoring of xylem formation in Picea abies under drought stress influence. Dendrobiology 2012, 67, 15–24. [Google Scholar]
- Young-Robertson, J.M.; Ogle, K.; Welker, J.M. Thawing seasonal ground ice: An important water source for boreal forest plants in Interior Alaska. Ecohydrology 2017, 10, e1796. [Google Scholar] [CrossRef]
- Wang, W.; Hoch, G. Negative effects of low root temperatures on water and carbon relations in temperate tree seedlings assessed by dual isotopic labelling. Tree Physiol. 2022, 42, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Savidge, R.A. Climate change, forest mortality, and the need for a solid scientific foundation in forestry. Environ. Sci. Proc. 2022, 22, 44. [Google Scholar] [CrossRef]
- Risk, C.; McKenney, D.W.; Pedlar, J.; Lu, P. A compilation of North American tree provenance trials and relevant historical climate data for seven species. Sci. Data 2021, 8, 29. [Google Scholar] [CrossRef]
- Morgenstern, K.; D’Eon, S.; Penner, M. White spruce growth to age 44 in a provenance test at the Petawawa Research Forest. For. Chron. 2006, 82, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, L.M. A Range-Wide Common Garden Experiment of White Spruce Indicates Population Differentiation in Drought Tolerance Traits. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2009. [Google Scholar]
- Prud’homme, G.O.; Lamhamedi, M.S.; Benomar, L.; Rainville, A.; DeBlois, J.; Bousquet, J.; Beaulieu, J. Ecophysiology and growth of white spruce seedlings from various seed sources along a climatic gradient support the need for assisted migration. Front. Plant Sci. 2018, 8, 2214. [Google Scholar] [CrossRef] [Green Version]
- Sebastian-Azcona, J.; Hamann, A.; Hacke, U.G.; Rweyongeza, D. Survival, growth and cold hardiness tradeoffs in white spruce populations: Implications for assisted migration. For. Ecol. Mgmt. 2019, 433, 544–552. [Google Scholar] [CrossRef]
- Szeicz, J.; MacDonald, G. Dendroclimatic reconstruction of summer temperatures in northwestern Canada since A.D. 1638 based on age-dependent modeling. Quat. Res. 1995, 44, 257–266. [Google Scholar] [CrossRef]
- Anderson, L.L.; Hu, F.S.; Paige, K.N. Phylogeographic history of white spruce during the Last Glacial Maximum: Uncovering cryptic refugia. J. Hered. 2011, 102, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lait, L.A.; Burg, T.M. When east meets west: Population structure of a high-latitude resident species, the boreal chickadee (Poecile hudsonicus). Heredity 2013, 111, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Nienstaedt, H.; Zasada, J.C. Picea glauca. In Silvics of North America; Agriculture Handbook 654; Burns, R.M., Honkala, B.H., Eds.; USDA Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 204–226. [Google Scholar]
- Alfieri, F.J.; Evert, R.F. Seasonal development of the secondary phloem in Pinus. Am. J. Bot. 1968, 55, 518–528. [Google Scholar] [CrossRef]
- Rainer-Lethaus, G.; Oberhuber, W. Phloem girdling of Norway spruce alters quantity and quality of wood formation in roots particularly under drought. Front. Plant Sci. 2018, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R.A. Inductive effects of conifer needles on xylogenesis—Auxin not the explanation. In Cell & Molecular Biology of Wood Formation; Savidge, R.A., Barnett, J.R., Napier, R., Eds.; BIOS Scientific: Oxford, UK, 2000; pp. 237–254. [Google Scholar]
- Hanlon, V.C.T.; Otto, S.P.; Aitken, S.N. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 2019, 3–4, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Hartig, T. Uber die Entwicklung des Jahresringes des Holzplanzen. Bot. Zeitung 1853, 11, 553–579. [Google Scholar]
- Jost, L. Uber Beziehungen zwischen der Blattentwicklung und del’ Gerassbildun~ in del’ Pflanze. Bot. Zeitung 1893, 51, 89–138. [Google Scholar]
- Went, F. Wuchsstoff und Wachstum. Rec. Trav. Bot. Neerl. 1928, 25, 1–116. [Google Scholar]
- Arteca, R.N. Historical Aspects and Fundamental Terms and Concepts. In Plant Growth Substances; Springer: Boston, MA, USA, 1996. [Google Scholar] [CrossRef]
- Enders, T.A.; Strader, L.C. Auxin activity: Past, present, and future. Am. J. Bot. 2015, 102, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Napier, R.M. Regulators of Growth | Auxins. In Encyclopedia of Applied Plant Sciences; Thomas, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 985–995. ISBN 9780122270505. [Google Scholar] [CrossRef]
- Savidge, R.A. Regulation of Seasonal Cambial Activity and Tracheid Differentiation in Pinus contorta Dougl. Ph.D. Thesis, University of Wales, Wales, UK, 1981. Available online: www.researchgate.net/publication/318541571 (accessed on 30 March 2023).
- Savidge, R.A.; Wareing, P.F. Plant-growth regulators and the differentiation of vascular elements. In Xylem Cell Development; Barnett, J.R., Ed.; Castle House Publisher: Tunbridge Wells, UK, 1981; pp. 192–235. ISBN 0 7194 0050 3. [Google Scholar]
- Savidge, R.A.; Wareing, P.F. Seasonal cambial activity and xylem development in Pinus contorta in relation to endogenous indol-3-ylacetic acid and (S)-abscisic acid levels. Can. J. For. Res. 1984, 14, 676–682. [Google Scholar] [CrossRef]
- Savidge, R.A.; Wareing, P.F. Apparent auxin production and transport during winter in the non-growing pine tree. Can. J. Bot. 1982, 60, 681–691. [Google Scholar] [CrossRef]
- Oribe, Y.; Kubo, T. Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol. 1997, 17, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Gričar, J.; Zupančič, M.; Čufar, K.; Koch, G.; Schmitt, U.; Oven, P. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann. Bot. 2006, 97, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Nabeshima, E.; Begum, S.; Yamagishi, Y.; Nakaba, S.; Oribe, Y.; Yasue, K.; Funada, R. The effects of localized heating and disbudding on cambial reactivation and formation of earlywood vessels in seedlings of the deciduous ring-porous hardwood, Quercus serrata. Ann. Bot. 2014, 113, 1021–1027. [Google Scholar] [CrossRef] [Green Version]
- Giovannelli, A.; Mattana, S.; Emiliani, G.; Anichini, M.; Traversi, M.L.; Pavone, F.S.; Cicchi, R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. Tree Physiol. 2022, 42, 1149–1163. [Google Scholar] [CrossRef]
- Kijidani, Y.; Wu, Z.; Savidge, R. New insight into phytohormone regulation of wood formation in conifers. In Phytomorphology Golden Jubilee Issue 2001: Trends in Plant Science; Rangaswamy, N.S., Ed.; International Society of Plant Morphologists, University of Delhi: Delhi, India, 2001; 586p, pp. 185–200. [Google Scholar]
- Zajaczkowski, S. Auxin stimulation of cambial activity in Pinus silvestris I. The differential cambial response. Physiol. Plant. 1973, 29, 281–287. [Google Scholar] [CrossRef]
- Savidge, R.A. In vitro wood formation in ‘chips’ from merchantable stem regions of Larix laricina. IAWA J. 1993, 14, 3–11. [Google Scholar]
- Fukuda, H.; Komamine, A. Direct evidence for cytodifferentiation to trachearv clements without intervening mitosis in a culture of single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol. 1980, 65, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Savidge, R.A. Auxin and ethylene regulation of diameter growth in trees. Tree Physiol. 1988, 4, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Muday, G.K.; Rahman, A.; Binder, B.M. Auxin and ethylene: Collaborators or competitors? Trends Plant Sci. 2012, 17, 181–195. [Google Scholar] [CrossRef]
- Savidge, R.A. ACC induction of xylogenesis in horseradish roots. Plant Growth Reg. Soc. Am. 2007, 33, 60–65. Available online: www.researchgate.net/publication/311654362 (accessed on 30 March 2023).
- Björklund, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J. 2007, 52, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Immanen, J.; Nieminen, K.; Smolander, O.-P.; Kojima, M.; Serra, J.A.; Koskinen, P.; Zhang, J.; Elo, A.; Mähönen, A.P.; Street, N.; et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial cctivity. Curr. Biol. 2016, 26, 1990–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liua, C.; Yua, H.; Rao, X.; Li, L.; Dixon, R.A. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proc. Natl. Acad. Sci. USA 2021, 118, e2010911118. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Park, S.-G.; Hwang, H.; Yoo, S.; Bae, W.; Kim, E.; Kim, J.; Lee, H.-Y.; Heo, T.-Y.; et al. Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. New Phytol. 2021, 230, 1503–1516. [Google Scholar] [CrossRef]
- Hu, J.; Hu, X.; Yang, Y.; He, C.; Hu, J.; Wang, X. Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1. Plant Physiol. 2022, 188, 255–267. [Google Scholar] [CrossRef]
- Behr, M.; Lutts, S.; Hausman, J.-F.; Guerriero, G. Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta 2018, 248, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Morales-Quintana, L.; Ramos, P. A talk between flavonoids and hormones to reorient the growth of gymnosperms. Int. J. Mol. Sci. 2021, 22, 12630. [Google Scholar] [CrossRef]
- Wong, W.S.; Guo, D.; Wang, X.L.; Yin, Z.Q.; Xia, B.; Li, N. Study of cis-cinnamic acid in Arabidopsis thaliana. Plant Physiol. Biochem. 2005, 43, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tejos, R.; Beck, M.; Himschoot, E.; Li, H.; Robatzek, S.; Vanneste, S.; Friml, J. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc. Natl. Acad. Sci. USA 2013, 110, 7946–7951. [Google Scholar] [CrossRef] [Green Version]
- Grana, E.; Costas-Gil, A.; Longueira, S.; Celeiro, M.; Teijeira, M.; Reigosa, M.J.; Sanchez-Moreiras, A.M. Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. J. Plant Physiol. 2017, 218, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Savidge, R.A. Dihydroconiferyl alcohol in developing xylem of Pinus contorta. Phytochemistry 1987, 26, 93–94. [Google Scholar] [CrossRef]
- Binns, A.N.; Chen, R.H.; Wood, H.N.; Lynn, D.G. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proc. Natl. Acad. Sci. USA 1987, 84, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Motose, H.; Iwamoto, K.; Fukuda, H. Expression and genome-wide analysis of the xylogen-type gene family. Plant Cell Physiol. 2011, 52, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Miao, Y.; Huang, H.; Zhang, Y.; Huang, L.; Cao, J. Arabinogalactan proteins: Focus on the role in cellulose synthesis and deposition during plant cell wall biogenesis. Int. J. Mol. Sci. 2022, 23, 6578. [Google Scholar] [CrossRef]
- Fukuda, H.; Hardtke, C.S. Peptide signaling pathways in vascular differentiation. Plant Physiol. 2020, 182, 1636–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soumelidou, K.; Li, H.; Barnett, J.R.; John, P.; Battey, N.H. The effect of auxin and calcium antagonists on tracheary element differentiation in Phaseolus vulgaris L. J. Plant Physiol. 1994, 143, 717–721. [Google Scholar] [CrossRef]
- DeRose, R.J.; Bekker, M.F.; Long, J.N. Traumatic resin ducts as indicators of bark beetle outbreaks. Can. J. For. Res. 2017, 47, 1168–1174. [Google Scholar] [CrossRef]
- Martin, D.; Tholl, D.; Gershenzon, J.; Bohlmann, J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 2002, 129, 1003–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubler, H. Mechanism of frost crack formation in trees—A review and synthesis. For. Sci. 1983, 29, 559–568. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savidge, R.A.; Yuan, X.; Foerster, H. Gišogenetic Variation in White-Spruce (Picea glauca (Moench) Voss) Trees of Yukon Beringia, Canada. Forests 2023, 14, 787. https://doi.org/10.3390/f14040787
Savidge RA, Yuan X, Foerster H. Gišogenetic Variation in White-Spruce (Picea glauca (Moench) Voss) Trees of Yukon Beringia, Canada. Forests. 2023; 14(4):787. https://doi.org/10.3390/f14040787
Chicago/Turabian StyleSavidge, Rodney Arthur, Xin Yuan, and Hartmut Foerster. 2023. "Gišogenetic Variation in White-Spruce (Picea glauca (Moench) Voss) Trees of Yukon Beringia, Canada" Forests 14, no. 4: 787. https://doi.org/10.3390/f14040787
APA StyleSavidge, R. A., Yuan, X., & Foerster, H. (2023). Gišogenetic Variation in White-Spruce (Picea glauca (Moench) Voss) Trees of Yukon Beringia, Canada. Forests, 14(4), 787. https://doi.org/10.3390/f14040787