Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Ground Measurements
2.3. Remote Sensing Data
2.4. Data Processing and Analysis
2.4.1. Atmospheric Parameters (Precipitable Water and Air Temperature) and Daily Rn Estimation
2.4.2. ET (SEBAL versus MOD16A2) Estimation
2.4.3. Gross Primary Production (GPP) (Modeled versus MOD17A2H) Estimation
2.5. Data Analysis
3. Results and Discussion
3.1. Validation of Atmospheric Parameters (Precipitable Water and Air Temperature)
3.2. Instantaneous Net Radiation Validation
3.3. Daily Rn Validation
3.4. ET Validation
3.5. Gross Primary Production (GPP) Validation
3.6. Spatial Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borges, C.K.; Santos, C.A.C.; Carneiro, R.G.; Silva, L.L.; Oliveira, G.; Mariano, D.; Silva, M.T.; Silva, B.B.; Bezerra, B.G.; Perz-Marin, A.M.; et al. Seasonal variation of surface radiation and energy balances over two contrasting areas of the seasonally dry tropical forest (Caatinga) in the Brazilian semi-arid. Environ. Monit. Assess 2020, 192, 524. [Google Scholar] [CrossRef] [PubMed]
- De Souza, D.C.; Oyama, M.D. Climatic consequences of gradual desertification in the semi-arid area of Northeast Brazil. Theor. Appl. 2011, 103, 345–357. [Google Scholar] [CrossRef]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess the effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Hao, X.; Yue, P. Changes in evapotranspiration over global semiarid regions 1984–2013. J. Geophys. Res. Atmos. 2019, 124, 2946–2963. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Santos, C.A.C.; Oliveira, G.; Perez-Marin, A.M.; Santos, C.A.G. Effects of human-induced land degradation onwater and carbon fluxes in two different Brazilian dryland soil covers. Sci. Total Environ. 2021, 792, 148458. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.E.S.; Costa, V.S.O.; Galvíncio, J.D.; Silva, R.M.; Santos, C.A.G. Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region. Agric. Water Manag. 2021, 250, 106863. [Google Scholar] [CrossRef]
- Liu, Y.; Mo, X.; Hu, S.; Chen, X.; Liu, S. Attribution analyses of evapotranspiration and gross primary productivity changes in Ziya-Daqing basins, China during 2001–2015. Theor. Appl. Climatol. 2020, 139, 1175–1189. [Google Scholar] [CrossRef]
- Mutti, P.R.; Silva, L.L.; Medeiros, S.S.; Dubreuil, V.; Mendes, K.R.; Marques, T.V.; Lucio, P.S.; Silva, C.M.S. Basin scale rainfall-evapotranspiration dynamics in a tropical semiarid environment during dry and wet years. Int. J. Appl. Earth Obs. 2019, 75, 29–43. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; Mutti, P.R.; Ferreira, R.R.; Ramos, T.M.; Marques, T.V.; Reis, J.S.; Vieira, M.M.L. Assessment of SITE for CO2 and energy fluxes simulations in a seasonally dry tropical Forest (Caatinga Ecosystem). Forests 2021, 12, 86. [Google Scholar] [CrossRef]
- Nascimento, R.S. Estimate of variability in the amount of carbon absorbed by the caatinga. Ph.D. Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2011. [Google Scholar]
- Velloso, A.L.; Sampaio, E.V.S.B.; Pareyn, F.G. Ecorregiões do biomaCaatinga. Resultados do Seminário de PlanejamentoEcorregional da Caatinga—1ª Etapa; The Nature Conservancy/AssociaçãoPlantas do Nordeste: Brasília, Brazil, 2002; 75p. [Google Scholar]
- Oliveira, M.L.; Santos, C.A.C.; Oliveira, G.; Silva, M.T.; Silva, B.B.; Cunha, J.E.B.L.; Ruhoff, A.; Santos, C.A.G. Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 835, 155490. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Muti, P.; Mendes, K.R.; Campos, S.; Marques, T.V.; Oliveira, C.P.; Gonçalves, W.; Mota, J.; Difante, G.; Urbano, S.A.; et al. An assessment of the MOD17A2 gross primary production prducty in the Caatinga biome, Brazil. Int. J. Remote Sens. 2021, 42, 1275–1291. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ. 2011, 115, 3424–3435. [Google Scholar] [CrossRef]
- Zhu, X.; Pei, Y.; Zheng, Z.; Dong, J.; Zhang, Y.; Wang, J.; Chen, L.; Doughty, R.B.; Zhang, G.; Xiao, X. Underestimates of grassland gross primary production in MODIS standard products. Remote Sens. 2018, 10, 1771. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD17A2H (accessed on 7 April 2020). [CrossRef]
- Autovino, D.; Minacapilli, M.; Provenzano, G. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agric. Water Manag. 2016, 167, 86–94. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Aragao, L.E.O.C.; Mu, Q.; Malhi, Y.; Collischonn, W.; Rocha, H.R.; Running, S.W. Assessment of the MODIS global evapotranspiration algorithm using Eddy covariance measurements and hydrological modelling in the Rio Grande Basin. Hydrol. Sci. J. 2013, 58, 1658–1676. [Google Scholar] [CrossRef]
- de Oliveira, G.; Brunseel, N.A.; Moraes, E.C.; Shimabukuro, Y.E.; Bertani, G.; dos Santos, T.V.; Aragao, L.E.O.C. Evaluation of MODIS-based estimates of water-use efficiency in Amazonia. Int. J. Remote Sens. 2017, 38, 5291–5309. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1: Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Oliveira, G.S. Impactos das mudanças de cobertura vegetal nosprocessos de superfícienaregiãosemiárida do brasil. Rev. Bras. De Meteorol. 2013, 28, 139–152. [Google Scholar] [CrossRef]
- Santos, C.A.C.; Mariano, D.A.; Nascimento, F.C.A.; Dantas, F.R.C.; Oliveira, G.; Silva, M.T. Spatiotemporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101982. [Google Scholar] [CrossRef]
- Silva, A.M.; Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Bazame, H.C.; Althoffi, D.; Filgueiras, R.; Calijuri, M.L.; Oliveira, J.C. Modeling the Net Primary Productivity: A Study Case in the Brazilian Territory. J. Indian Soc. Remote Sens. 2019, 47, 1727–1735. [Google Scholar] [CrossRef]
- Costa, C.R.G. Temporal Dynamics of CO2 Efflux and Glomalin Production in a Caatinga Area under Lithosol. Master’s Thesis, Federal University of Paraíba, João Pessoa, Brazil, 2019. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 8, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications; LI-COR Biosciences; Lincoln: Washington, DC, USA, 2013. [Google Scholar]
- Al-Riahi, M.; Al-Jumaily, K.; Kamies, I. Measurements of net radiation and its components in semi-arid climate of Baghdad. Energy Convers. Manag. 2003, 44, 509–525. [Google Scholar] [CrossRef]
- Santos, F.A.C.; Santos, C.A.C.; Silva, B.B.; Araújo, A.L.; Cunha, J.E.B.L. Desempenho de metodologias para estimativa do saldo de radiação a partir de imagens MODIS. Rev. Bras. Meteorol. 2015, 30, 295–306. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO. Irrigation and Drainage, Paper 56; FAO: Rome, Italy, 1998; 318p. [Google Scholar]
- Allen, R.G. Assessing integrity of weather data for use in reference evapotranspiration estimation. J. Irrig. Drain. Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- Garrison, J.D.; Adler, G.P. Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components. Sol. Energy 1990, 44, 225–241. [Google Scholar] [CrossRef]
- ASCE-EWRI. The ASCE Standardized Reference Evapotranspiration Equation. Technical Committee Report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration. ASCE-EWRI, 1801 Alexander Bell Drive, Reston, VA 20191-4400, 2005, 173p. Available online: https://ascelibrary.org/doi/book/10.1061/9780784408056 (accessed on 23 October 2022).
- De Bruin, H.A.R. From Penman to Makkink. In Proceedings and Information: TNO Commitee on Hydrological; Hooghart, J.C., Ed.; Gravennhage, The Netherlands, 1987; Volume 39, pp. 5–31. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1575640 (accessed on 23 October 2022).
- Liang, S. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Araújo, A.L. Calibration of Daily Radiation Balance Using Surface Data and Orbital Sensors. Master’s Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2010. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Library of Congress Cataloging in Publication Data; Academic Press: Don Mills, ON, Canada, 1984; 408p. [Google Scholar]
- Pôças, I.; Cunha, M.; Pereira, L.S.; Allen, R.G. Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 159–172. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Silva, B.B.; Mercante, E.; Boas, M.A.V.; Wrublack, S.C.; Oldoni, L.V. Satellite-based ET estimation using Landsat 8 images and SEBAL model. Rev. Ciência Agronômica 2019, 49, 221–227. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Droogers, P.; De Bruin, H.A.R.; Menenti, M. Area-average estimates of evaporation, wetness indicators and top soil. moisture during two golden days in EFEDA. Agric. For. Meteorol. 1997, 87, 119–137. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, B.B.; Ferreira, N.J. Estimativa da evapotranspiraçãodiáriautilizando-se imagensdigitais TM—Landsat 5. Rev. Meteorol. 2008, 23, 305–317. [Google Scholar] [CrossRef]
- Harrison, L.P. Fundamental Concepts and Definitions Relating to Humidity. In Humidity and Moisture; Wexler, A., Ed.; Reinhold Publishing Company: New York, NY, USA, 1963. [Google Scholar]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M.; et al. Evaluation of Remote Sensing Based Terrestrial Productivity From MODIS Using Regional Tower Eddy Flux Network Observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Silva, B.B.; Galvíncio, J.D.; Montenegro, S.M.G.L.; Machado, C.C.C.; Oliveira, L.M.M.; De Moura, M.S.B. Determinaçãoporsensoriamentoremoto da produtividadeprimáriabruta do perímetroirrigado São Gonçalo—PB. Rev. Meteorol. 2013, 28, 57–64. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Seemann, S.W.; Li, J.; Menzel, W.P.; Gumley, L.E. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol. 2003, 42, 1072–1091. [Google Scholar] [CrossRef]
- De Oliveira, G.; Brunsell, N.A.; Moraes, E.C.; Bertani, G.; Dos Santos, T.V.; Shimabukuro, Y.E.; Aragão, L.E.O.C. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors 2016, 16, 956. [Google Scholar] [CrossRef]
- Bisht, G.; Bras, R.L. Estimation of net radiation from the Moderate Resolution Imaging Spectroradiometer over the continental United States. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2448–2462. [Google Scholar] [CrossRef]
- Nicácio, R.M. Actual Evapotranspiration and Soil Moisture Using Data from Orbital Sensors and the SEBAL Methodology in the São Francisco River Basin. Ph.D. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Santos, F.A.C. Estimation of CO2 Fluxes and Evapotranspiration in Areas of Dense and Sparse Caatinga in the State of Paraíba. Ph.D. Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2015. [Google Scholar]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef]
- de Jesus, J.B.; Kuplich, T.M.; Barreto, I.D.C.; Rosa, C.N.; Hillebrand, F.L. Temporal and phenological profiles of open and dense Caatinga using remote sensing: Response to precipitation and its irregularities. J. For. Res. 2021, 32, 1067–1076. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Esteves, L.S.; Souza, E.P.; Santos, C.A.C. Impact of the urbanization process in the availability of ecosystem services in a tropical ecotone area. Ecosystems 2019, 22, 266–282. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Yu, Q.; Restrepo-Coupe, N.; Beringer, J.; Hutley, L.B.; Kanniah, K.D.; Cleverly, J.; Eamus, D. Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sens. Environ. 2014, 154, 253–271. [Google Scholar] [CrossRef]
DC | ||||||
Average ± SD | ||||||
Observed | Estimated | R² | MAE | MPE | RMSE | |
WP | 29.5 ± 5.1 | 29.8 ± 5.5 | 0.05 | 4.79 | 0.15 | 6.47 |
Tar | 28.1 ± 1.9 | 25.9 ± 2.6 | 0.54 | 2.62 | 0.09 | 2.94 |
Rn 1 | 614 ± 57.8 | 663.1 ± 63.2 | 0.02 | 67.47 | 0.11 | 82.63 |
Rn 2 | 647.7 ± 67.7 | 0.03 | 61.37 | 0.10 | 76.75 | |
Rn24 A | 186.6 ± 16.1 | 164.6 ± 21.4 | 0.93 | 24.11 | 0.13 | 24.89 |
Rn24 B | 157.5 ± 21.1 | 0.93 | 31.18 | 0.17 | 31.72 | |
SC | ||||||
Average ± SD | ||||||
Observed | Estimated | R² | MAE | MPE | RMSE | |
Tar | 27.2 ± 1.9 | 25.9 ± 2.7 | 0.61 | 2.13 | 0.08 | 2.34 |
Rn 1 | 655.1 ± 45.3 | 589.4 ± 63.8 | 0.14 | 74.17 | 0.11 | 86.51 |
Rn 2 | 575.1 ± 65.2 | 0.12 | 82.78 | 0.13 | 97.66 | |
Rn24 A | 188.1 ± 19.2 | 149.2 ± 20.4 | 0.73 | 42.76 | 0.23 | 44.01 |
Rn24 B | 142.1 ± 20 | 0.76 | 49.82 | 0.27 | 50.78 |
DC | ||||||
Average ± SD | ||||||
Observed | Estimated | R² | MAE | MPE | RMSE | |
ET MOD16A2 | 2.16 ± 1.49 | 1.91 ± 1.3 | 0.67 | 0.73 | 1.19 | 0.87 |
ET SEBAL | 2.61 ± 0.42 | 0.30 | 2.01 | 3.67 | 2.19 | |
GPP MOD17A2H | 8.58 ± 5.0 | 3.68 ± 1.54 | 0.76 | 4.04 | 0.50 | 4.9 |
GPP Modeled | 6.69 ± 2.02 | 0.28 | 3.19 | 0.28 | 4.84 | |
SC | ||||||
Average ± SD | ||||||
Observed | Estimated | R² | MAE | MPE | RMSE | |
ET MOD16A2 | 2.39 ± 1.12 | 1.22 ± 0.67 | 0.66 | 0.60 | 0.52 | 0.74 |
ET SEBAL | 1.81 ± 0.51 | 0.48 | 1.26 | 1.17 | 1.50 | |
GPP MOD17A2H | 3.42 ± 1.64 | 2.56 ± 1.25 | 0.65 | 2.32 | 0.47 | 2.60 |
GPP Modeled | 2.63 ± 1.96 | 0.12 | 2.01 | 0.50 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, M.L.; dos Santos, C.A.C.; Santos, F.A.C.; de Oliveira, G.; Santos, C.A.G.; Bezerra, U.A.; de B. L. Cunha, J.E.; da Silva, R.M. Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing. Forests 2023, 14, 828. https://doi.org/10.3390/f14040828
de Oliveira ML, dos Santos CAC, Santos FAC, de Oliveira G, Santos CAG, Bezerra UA, de B. L. Cunha JE, da Silva RM. Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing. Forests. 2023; 14(4):828. https://doi.org/10.3390/f14040828
Chicago/Turabian Stylede Oliveira, Michele L., Carlos Antonio Costa dos Santos, Francineide Amorim Costa Santos, Gabriel de Oliveira, Celso Augusto Guimarães Santos, Ulisses Alencar Bezerra, John Elton de B. L. Cunha, and Richarde Marques da Silva. 2023. "Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing" Forests 14, no. 4: 828. https://doi.org/10.3390/f14040828
APA Stylede Oliveira, M. L., dos Santos, C. A. C., Santos, F. A. C., de Oliveira, G., Santos, C. A. G., Bezerra, U. A., de B. L. Cunha, J. E., & da Silva, R. M. (2023). Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing. Forests, 14(4), 828. https://doi.org/10.3390/f14040828