Influences of Climatic Factors and Human Activities on Forest–Shrub–Grass Suitability in the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Vegetation Suitability Data
2.2.2. Human Activities
2.2.3. Climate Factors
2.2.4. Data Processing
2.3. Methods
2.3.1. Multiple Regression Analysis
2.3.2. Relative Importance Analysis
3. Results
3.1. Comparison of FSGS Results in the Yellow River Basin
3.2. Descriptive Characteristics of the Driving Factors
3.3. Regression Results
3.4. Relative Importance Analysis Results
4. Discussion
4.1. Comparison of FSGS Results in the Yellow River Basin
4.2. Drivers of FSGS Variation
4.2.1. Urbanization and Social Development Factors
4.2.2. Economic Factors
4.2.3. Agricultural Production Factors
4.2.4. Ecological Project Factors and Climatic Factors
4.3. Results of Relative Importance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Regions | Corresponding Provinces, Cities and Counties |
---|---|
The Upper Reaches | Lanzhou and Baiyin in Gansu Province; Zhongwei, Wuzhong, Yinchuan, and Shizuishan in Ningxia Hui Autonomous Region; Wuhai, Ordos, Bayannur, Baotou, and Hohhot in Inner Mongolia Autonomous Region (11 in total). |
The Middle Reaches | Xinzhou, Lvliang, Linfen, and Yuncheng in Shanxi Province; Yulin, Yan’an, and Weinan in Shaanxi Province; Sanmenxia, Luoyang, Jiyuan, Jiaozuo, and Zhengzhou in Henan Province (12 in total). |
The Lower Reaches | Kaifeng, Xinxiang, and Puyang in Henan; Liaocheng, Tai’an, Jinan, Dezhou, Binzhou, Zibo, and Dongying in Shandong Province (10 in total). |
Dividing Point | (1) The section of the Yellow River above Hekou Town, Toketo County, Inner Mongolia Autonomous Region, is the upper reaches. (2) The section of the Yellow River between Hekou Town, Toketo County, Inner Mongolia Autonomous Region, and Mengjin County, Luoyang City, Henan Province, is the middle reaches. (3) The section of the Yellow River after Mengjin County, Luoyang City, Henan Province, is the lower reaches. |
The Loess Plateau | The Loess Plateau is located in the inland areas of China, the middle and upper reaches of the Yellow River, and the upper reaches of the Haihe River, flowing through most of Shanxi Province, Shaanxi Province, and Ningxia Hui Autonomous Region and small parts of Qinghai Province, Gansu Province, Inner Mongolia Autonomous Region, and Henan Province. |
References
- Liu, C. Study on site condition and matching site with trees and forests of Liaodong water conservation forests in eastern mountainous region of Liaoning Province. Liaoning For. Sci. Technol. 2005, 4, 15–17. [Google Scholar]
- Liu, Y.; Tian, J.; Liu, R.; Ding, L. Influences of climate change and human activities on NDVI changes in China. Remote Sens. 2021, 13, 4326. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Li, Y.; Jia, L. Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhang, Z.; Yang, J.; Wang, L. Quantifying the influences of driving factors on vegetation EVI changes using structural equation model: A case study in Anhui province, China. Remote Sens. 2022, 14, 4203. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Y.; Wu, H.; Xiao, Y.; Li, H. Characteristics of temporal and spatial evolution and driving forces of vegetation index in Sichuan based on MODIS-EVI. Res. Soil Water Conserv. 2020, 27, 2+230–236+243. [Google Scholar]
- Li, S.; Li, X.; Ying, G.; Fu, N. Vegetation indexes-biomass models for typical semi-arid steppe-a case study for Xilinhot in Northern China. J. Plant Ecol. 2007, 1, 23–31. [Google Scholar]
- Na, R.; Na, L.; Du, H.; He, H.; Shan, Y.; Zong, S.; Huang, L.; Yang, Y.; Wu, Z. Vegetation Greenness variations and response to climate change in the Arid and Semi-Arid Transition Zone of the Mongo-Lian Plateau during 1982–2015. Remote Sens. 2021, 13, 4066. [Google Scholar] [CrossRef]
- Wang, H.; Kang, C.; Tian, Z.; Zhang, A.; Cao, Y. Vegetation periodic changes and relationships with climate in Inner Mongolia Based on the VMD method. Ecol. Indic. 2023, 146, 109764. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine. Catena Interdiscip. J. Soil Sci. Hydrol. Geomorphol. Focus. Geoecology Landsc. Evol. 2021, 206, 105500. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Y.; Xiong, S.; Wu, G.; Deng, O. Multi-scale spatial correlation between vegetation index and terrain attributes in a small watershed of the upper Minjiang River. Ecol. Indic. 2021, 126, 107610. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Mao, F.; Li, X.; Zhou, L.; Zhu, D.; Xu, Y.; Huang, Z. Spatiotemporal Patterns and Driving Force of Urbanization and Its Impact on Urban Ecology. Remote Sens. 2022, 14, 1160. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Y.; Wang, Q.; Guan, B. Climate, CO2, and Anthropogenic Drivers of Accelerated Vegetation Greening in the Haihe River Basin. Remote Sens. 2022, 14, 268. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Lv, Y.; Liu, Y.; Wu, X. Integrating vegetation suitability in sustainable revegetation for the Loess Plateau, China. Sci. Total Environ. 2021, 759, 143572. [Google Scholar] [CrossRef]
- Kadam, A.; Umrikar, B.; Bhagat, V.; Wagh, V.; Sankua, R.A. Land suitability analysis for afforestation in semi-arid watershed of Western Ghat, India: A groundwater recharge perspective. Geol. Ecol. Landsc. 2021, 5, 136–148. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y. The Evolution of Regional Economic Disparity in the Yellow River Basin at Different Spatial Scales. Econ. Geogr. 2020, 40, 1–11. [Google Scholar]
- Wang, X.; Qin, Y.; Lu, F.; Zhang, D.; Jiang, X. Temporal and spatial differences in the level of low carbon economic development among the provinces in the middle and lower reaches of the Yellow River Basin. Prog. Geogr. 2013, 32, 505–513. [Google Scholar]
- Zhou, X.; Hao, H.; Ye, X.; Qin, Y.; Ma, X. A spatial-temporal analysis of regional economic inequality in Yellow River Valley. Hum. Geogr. 2016, 31, 119–125. [Google Scholar]
- Liu, H.; Zhang, Y.; Li, L. Spatio-temporal pattern and mechanism analysis of economic development discrepancy in Yellow River Golden Triangle Regions of Shanxi, Shaanxi and Henan Province. J. Anhui Norm. Univ. 2018, 41, 170–176. [Google Scholar]
- Liu, C.; Qiao, J. Rural economic differentiation and spatial change in the Yellow River Basin. Prog. Geogr. 2016, 35, 1329–1339. [Google Scholar]
- Feng, Q.; Ma, H.; Jiang, X.; Wang, X.; Cao, S. What has caused desertification in China? Sci. Rep. 2015, 5, 15998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Jiang, W.; Shen, W. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Guo, S. Research on the Coupling and Coordination of Ecosystem Health and Urbanization in the Yellow River Basin. Doctoral Thesis, China University of Mining and Technology, Beijing, China, 2022. [Google Scholar]
- Zhang, B.F.; Miao, C.H. Spatiotemporal changes and driving forces of land use in the Yellow River Basin. Resour. Sci. 2020, 42, 460–473. [Google Scholar] [CrossRef]
- Buonincontri, M.P.; Bosso, L. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: Evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 2023, 877, 162893. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, H.; Liu, X.; Han, B. Evaluation on Role of Forest Litter to Water Source Conservation and Soil and Water Conservation. J. Soil Eros. Soil Water Conserv. 1998, 2, 24–29. [Google Scholar]
- Chen, Y.; Liang, Y.; Cheng, J. The zonal character of vegetation construction on Loess Plateau. Acta Phytoecol. Sin. 2002, 3, 339–345. [Google Scholar]
- Feng, D.; Fu, M.; Sun, Y.; Bao, W.; Zhang, M.; Zhang, Y.; Wu, Z. How large-scale anthropogenic activities influence vegetation cover change in China? A review. Forests 2021, 12, 320. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Sudarsana, R.G.; Nanabhau, K.; Ramachandra, M.; Pradeep, B. Multi-criteria land suitability analysis for agriculture in semi-arid region of Kadapa District, Southern India: Geospatial approaches. Remote Sens. Land 2021, 5, 59–72. [Google Scholar]
- Zolekar, R.B.; Bhagat, V.S. Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Luo, Y.; Zhao, L. Impact of urban expansion on vegetation: The case of China (2000–2018). J. Environ. Manag. 2021, 291, 112598. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.; Ye, X.; Wu, J.; Liu, J. Effects of human activities on terrestrial vegetation coverage change of Poyang Lake Basin during 2000−2020. Bull. Soil Water Conserv. 2022, 42, 320–329. [Google Scholar]
- Yuan, Z.; Yin, S.; Sa, C.; Chi, Y. Effects of urbanization on vegetation phenology in Hohhot City in the recent 20 years. Arid. Land Geogr. 2022, 45, 1890–1898. [Google Scholar]
- Jiang, M.; He, Y.; Song, C.; Pan, Y.; Qiu, T.; Tian, S. Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Sci. Total Environ. 2021, 786, 147574. [Google Scholar] [CrossRef]
- Li, T.; Lv, Y.; Ren, Y.; Li, P. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau. Acta Ecol. Sin. 2020, 40, 8593–8605. [Google Scholar]
- Naeem, S.; Zhang, Y.; Zhang, X.; Tian, J.; Abbas, S.; Luo, L.; Meresa, H.K. Both climate and socioeconomic drivers contribute to vegetation greening of the Loess Plateau. Sci. Bull. 2021, 66, 1160–1163. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, Q.; Wang, H. Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China. Remote Sens. 2022, 14, 4607. [Google Scholar] [CrossRef]
- Xu, L. Influence and Reciprocal Effects of Vegetation Rehabilitation on Regional Climate in Loess Plateau. Doctoral Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Xu, Y.; Lu, P.; Yu, Q. Review and prospect in the researches of influence of climate change on plant phenology. Resour. Sci. 2004, 26, 129–136. [Google Scholar]
- Chen, Y.; Li, X.; Shi, P. Ariation in NDVI driven by climate factors across China, 1983–1992. Acta Phytoecol. Sin. 2001, 25, 716–720. [Google Scholar]
- Zhang, W. NDVI Change and Its Suitability in Land Use Change Detection on Loess Plateau in Shaan-Gan-Ning Region. Master’s Thesis, Chinese Academy of Science and Ministry of Education (Research Center of Soil and Water Conservation and Ecological Environment), Xianyang, China, 2014. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach. South-Western College Publishing: Mason, OH, USA, 2015. [Google Scholar]
- Jiang, W.; Niu, Z.; Wang, L.; Yao, R.; Gui, X.; Xiang, F.; Ji, Y. Impacts of drought and climatic factors on vegetation dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 2022, 14, 930. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, J.; Li, W.; Cai, Z.; Chao, S. Regional Differences in the Factors That Affect Vegetation Cover in China. Land Degrad. Dev. 2021, 32, 1961–1969. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 1993, 114, 542–551. [Google Scholar] [CrossRef]
- Azen, R.; Budescu David, V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, W.; Fu, J.; Zhang, C. Spatial-Temporal Dynamic Characteristics of Land Use and Vegetation Cover in Inland Flow Area of Yellow River Basin. Yellow River 2022, 44, 19. [Google Scholar]
- Liu, H.; Liu, F.; Zheng, L. Effects of Climate Change and Human Activities on Vegetation Cover Change in the Yellow River Basin. J. Soil Water Conversat. 2021, 35, 143–151. [Google Scholar]
- Wang, Y.; Chen, R.; Guo, C.; Xia, Z. Study on the pattern change and regional differentiation of resources and environment in the Yellow River Basin and suggestions on eco-geological suvey. Geol. China 2021, 48, 1–20. [Google Scholar]
- Liu, Q.; Yan, C.; He, W. Drought Variation and Its Sensitivity Coefficients to Climatic Factors in the Yellow River Basin. Chin. J. Agrometeorol. 2016, 37, 623–632. [Google Scholar]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Me Teorology 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y. Quantitative investigation of the interactive coupling relationship between urbanization and eco environment. Acta Ecol. Sin. 2015, 35, 2244–2254. [Google Scholar]
- Qin, C.; Zhou, E. The Patterns of Spatial Differentiation of Economies in Yellow River Basin. J. Henan Univ. (Nat. Sci.) 2010, 40, 40–44. [Google Scholar]
- Jin, F.; Ma, L.; Xu, D. Environmental stress and optimized path of industrial development in the Yellow River Basin. Resour. Sci. 2020, 42, 127–136. [Google Scholar] [CrossRef]
- Ma, L.; Tian, H.; Kang, L. Eco-environmental impact and spatial control of mineral resources exploitation in the Yellow River Basin. Resour. Sci. 2020, 42, 137–149. [Google Scholar] [CrossRef]
- Sjögersten, S.C.; Atkin, M.L.; Clarke, S.J.; Mooney, S.J.; Wu, B.; West, H.M. West. Responses to climate change and farming policies by rural communities in northern China: A report on field observation and farmers’ perception in dryland north Shaanxi and Ningxia. Land Use Policy 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Bryan Brett, A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.; Crossman, N.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Xiu, L.; Yan, C.; Li, X.; Qian, D.; Feng, K. Monitoring the response of vegetation dynamics to ecological engineering in the Mu Us Sandy Land of China from 1982 to 2014. Environ. Monit. Assessmen 2018, 190, 543–561. [Google Scholar] [CrossRef]
- Cao, Y.; Pang, Y.; Jia, X. Vegetation Growth in Mu Us Sandy Land from 2001 to 2016. Bull. Soil Water Conserv. 2019, 39, 29–37. [Google Scholar]
- Lu, Y.; Fu, B.J.; Feng, X.M.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar]
- Li, S.; Liang, W.; Fu, B.J.; Lu, Y.; Fu, S.; Wang, S.; Su, H. Vegetation changes in recent large- scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569/570, 1032–1039. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209/210, 87–99. [Google Scholar] [CrossRef]
- Yang, S.; Liu, C.; Sun, R. The vegetation cover over last 20 years in Yellow River Basin. Acta Geogr. Sin. 2002, 57, 679–684. [Google Scholar]
- Zhang, J.; Du, J.; Sheng, Z.; Zhang, Y.; Wu, J.; Liu, B. Spatio-temporal changes of vegetation cover and their influencing factors in the Yellow River Basin from 1982 to 2015. Ecol. Environ. Sci. 2021, 30, 929–937. [Google Scholar]
- Dong, S.K.; Li, H.J.; Li, Y.Y. Social-ecological impact evaluation on eco-environmental policies associated western China development. Procedia Environ. Sci. 2010, 2, 1361–1367. [Google Scholar]
- Li, L.; Zha, Y.; Zhang, J.; Zhang, J.; Li, Y.; Lyu, H. Effect of terrestrial vegetation growth on climate change in China. J. Environ. Manag. 2020, 262, 110321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Du, Z.; Chen, H.; Liu, Z. Study on the driving forces and driving mechanism of the variation of vegetation cover in Huanghe-huaihe-haihe Zone. Meteorlolgical Environ. Sci. 2007, 3, 3–9. [Google Scholar]
- Wang, Z.; Xu, D.; Yang, H.; Ding, X.; Li, D. Impacts of climate change and human activities on vegetation dynamics in Inner Mongolia, 1981–2010. Prog. Geogr. 2017, 36, 1025–1032. [Google Scholar]
Latent Variable | Observed Variable | Abbreviation | Description |
---|---|---|---|
Forest–shrub–grass suitability | Forest–shrub–grass suitability | FSGS | Continuous variables with values ranging from 0 to 100 |
Urbanization factors | Population density | Pdensity | The number of permanent residents divided by the area of the administrative area, unit: 104 p · km−2 |
Urbanization rate | Urate | The local urban population divided by the total population | |
Construction land area proportion | Cpropor | The area of urban development land divided by the area of the administrative district | |
Economic factors | Economic density | Edensity | Gross domestic product (GDP) divided by the area of the administrative district, unit: 108 CNY · km−2 |
Per capita disposable income of urban residents | UPCDI | Per capita disposable income of urban residents, unit: CNY 104 | |
Per capita disposable income of rural residents | RPCDI | Per capita disposable income of rural residents, unit: CNY 104 | |
Social development factors | Road network density | Mdensity | Road mileage divided by the total land area of the administrative district, unit: km/km−2 |
Green coverage rate in urban built-up areas | GCrate | Green coverage rate in urban built-up areas divided by the area of the administrative district | |
Number of inbound tourists per unit area | Tpropor | Number of inbound tourists divided by the total land area of the administrative district, unit: 104 p · km−2 | |
Agricultural Production factors | The value added of the primary industries proportion | GDP1pro | Value added of primary industry divided by GDP |
The cultivated acreage proportion | Farmpro | Cultivated land area divided by the total land area of the administrative district | |
The fertilizer application per unit area | Fproper | Application of fertilizer divided by the total land area of the administrative district: unit: ton/km−2 | |
Ecological Project factors | Forest engineering | hlqd | Integer in the range of 0~5 |
Grass engineering | tghc | Integer in the range of 0~1 | |
Wet engineering | hsqd | Integer in the range of 0~2 | |
Climate factors | Temperature | Mtep | Annual average temperature, unit: °C |
Precipitation | Mprec | Annual average precipitation, unit: mm |
Criteria | Sub-Criteria | Primary Data Source |
---|---|---|
Land use type | Land use type | Data Center for Resources and Environment Sciences of Chinese Academy of Sciences (https://www.resdc.cn/DataSearch.aspx accessed on 11 October 2022) |
Topography | Altitude | Geographical Information Monitoring Cloud Platform (http://www.dsac.cn/DataProduct/Dtail/20082022 accessed on 11 October 2022) |
Slope gradient | ||
Slope aspect | ||
Slope position | ||
Soil | Soil depth | National Earth System Science Data Platform (http://www.geodata.cn/ accessed on 11 October 2022). |
Soil texture type | ||
Soil pH value | ||
Soil bulk density (g/cm3) | ||
Cation exchange capacity (cmol/kg) | ||
Total nitrogen (g/kg) | ||
Total phosphorus (g/kg) | ||
Total potassium (g/kg) | ||
Alkaline nitrogen (mg/kg) | National Data Center for Tibetan Plateau Science (http://www.tpdc.ac.cn/ accessed on 11 October 2022). | |
Available phosphorus (mg/kg) | ||
Available potassium (mg/kg) | ||
Organic matter (g/kg) | ||
Climate | Annual average temperature | World Climate Database (https://www.worldclim.org/ accessed on 11 October 2022). |
Average temperature of coldest quarter | ||
Average temperature of warmest quarter | ||
Annual precipitation | ||
Precipitation of wettest quarter | ||
Precipitation of driest quarter | ||
Runoff | Groundwater depth (mm) | National Data Center for Glaciology and Permafrost Desert Science (http://sdb.casnw.net/ accessed on 11 October 2022) |
Variable | N | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
FSGS | FSGS | 448 | 58.48 | 5.890 | 44.26 | 70.72 |
Economic factors | Edensity | 448 | 0.685 | 2.772 | 0.0001 | 41.30 |
UPCDI | 448 | 3.060 | 0.711 | 0.956 | 5.659 | |
RPCDI | 448 | 1.259 | 0.439 | 0 | 3.352 | |
Urbanization factors | Pdensity | 448 | 0.0835 | 0.247 | 0 | 2.908 |
Urate | 448 | 0.526 | 0.212 | 0.0736 | 1 | |
Cpropor | 448 | 0.126 | 0.151 | 0 | 1.151 | |
Social Development factors | Mdensity | 446 | 1.464 | 2.600 | 0.0237 | 25.43 |
Tpropor | 447 | 2.179 | 16.77 | 0 | 247.8 | |
GCrate | 447 | 0.311 | 0.124 | 0.00921 | 0.800 | |
Agricultural Production factors | Farmpro | 448 | 0.302 | 0.210 | 0 | 1.804 |
GDP1pro | 448 | 0.132 | 0.113 | 0 | 0.640 | |
Fproper | 438 | 16.56 | 38.93 | 0 | 712.1 | |
Ecological Project factors | hlqd | 448 | 3.301 | 0.888 | 1 | 4 |
hsqd | 448 | 0.781 | 0.746 | 0 | 2 | |
hcgc | 448 | 0.317 | 0.466 | 0 | 1 | |
Climate factors | Mtep | 448 | 515.4 | 144.4 | 115.7 | 815.3 |
Mprec | 448 | 8.874 | 4.279 | −4.557 | 15.14 |
Variables | (1) | (2) | (3) | (4) | |
---|---|---|---|---|---|
Overall Sample | Upstream Areas | Midstream Areas | Downstream Areas | ||
Economic Factors | Edensity | 0.061 | −0.355 | −0.040 | −0.431 |
(0.58) | (−1.13) | (−0.30) | (−1.58) | ||
UPCDI | −0.571 *** | −0.313 | 0.067 | −0.491 | |
(−3.28) | (−1.33) | (0.23) | (−0.50) | ||
RPCDI | 0.677 *** | −0.927 * | 0.946 *** | 0.043 | |
(2.76) | (−1.76) | (2.98) | (0.08) | ||
Urbanization Factors | Pdensity | 1.620 ** | 4.629 | 1.439 | −0.232 |
(2.31) | (1.05) | (0.79) | (−0.17) | ||
Urate | −1.570 ** | −0.874 | 0.134 | −1.650 | |
(−2.04) | (−1.20) | (0.14) | (−0.33) | ||
Cpropor | 5.041 *** | 0.325 | 2.252 * | 0.812 | |
(3.60) | (0.16) | (1.75) | (0.29) | ||
Social Development Factors | Mdense | 0.064 | 0.251 *** | 0.111 * | 0.425 *** |
(1.42) | (3.60) | (1.79) | (3.13) | ||
Tpropor | 0.005 | 0.031 | 0.008 | −0.030 | |
(0.38) | (0.37) | (0.72) | (−0.22) | ||
Gcover | 1.079 | −1.853 | 0.631 | 4.131 * | |
(1.32) | (−1.63) | (0.64) | (1.73) | ||
Agricultural Production Factors | Farmpro | 1.588 * | 2.315 ** | 3.496 *** | −3.407 * |
(1.94) | (2.25) | (4.06) | (−1.92) | ||
Fpropor | 0.008 ** | −0.006 | −0.001 | 0.008 | |
(2.23) | (−0.20) | (−0.56) | (0.52) | ||
GDP1pro | 2.640 ** | −0.730 | 0.690 | 1.724 | |
(2.56) | (−0.55) | (0.43) | (0.27) | ||
Ecological Projects | hlqd | 0.446 *** | −1.335 *** | −0.345 | −0.078 |
(2.99) | (−2.84) | (−0.96) | (−0.16) | ||
hsqd | −0.309 * | −0.555 *** | 0.025 | −0.301 | |
(−1.96) | (−3.07) | (0.15) | (−0.71) | ||
hcqd | 0.132 | 0.037 | −0.912 ** | 0.272 | |
(0.49) | (0.14) | (−2.04) | (0.31) | ||
Climatic Factors | Mprec | 0.022 *** | 0.016 *** | 0.018 *** | 0.010 |
(27.61) | (14.05) | (9.58) | (1.14) | ||
Mtep | 0.634 *** | 0.305 *** | 1.000 *** | 3.604 *** | |
(14.96) | (5.65) | (11.66) | (4.69) | ||
n | 434 | 160 | 215 | 59 | |
R2 | 0.890 | 0.888 | 0.914 | 0.659 |
Variables | DS | SDS | Ranking | DS | SDS | Ranking | |
---|---|---|---|---|---|---|---|
Economic Factors | Eden | 0.0133 | 0.0149 | 10 | 0.0238 | 0.0267 | 6 |
UPCDI | 0.0061 | 0.0069 | 14 | ||||
RPCDI | 0.0044 | 0.0049 | 17 | ||||
Urbanization Factors | Pden | 0.0237 | 0.0266 | 7 | 0.0818 | 0.0919 | 3 |
Urate | 0.0077 | 0.0086 | 12 | ||||
Cpropor | 0.0504 | 0.0567 | 4 | ||||
Social Development Factors | Mden | 0.0177 | 0.0199 | 8 | 0.0313 | 0.0353 | 5 |
Tpropor | 0.0081 | 0.0092 | 11 | ||||
GCcover | 0.0055 | 0.0062 | 16 | ||||
Agricultural Production Factors | Farmpro | 0.0678 | 0.0762 | 3 | 0.1059 | 0.1191 | 2 |
Fpropor | 0.0324 | 0.0365 | 6 | ||||
GDP1pro | 0.0057 | 0.0064 | 15 | ||||
Ecological Project Factors | hlqd | 0.014 | 0.0157 | 9 | 0.0712 | 0.0799 | 4 |
hsqd | 0.0071 | 0.0079 | 13 | ||||
hcgc | 0.0501 | 0.0563 | 5 | ||||
Climate Factors | Mprec | 0.3284 | 0.3691 | 1 | 0.5757 | 0.647 | 1 |
Mtep | 0.2473 | 0.2779 | 2 |
Variables | The Upstream Areas | The Midstream Areas | The Downstream Areas | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DS | SDS | Ranking | DS | SDS | Ranking | DS | SDS | Ranking | ||
Economic Factors | Eden | 0.0063 | 0.0071 | 16 | 0.0178 | 0.0194 | 10 | 0.017 | 0.0258 | 12 |
UPCDI | 0.075 | 0.0845 | 4 | 0.0357 | 0.0391 | 7 | 0.0436 | 0.0661 | 4 | |
RPCDI | 0.0957 | 0.1078 | 3 | 0.0547 | 0.0598 | 5 | 0.027 | 0.041 | 10 | |
Urbanization Factors | Pden | 0.0103 | 0.0116 | 12 | 0.0254 | 0.0278 | 8 | 0.0274 | 0.0415 | 8 |
Urate | 0.0202 | 0.0228 | 9 | 0.0087 | 0.0096 | 15 | 0.0109 | 0.0166 | 15 | |
Cpropor | 0.0068 | 0.0076 | 15 | 0.0574 | 0.0628 | 4 | 0.0147 | 0.0223 | 13 | |
Social Development Factors | Mden | 0.0223 | 0.0252 | 8 | 0.0211 | 0.0231 | 9 | 0.0544 | 0.0825 | 2 |
Tpropor | 0.0044 | 0.005 | 17 | 0.0116 | 0.0127 | 12 | 0.0086 | 0.013 | 16 | |
GCcover | 0.0078 | 0.0088 | 14 | 0.0102 | 0.0112 | 14 | 0.0174 | 0.0264 | 11 | |
Agricultural Production Factors | Farmpro | 0.0552 | 0.0621 | 6 | 0.0462 | 0.0505 | 6 | 0.0273 | 0.0414 | 9 |
Fpropor | 0.0131 | 0.0147 | 10 | 0.0155 | 0.017 | 11 | 0.0339 | 0.0515 | 5 | |
GDP1pro | 0.0082 | 0.0093 | 13 | 0.0046 | 0.005 | 17 | 0.0059 | 0.009 | 17 | |
Ecological Projects | hlqd | 0.1116 | 0.1257 | 2 | 0.0689 | 0.0754 | 3 | 0.0534 | 0.081 | 3 |
hsqd | 0.0594 | 0.0669 | 5 | 0.0057 | 0.0063 | 16 | 0.0315 | 0.0478 | 7 | |
hcgc | 0.0124 | 0.014 | 11 | 0.0115 | 0.0125 | 13 | 0.013 | 0.0197 | 14 | |
Climatic Factors | Mprec | 0.3478 | 0.3916 | 1 | 0.2066 | 0.226 | 2 | 0.0338 | 0.0513 | 6 |
Mtep | 0.0315 | 0.0355 | 7 | 0.3124 | 0.3418 | 1 | 0.2392 | 0.3629 | 1 |
Variables | The Upstream Areas | The Midstream Areas | The Downstream Areas | ||||||
---|---|---|---|---|---|---|---|---|---|
DS | SDS | Ranking | DS | SDS | Ranking | DS | SDS | Ranking | |
Economic Factors | 0.177 | 0.1994 | 3 | 0.1082 | 0.1183 | 2 | 0.0876 | 0.1329 | 3 |
Urbanization Factors | 0.0373 | 0.042 | 5 | 0.0915 | 0.1002 | 3 | 0.053 | 0.0804 | 6 |
Social Development Factors | 0.0345 | 0.039 | 6 | 0.0429 | 0.047 | 6 | 0.0804 | 0.1219 | 4 |
Agricultural Production Factors | 0.0765 | 0.0861 | 4 | 0.0663 | 0.0725 | 5 | 0.0671 | 0.1019 | 5 |
Ecological Projects | 0.1834 | 0.2066 | 2 | 0.0861 | 0.0942 | 4 | 0.0979 | 0.1485 | 2 |
Climatic Factors | 0.3793 | 0.4271 | 1 | 0.519 | 0.5678 | 1 | 0.273 | 0.4142 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gu, X.; Zhao, X.; Zhu, J.; Zhao, Y. Influences of Climatic Factors and Human Activities on Forest–Shrub–Grass Suitability in the Yellow River Basin, China. Forests 2023, 14, 1198. https://doi.org/10.3390/f14061198
Zhang S, Gu X, Zhao X, Zhu J, Zhao Y. Influences of Climatic Factors and Human Activities on Forest–Shrub–Grass Suitability in the Yellow River Basin, China. Forests. 2023; 14(6):1198. https://doi.org/10.3390/f14061198
Chicago/Turabian StyleZhang, Shunli, Xiaobing Gu, Xiaodi Zhao, Junfeng Zhu, and Yiru Zhao. 2023. "Influences of Climatic Factors and Human Activities on Forest–Shrub–Grass Suitability in the Yellow River Basin, China" Forests 14, no. 6: 1198. https://doi.org/10.3390/f14061198
APA StyleZhang, S., Gu, X., Zhao, X., Zhu, J., & Zhao, Y. (2023). Influences of Climatic Factors and Human Activities on Forest–Shrub–Grass Suitability in the Yellow River Basin, China. Forests, 14(6), 1198. https://doi.org/10.3390/f14061198