A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occupational Exposure Limits
2.2. Sampling and Analysis
- -
- Te: total daily vibration exposure (8 h in this study);
- -
- A(w)sum: (a2wx + a2wy + a2wz)1/2;
- -
- awx awy awz: root average square values of frequency-weighted acceleration (ms−2) on the three axes (Figure 3).
- -
- Ti is the daily exposure time in minutes (480 min in this study);
- -
- Li is the continuous equivalent level (LAeq) of the noise source;
- -
- T0 is the daily working time of 8 h.
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Vibration Exposure
4.2. Noise Exposure
4.3. Influence of the Wood Species and Defects
4.4. Manufacturer’s Declarations
4.5. Operating Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albizu-Urionabarrenetxea, P.; Tolosana-Esteban, E.; Roman-Jordan, E. Safety and Health in Forest Harvesting Operations. Diagnosis and Preventive Actions. A Review. For. Syst. 2013, 22, 392–400. [Google Scholar] [CrossRef]
- Picchio, R.; Blasi, S.; Sirna, A. Survey on Mechanization and Safety Evolution in Forest Works in Italy. In Proceedings of the International Conference Ragusa SHWA2010, Ragusa Ibla Campu, Italy, 16–18 September 2010. [Google Scholar]
- Liepiņš, K.; Lazdiņš, A.; Liepiņš, J.; Prindulis, U. Productivity and Cost-Effectiveness of Mechanized and Motor-Manual Harvesting of Grey Alder (Alnus Incana (L.) Moench): A Case Study in Latvia. Small-Scale For. 2015, 14, 493–506. [Google Scholar] [CrossRef]
- Russell, F.; Mortimer, D. A Review of Small-Scale Harvesting Systems in Use Worldwide and Their Potential Application in Irish Forestry; COFORD: Dublin, Ireland, 2005; ISBN 190269645X. [Google Scholar]
- Spinelli, R.; Nati, C.; Magagnotti, N. Biomass Harvesting from Buffer Strips in Italy: Three Options Compared. Agrofor. Syst. 2006, 68, 113–121. [Google Scholar] [CrossRef]
- Ottonelli, J.; Brandelero, C.; Werner, V.; Schlosser, J.F.; Farias, M.S. Estado de Uso e Conservação de Motosserras Com Motores de Combustão Interna. Tecno-Lógica St. Cruz Do Sul 2020, 24, 196–201. [Google Scholar] [CrossRef]
- Cheţa, M.; Marcu, M.V.; Borz, S.A. Workload, Exposure to Noise, and Risk of Musculoskeletal Disorders: A Case Study of Motor-Manual Tree Feeling and Processing in Poplar Clear Cuts. Forests 2018, 9, 300. [Google Scholar] [CrossRef]
- Calvo, A. Musculoskeletal Disorders (MSD) Risks in Forestry: A Case Study to Suggest an Ergonomic Analysis. Agric. Eng. Int. CIGR Ejournal 2009, 9, 1–9. [Google Scholar]
- Marchi, E.; Neri, F.; Cambi, M.; Laschi, A.; Foderi, C.; Sciarra, G.; Fabiano, F. Analysis of Dust Exposure during Chainsaw Forest Operations. IForest 2017, 10, 341–347. [Google Scholar] [CrossRef]
- Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining Exhaust Fumes Exposure in Chainsaw Operations. Environ. Pollut. 2016, 218, 1162–1169. [Google Scholar] [CrossRef]
- Kovác, J.; Krilek, J.; Dado, M.; Beňo, P. Investigating the Influence of Design Factors on Noise and Vibrations in the Case of Chainsaws for Forestry Work. FME Trans. 2018, 46, 513–519. [Google Scholar] [CrossRef]
- Laschi, A.; Marchi, E.; Foderi, C.; Neri, F. Identifying Causes, Dynamics and Consequences of Work Accidents in Forest Operations in an Alpine Context. Saf. Sci. 2016, 89, 28–35. [Google Scholar] [CrossRef]
- Klun, J.; Medved, M. Fatal Accidents in Forestry in Some European Countries. Croat. J. For. Eng. 2007, 28, 55–62. [Google Scholar]
- Monarca, D.; Biondi, P.; Cecchini, M.; Santi, M.; Guerrieri, M.; Colantoni, A.; Colopardi, F. Transmission of Vibrations from Portable Agricultural Machinery to the Hand-Arm System (HAV): Risk Assessment and Definition of Exposure Time for Daily Action and Exposure Limits. In Proceedings of the “Innovation Technology to Empower Safety, Health and Welfare in Agriculture and Agro-food Systems” International Conference, Ragusa, Italy, 15–17 September 2008; ElleDue. ISBN 978-88-903151-1-4. [Google Scholar]
- Papandrea, S.F.; Cataldo, M.F.; Zimbalatti, G.; Grigolato, S.; Proto, A.R. What Is the Current Ergonomic Condition of Chainsaws in Non-Professional Use? A Case Study to Determine Vibrations and Noises in Small-Scale Agroforestry Farms. Forests 2022, 13, 1876. [Google Scholar] [CrossRef]
- Barnes, R.; Longley, E.O.; Smith, A.R.B.; Allen, J.G. Vibration Disease. Med. J. Aust. 1969, 2, 259. [Google Scholar] [CrossRef]
- Miura, T.; Kimura, K.; Tominaga, Y.; Kimotsuki, K. On the Raynaud’s Phenomenon of Occupational Origin Due to Vibrating Tools—Its Incidence in Japan. Rep. Inst. Sci. Labour Tokio Jpn. 1966, 65, 1–11. [Google Scholar]
- Neri, F.; Laschi, A.; Foderi, C.; Fabiano, F.; Bertuzzi, L.; Marchi, E. Determining Noise and Vibration Exposure in Conifer Cross-Cutting Operations by Using Li-Ion Batteries and Electric Chainsaws. Forests 2018, 9, 501. [Google Scholar] [CrossRef]
- Matache, M.G.; Munteanu, M.; Dumitru, D.N.; Epure, M. Evaluation of Hand Transmitted Chainsaw Vibrations during Wood Cutting. In Proceedings of the E3S Web of Conferences; EDP Sciences, Constanta, Romania, 26–27 June 2020; Volume 180, p. 3013. [Google Scholar]
- Brammer, A.J.; Pyykkö, I. Vibration-Induced Neuropathy: Detection by Nerve Conduction Measurements. Scand. J. Work. Environ. Health 1987, 13, 317–322. [Google Scholar] [CrossRef]
- Seppäläinen, A.M. Peripheral Neuropathy in Forest Workers. A Field Study. Work Environ Health 1972, 9, 106–111. [Google Scholar]
- Färkkilä, M.; Aatola, S.; Starck, J.; Pyykko, I.; Korhonen, O. Vibration Induced Neuropathy among Forest Workers. Acta Neurol. Scand. 1985, 71, 221–225. [Google Scholar] [CrossRef]
- Bovenzi, M.; Giannini, F.; Rossi, S. Vibration-Induced Multifocal Neuropathy in Forestry Workers: Electrophysiological Findings in Relation to Vibration Exposure and Finger Circulation. Int. Arch. Occup. Environ. Health 2000, 73, 519–527. [Google Scholar] [CrossRef]
- Koskimies, K.; Farkkila, M.; Pyykko, I.; Jantti, V.; Aatola, S.; Starck, J.; Inaba, R. Carpal Tunnel Syndrome in Vibration Disease. Br. J. Ind. Med. 1990, 47, 411–416. [Google Scholar] [CrossRef]
- Bovenzi, M.; Zadini, A.; Franzinelli, A.; Borgogni, F. Occupational Musculoskeletal Disorders in the Neck and Upper Limbs of Forestry Workers Exposed to Hand-Arm Vibration. Ergonomics 1991, 34, 547–562. [Google Scholar] [CrossRef]
- Dos Santos Depoi, J.; Brandelero, C.; Werner, V.; Schlosser, J.F.; Russini, A.; de Vargas, F. Hand-Arm Vibration in Different Operating Conditions with a Chainsaw. Floresta 2022, 52, 74–82. [Google Scholar] [CrossRef]
- Yovi, E.Y.; Yamad, Y. Addressing Occupational Ergonomics Issues in Indonesian Forestry: Laborers, Operators, or Equivalent Workers. Croat. J. For. Eng. 2019, 40, 351–363. [Google Scholar] [CrossRef]
- Goglia, V.; Suchomel, J.; Žgela, J.; Đukić, I. Forestry Workers’ Expossure to Vibration in the Context of Directive 2002/44/EC. Šumarski List 2012, 136, 283–288. [Google Scholar]
- Stanëk, L.; Neruda, J.; Mergl, V.; Kotek, T. Difference in the Magnitude of Power Saw Vibrations Affecting the Operator during Forest Felling. Cent. Eur. For. J. 2023, 69, 59–67. [Google Scholar] [CrossRef]
- Rottensteiner, C.; Tsioras, P.; Stampfer, K. Wood Density Impact on Hand-Arm Vibration. Croat. J. For. Eng. 2012, 33, 303–312. [Google Scholar]
- Marenče, J.; Mihelič, M.; Poje, A. Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk. Forests 2017, 8, 464. [Google Scholar] [CrossRef]
- Landekić, M.; Bačić, M.; Pandur, Z.; Šušnjar, M. Vibration Levels of Used Chainsaws. Forests 2020, 11, 249. [Google Scholar] [CrossRef]
- Huber, M.; Hoffmann, S.; Brieger, F.; Hartsch, F.; Jaeger, D.; Sauter, U.H. Vibration and Noise Exposure during Pre-Commercial Thinning Operations: What Are the Ergonomic Benefits of the Latest Generation Professional-Grade Battery-Powered Chainsaws? Forests 2021, 12, 1120. [Google Scholar] [CrossRef]
- Kuvik, T.; Krilek, J.; Kováč, J.; Štefánek, M.; Dvořák, J. Impact of the Selected Factors on the Cutting Force When Using a Chainsaw. Wood Res. 2017, 62, 807–814. [Google Scholar]
- Neri, F.; Laschi, A.; Marchi, E.; Marra, E.; Fabiano, F.; Frassinelli, N.; Foderi, C. Use of Battery-vs. Petrol-Powered Chainsaws in Forestry: Comparing Performances on Cutting Time. Forests 2022, 13, 683. [Google Scholar] [CrossRef]
- Dixon, W. Effects of High Intensity Sound. In Handbook of Acoustics; Crocker, M.J., Ed.; Wiley & Sons Inc: Hoboken, NJ, USA, 1998; ISBN 978-0-471-25293-1. [Google Scholar]
- Neitzel, R.; Yost, M. Task-Based Assessment of Occupational Vibration and Noise Exposures in Forestry Workers. Am. Ind. Hyg. Assoc. J. 2002, 63, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Poje, A.; Mihelič, M. Influence of Chain Sharpness, Tension Adjustment and Type of Electric Chainsaw on Energy Consumption and Cross-Cutting Time. Forests 2020, 11, 1017. [Google Scholar] [CrossRef]
- Hawker, A. Comparison of Hand-Arm Vibration Emissions of Battery Powered Tools and Tools of Other Power Sources. In Proceedings of the Conference on Human Responses to Vibration, Edinburgh, Scotland, 24–26 September 2019; Volume 24, p. 77. [Google Scholar]
- Poje, A.; Potočnik, I.; Mihelič, M. Comparison of Electric and Petrol Chainsaws in Terms of Efficiency and Safety When Used in Young Spruce Stands in Small-Scale Private Forests. Small-Scale For. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Colantoni, A.; Mazzocchi, F.; Cossio, F.; Cecchini, M.; Bedini, R.; Monarca, D. Comparisons between Battery Chainsaws and Internal Combustion Engine Chainsaws: Performance and Safety. Contemp. Eng. Sci. 2016, 9, 1315–1337. [Google Scholar] [CrossRef]
- Kiehne, H.A. Battery Technology Handbook, 2nd ed.; CRC Press: New York, NY, USA, 2003; Volume 118, ISBN 0203911857. [Google Scholar]
- Hanisch, C.; Loellhoeffel, T.; Diekmann, J.; Markley, K.J.; Haselrieder, W.; Kwade, A. Recycling of Lithium-Ion Batteries: A Novel Method to Separate Coating and Foil of Electrodes. J. Clean. Prod. 2015, 108, 301–311. [Google Scholar] [CrossRef]
- Boubaker, K.; Colantoni, A.; Allegrini, E.; Longo, L.; Di Giacinto, S.; Monarca, D.; Cecchini, M. A Model for Musculoskeletal Disorder-Related Fatigue in Upper Limb Manipulation during Industrial Vegetables Sorting. Int. J. Ind. Ergon. 2014, 44, 601–605. [Google Scholar] [CrossRef]
- Neri, F.; Laschi, A.; Frassinelli, N.; Fabiano, F.; Foderi, C.; Marchi, E.; Marra, E. Battery- and Petrol-Powered Chainsaws: An Investigation of Productivity in Conifer Thinning. Forests 2023, 14, 183. [Google Scholar] [CrossRef]
- Pandur, Z.; Šušnjar, M.; Bačić, M. Battery Technology—Use in Forestry. Croat. J. For. Eng. 2021, 42, 135–148. [Google Scholar] [CrossRef]
- UNI EN ISO 5349-1:2004; Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand- Transmitted Vibration—Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 2004.
- UNI EN ISO 5349-2:2015; Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand- Transmitted Vibration—Part 2: Practical; Guidance for Measurement at the Workplace. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 13061-2:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standarization: Geneva, Switzerland, 2014.
- Sakakibara, H.; Kondo, T.; Koike, Y.; Miyao, M.; Furuta, M.; Yamada, S.; Sakurai, N.; Ono, Y. Combined Effects of Vibration and Noise on Palmar Sweating in Healthy Subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 59, 195–198. [Google Scholar] [CrossRef]
- Sisto, R.; Botti, T.; Cerini, L.; Di Giovanni, R.; Marchetti, E.; Lunghi, A.; Sacco, F.; Sanjust, F.; Tirabasso, A.; Moleti, A. Synergistic Effects of Noise and Hand-Arm Vibration on Distortion Product Otoacoustic Emissions in Healthy Subjects. Int. J. Ind. Ergon. 2017, 62, 48–54. [Google Scholar] [CrossRef]
- European Commission Directive 2003/10/EC of the European Parliament and of the Council of 6 February 2003 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Noise). Off. J. Eur. Communities 2003.
- ISO 9612:2011; Acoustics—Determination of Occupational Noise Exposure—Engineering Method. 2011. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 11201:2010; Acoustics: Noise Emitted by Machinery and Equipment; Determination of Emission Sound Pressure Levels at a Work Station and at Other Specified Positions in an Essentially Free Field over a Reflecting Plane with Negligible Environmental Corrections. International Organization for Standarization (ISO): Geneva, Switzerland, 2010.
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2020; Volume 1. [Google Scholar]
- Konietschke, F.; Placzek, M.; Schaarschmidt, F.; Hothorn, L.A. Nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw. 2015, 64, 1–17. [Google Scholar] [CrossRef]
- Rottensteiner, C.; Stampfer, K. Evaluation of Operator Vibration Exposure to Chainsaws Equipped with a Kesper Safety Bar. Scand. J. For. Res. 2013, 28, 193–200. [Google Scholar] [CrossRef]
- Pitts, P. Hand-Arm Vibration Emission of Chainsaws-Comparison with Vibration Exposure; Health and Safety Laboratory: Buxton, UK, 2004. [Google Scholar]
- Takimoto, Y.; Bottoms, D.J.; Stayner, R.M. The Vibration Characteristics of a Chainsaw Fitted with a Two Cylinder Engine. In Noise and Vibration in Agriculture and Forestry, Proceedings of the 8th Joint Ergonomics Symposium, Silsoe, UK, 9–12 September 1985; EurekaMag: Dallas, TX, USA, 1985. [Google Scholar]
- Rukat, W.; Jakubek, B. The Influence of the Cutting Tooth Design and Wear of a Saw Chain on the Vibration Level of a Chainsaw. Vib. Phys. Syst. 2017, 28, 1–8. [Google Scholar]
- Laschi, A.; Neri, F.; Marra, E.; Fabiano, F.; Frassinelli, N.; Marchi, E.; Paoloni, R.; Foderi, C. Comparing the Productivity of the Latest Models of Li-Ion Battery and Petrol Chainsaws in a Conifer Clear-Cut Site. Forests 2023, 14, 585. [Google Scholar] [CrossRef]
Stihl MSA 300 | Stihl MS 261 C-M | |
---|---|---|
Power | 3.0 kW | 3.0 kW |
Saw-bar length | 40 cm | 40 cm |
Chain type | Half-chisel | Half-chisel |
Chain pitch | 0.325” (0.8255 cm) | 0.325” (0.8255 cm) |
Drive-link thickness | 1.3 mm | 1.3 mm |
Number of drive links | 67 | 67 |
Fuel supply | Electricity (battery) | Mixed (gasoline + oil) |
Battery/Fuel type | AP500S | Stihl MotoMix |
Maximum chain speed (ISO 11681) | 30 m s−1 | 25.6 m s−1 |
Total weight * | 7.7 kg | 6.9 kg |
Vibration Daily Exposure (A(8) ms−2) | |||||||
---|---|---|---|---|---|---|---|
Handle | n | Min | Median | Mean | SD | Max | |
Stihl MSA 300 | left | 49 | 1.11 | 1.42 | 1.41 | 0.19 | 1.86 |
Black pine | right | 49 | 1.19 | 1.57 | 1.60 | 0.28 | 2.34 |
Stihl MSA 300 | left | 49 | 0.88 | 1.40 | 1.45 | 0.30 | 2.22 |
European beech | right | 49 | 0.99 | 1.67 | 1.67 | 0.38 | 2.60 |
Stihl MS 261 C-M | left | 49 | 2.55 | 3.09 | 3.12 | 0.31 | 3.99 |
Black pine | right | 49 | 2.52 | 2.88 | 2.90 | 0.21 | 3.42 |
Stihl MS 261 C-M | left | 49 | 2.66 | 3.24 | 3.30 | 0.33 | 3.89 |
European beech | right | 49 | 2.41 | 3.24 | 3.21 | 0.30 | 3.93 |
Noise Measurements (LEX) | |||||||
---|---|---|---|---|---|---|---|
Species | n | Min | Median | Mean | SD | Max | |
Stihl MSA 300 | Black pine—BP | 49 | 91 | 93 | 93 | 0.8 | 96 |
European beech—EB | 49 | 92 | 94 | 94 | 1.1 | 96 | |
Stihl MS 261 C-M | Black pine—BP | 49 | 103 | 105 | 105 | 0.6 | 106 |
European beech—EB | 49 | 104 | 105 | 105 | 0.7 | 106 |
Noise dB(A) LEX,8 h | Vibration A(8) ms−2 | |||||
---|---|---|---|---|---|---|
Chainsaw Model | Declared | Measured | Left Handle | Right Handle | ||
Declared | Measured | Declared | Measured | |||
Stihl MSA 300 | 93 | 93 | 1.5 | 1.4 | 1.6 | 1.6 |
Stihl MS 261 C-M | 104 | 105 | 3.5 | 3.2 | 3.5 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neri, F.; Laschi, A.; Bertuzzi, L.; Galipò, G.; Frassinelli, N.; Fabiano, F.; Marchi, E.; Foderi, C.; Marra, E. A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting. Forests 2023, 14, 898. https://doi.org/10.3390/f14050898
Neri F, Laschi A, Bertuzzi L, Galipò G, Frassinelli N, Fabiano F, Marchi E, Foderi C, Marra E. A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting. Forests. 2023; 14(5):898. https://doi.org/10.3390/f14050898
Chicago/Turabian StyleNeri, Francesco, Andrea Laschi, Lucia Bertuzzi, Giovanni Galipò, Niccolò Frassinelli, Fabio Fabiano, Enrico Marchi, Cristiano Foderi, and Elena Marra. 2023. "A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting" Forests 14, no. 5: 898. https://doi.org/10.3390/f14050898
APA StyleNeri, F., Laschi, A., Bertuzzi, L., Galipò, G., Frassinelli, N., Fabiano, F., Marchi, E., Foderi, C., & Marra, E. (2023). A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting. Forests, 14(5), 898. https://doi.org/10.3390/f14050898