Effects of Vegetation Restoration on the Hydrological Regimes of the Chinese Loess Plateau: A Comparative Analysis of Forested and Less-Forested Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Data Sources
2.3. Data Processing Methods
2.3.1. Flow Duration Curve
2.3.2. Basic Flow Index
2.3.3. Mann–Kendall Trend Test
2.3.4. Anomaly and Cumulative Anomaly
3. Results
3.1. Variation Characteristics of Daily Streamflow and Its Components in LFCs and FCs
3.2. Trends of Annual, Seasonal, and Monthly Streamflow and Their Components in LFCs and FCs
3.3. Stationary of Streamflow and Its Component in LFCs and FCs of Beiluo River Basin
4. Discussion
4.1. Impact of Vegetation Restoration on Hydrological Regimes in LFCs
4.2. Differences between LFCs and FCs in the Stationery and Variation Characterization of Runoff Component
4.3. Uncertainties of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Yu, B.F. Effect of land clearing and climate variability on streamflow for two large basins in Central Queensland, Australia. J. Hydrol. 2019, 578, 124041. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.Y.; Zhang, Q.; Zhang, Y.Q.; Chen, X.; Li, J.F.; Aryal, S.K. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China. J. Geophys. Res. Atmos. 2017, 122, 10228–10245. [Google Scholar] [CrossRef]
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J. The role of topography on catchment-scale water residence time. Water Resour. Res. 2005, 41, 1–14. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; He, C.S.; Sun, G.; Gao, G.Y. A comparative analysis of forest cover and catchment water yield relationships in northern China. For. Ecol. Manag. 2011, 262, 1189–1198. [Google Scholar] [CrossRef]
- Huang, M.B.; Zhang, L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China. Hydrol. Process. 2004, 18, 1885–1898. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.W.; Xiao, H.B.; Ning, K.; Tang, C.J. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. J. Environ. Manag. 2021, 282, 111924. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Xu, X.M.; Jiao, J.Y.; Wang, F. and Gao, P. Quantifying the Impact of Climate Variability and Human Activities on Streamflow in the Middle Reaches of the Yellow River Basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Ceballos-Barbancho, A.; Moran-Tejeda, E.; Angel Luengo-Ugidos, M.; Manuel Llorente-Pinto, J. Water resources and environmental change in a Mediterranean environment: The south-west sector of the Duero river basin (Spain). J. Hydrol. 2008, 351, 126–138. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wei, X.H.; Luo, Y.; Zhang, M.F.; Li, Y.L.; Qiao, Y.N.; Liu, H.G.; Wang, C.L. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 46, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef]
- Huang, M.B.; Zhang, L.; Gallichand, J. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 2003, 17, 2599–2609. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the impacts ofclimate change and ecologicalrestoration on streamflow changesbased on a Budyko hydrological modelin China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Liu, C.M. Study of some problems in water cycle changes of the Yellow River basin. Adv. Water Sci. 2004, 1, 608–614. [Google Scholar]
- Liu, X.Y.; Liu, C.M.; Yang, S.T.; Jin, S.Y.; Gao, Y.J.; Gao, Y.F. Influences of shrubs-herbs-arbor vegetation coverage on the runoff based on the remote sensing data in Loess Plateau. Acta Geogr. Sin. 2014, 69, 1595–1603. [Google Scholar]
- Bieger, K.; Hoermann, G.; Fohrer, N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Reg. Environ. Chang. 2015, 15, 485–498. [Google Scholar] [CrossRef]
- Cao, S.X.; Chen, L.; Shankman, D.; Wang, C.M.; Wang, X.B.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, T.T.; Lei, Y.N.; Zhang, X.P.; Li, R. Streamflow regime variations following ecological management on the Loess Plateau, China. Forests 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.Y.; Fu, B.J.; Wang, S.; Liang, W.; Jiang, X.H. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Dang, S.Z.; Gao, Y.F.; Yang, S.T. The rule and threshold of the effect of vegetation change on sediment yield in the loess hilly region, China. J. Hydraul. Eng. 2020, 51, 505–518. [Google Scholar]
- Chen, H.; Fleskens, L.; Baartman, J.; Wang, F.; Moolenaar, S.; Ritsema, C. Impacts of land use change and climatic effects on streamflow in the Chinese Loess Plateau: A meta-analysis. Sci. Total Environ. 2020, 703, 134989. [Google Scholar] [CrossRef]
- Chen, Y.; Jing, K.; Cai, G. Soil Erosion and Management in the Loess Plateau; Science and Technology Press: Beijing, China, 1988. [Google Scholar]
- Liu, Y.F.; Liu, Y.; Wu, G.L.; Shi, Z.H. Runoff maintenance and sediment reduction of different grasslands based onsimulated rainfall experiments. J. Hydrol. 2019, 572, 329–335. [Google Scholar] [CrossRef]
- Liu, Y.F.; Dunkerley, D.; Lopez Vicente, M.; Shi, Z.H.; Wu, G.L. Trade-off between surface runoff and soil erosion during the implementation of ecological restoration programs in semiarid regions: A meta-analysis. Sci. Total Environ. 2020, 712, 136477. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.P.; Yan, S.J.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Cao, S.X.; Li, C.; Yu, X.X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. J. Appl. Ecol. 2009, 40, 536–543. [Google Scholar] [CrossRef]
- Yao, W.; Li, Z.; Kang, L.; Ran, D. The Effects of Controlling Soil Erosion on Environment on the Loess Plateau; Beijing: Science and Technology Press: Beijing, China, 2005. [Google Scholar]
- Zhang, J.J.; Zhang, X.P.; Li, R.; Chen, L.L.; Lin, P.F. Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? J. Hydrol. 2017, 546, 357–369. [Google Scholar] [CrossRef]
- Ran, D.C. Study on Flood and Sediment Reduction by Soil and Water Conservation Measures in Typical Tributaries of the Middle Yellow River; The Yellow Water Conservancy Press: Zhengzhou, China, 2006. [Google Scholar]
- Yang, X.H.; Zhang, X.P.; Lyv, D.; Yin, S.Q.; Zhang, M.X.; Zhu, Q.; Yu, Q.; Liu, B.Y. Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1955. [Google Scholar] [CrossRef]
- Ning, Z.; Gao, G.Y.; Fu, B.J. Changes in streamflow and sediment load in the catchments of the Loess Plateau, China: A review. Acta Ecol. Sin. 2020, 40, 2–9. [Google Scholar]
- Sun, G.; Zhou, G.Y.; Zhang, Z.Q.; Wei, X.H.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Jing, K.; Zheng, F.L. Effects of soil and water conservation on surface water resource on the Loess Plateau. Res. Soil Water Conserv. 2004, 11, 11–12. [Google Scholar]
- Chao, Z. Trend and temporal distribution of streamflow and its components in the upper reaches of Beiluo Rive from 1959 to 2011. J. Water Resour. Water Eng. 2020, 31, 23–28. [Google Scholar]
- Dou, L.; Huang, M.B.; Hong, Y. Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China. Water Resour. Manag. 2009, 23, 1935–1949. [Google Scholar] [CrossRef]
- Mu, X.M.; Xu, X.X.; Wang, W.L. The impact of high-level controlling of soil and water loss on watershed runoff in the Loess Plateau. J. Arid Land Resour. Environ. 1998, 4, 120–127. [Google Scholar]
- Buttle, J.M.; Metcalfe, R.A. Boreal forest disturbance and streamflow response, northeastern Ontario. Can. J. Fish. Aquat. Sci. 2000, 57, 5–18. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liang, Y.M. A summary of impact of vegetation coverage on soil and water conservation benefit. Res. Soil Water Conserv. 1996, 3, 104–110. [Google Scholar]
- Chen, H.; Zhang, X.P.; Abla, M.; Lu, D.; Yan, R.; Ren, Q.F.; Ren, Z.Y.; Yang, Y.H.; Zhao, W.H.; Lin, P.F.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Hu, J.; Lü, Y.H.; Fu, B.J.; Comber, A.J.; Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields. Prog. Phys. Geogr. Earth Environ. 2017, 41, 753–774. [Google Scholar] [CrossRef]
- Liu, X.; Liu, P.; Dai, Y.; Mo, Q.; Lin, H.; Li, J.; Zhang, Q.; Chen, X. Research advances in forest-runoff relationship. Sci. Silvae Sin. 2019, 55, 155–162. [Google Scholar]
- Zhang, X.P.; Lin, P.F.; Chen, H.; Yan, R.; Zhang, J.J.; Yu, Y.P.; Liu, E.J.; Yang, Y.H.; Zhao, W.H.; Lyv, D.; et al. Understanding land use and cover change impacts on run-off and sediment load at flood events on the Loess Plateau, China. Hydrol. Process. 2018, 32, 576–589. [Google Scholar] [CrossRef]
- Chen, N.; Ma, T.Y.; Zhang, X.P. Responses of soil erosion processes to land cover changes in the Loess Plateau of China: A case study on the Beiluo River basin. Catena 2016, 136, 118–127. [Google Scholar] [CrossRef]
- Qin, W.; Zhu, Q.K.; Zhang, Y.Q.; Zhao, L.L. Dynamics of plant community species diversity in the process of ecological rehabilitation in north Shaanxi loess area. Chin. J. Appl. Ecol. 2009, 20, 403–409. [Google Scholar]
- He, L.; Lyv, D.; Guo, J.; Lei, S.; He, J.; Zhang, X.; Yang, X. Study on Vegetation Coverage Change of Beiluo River Basin Based on MODIS. Yellow River 2020, 42, 67–71. [Google Scholar]
- Zhang, X.P.; Yi, H.J.; Xue, F.; Bruijnzeel, L.A.; Cheng, Z.; Liu, B.Y. Stability and variability of long-term streamflow and its components in watersheds under vegetation restoration on the Chinese Loess Plateau. Hydrol. Process. 2022, 36, e14543. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Vogel, R.M.; Fennessey, N.M. Flow duration curves. 1. Newinterpretation and confidence intervals. J. Water Plan. Manag. 1994, 120, 485–504. [Google Scholar] [CrossRef]
- Institute of Hydrology. Low Flow Studies; Institute of Hydrology: Wallingford, UK, 1980; pp. 12–19. [Google Scholar]
- Wahl, K.L.; Wahl, T.L. Determining the flow of comal springs at New Braunfels, Texas. Proc. Tex. Water 1995, 95, 77–86. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Jin, Z.; You, Y.; Li, J.; Yang, Y. A Study on the Streamflow Change and its Relationship with Climate Change and Ecological Restoration Measures in a Sediment Concentrated Region in the Loess Plateau, China. Water Resour. Manag. 2015, 29, 4045–4060. [Google Scholar] [CrossRef]
- Cao, S.X. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.P.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.J.; Na, L.; Dong, H.B.; Wang, P. Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau. Acta Ecol. Sin. 2008, 28, 3597–3605. [Google Scholar]
- Li, J.; Gao, J.E.; Zhang, Y.X.; Shao, H. Effects of terrace on runoff and ecological base flow of Jinghe Watershed in Loess Plateau region. Bull. Soil Water Conserv. 2015, 35, 106–110. [Google Scholar]
- Jing, X.L.; Song, Z.L. Analysis of the “94.8” rainstorm flood in Beiluo River of Shaanxi Province. J. China Hydrol. 2000, 20, 56–59. [Google Scholar]
- Xu, X.Z.; Zhang, H.W.; Zhang, O.Y. Development of check-dam systems in gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar]
- An, S.S.; Zheng, F.L.; Zhang, F.; Van Pelt, S.; Hamer, U.; Makeschin, F. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 2008, 75, 248–256. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Deng, L.; Yan, W.M.; Zhang, Y.W.; Shangguan, Z.P. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. For. Ecol. Manag. 2016, 366, 1–10. [Google Scholar] [CrossRef]
- Zhao, X.J.; Zheng, Y.Y. Method and practice of groundwater function area division in Zhidan County. Shaanxi Water Resour. 2020, 1, 38–40. [Google Scholar]
- Huang, M.B.; Liu, X. Regulation effect of forest vegetation on watershed runoff in the Loss Plateau. Chin. J. Appl. Ecol. 2002, 13, 1057–1060. [Google Scholar]
- Xie, M.L.; Zhang, X.P.; Liu, E.J.; Chen, N.; Zhang, T.T.; Guo, M.J. Stationarity and change trend of streamflows in forest and less forested watersheds on Loess Plateau. Bull. Soil Water Conserv. 2013, 33, 149–153. [Google Scholar]
- Xue, G.L. Study on the form of supply and conservation of groundwater in the Loess Plateau. Hydrogeol. Eng. Geol. 1995, 22, 38–40. [Google Scholar]
- Bentley, L.; Coomes, D.A. Partial river flow recovery with forest age is rare in the decades following establishment. Glob. Chang. Biol. 2020, 26, 1458–1473. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.T.; Zhang, J.J.; Guo, M.J.; Chen, L.L.; Zhang, X.P. Trend of streamflow and its controlling factor under the regional vegetation restoration in Beiluo River Basin. J. Soil Water Conserv. 2014, 28, 78–84. [Google Scholar]
- Yi, H.J.; Zhang, X.P.; He, L.; He, J.; Tian, Q.L.; Zou, Y.D.; An, Z.F. Detecting the impact of the “Grain for Green” program on land use/land cover and hydrological regimes in a watershed of the Chinese Loess Plateau over the next 30 years. Ecol. Indic. 2023, 150, 110181. [Google Scholar] [CrossRef]
- Yang, G.J.; Li, J.H.; Zhou, L.H. Considerations on Forest Changes of Northwest China in Past Seven Decades. Front. Environ. Sci. 2021, 9, 589896. [Google Scholar]
- McVicar, T.R.; Li, L.; Van Niel, T.G.; Zhang, L.; Li, R.; Yang, Q.K.; Zhang, X.P.; Mu, X.M.; Wen, Z.M.; Liu, W.Z.; et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manag. 2007, 251, 65–81. [Google Scholar] [CrossRef]
- Liu, W.Z.; Hu, M.J.; Li, F.M.; Zhang, X.C. Ecological characteristics of soil water and its relation to land and vegetation in a small semiarid watershed in a loess hilly area of China. Int. J. Sustain. Dev. World Ecol. 2005, 12, 326–333. [Google Scholar] [CrossRef]
- Jia, X.X.; Shao, M.A.; Zhu, Y.J.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Yu, Y.P.; Yang, Y.H.; Lin, P.F.; Zhao, W.H.; Zhang, T.T.; Zhang, X.P. Comparison of suitability among automatic baseflow separation methods for separating baseflow in Beiluo River Basin. Res. Soil Water Conserv. 2016, 23, 302–307. [Google Scholar]
Gauging Station | Controlled Area (km2) | Mean Annual Precipitation (mm) | Mean Annual ET0 (mm) c | Vegetation Cover (%) d |
---|---|---|---|---|
Wuqi A | 3408 | 425 | 959 | 16–57 |
Zhidan A | 774 | 490 | 943 | 23–80 |
Liujiahe A | 7325 | 500 | 947 | 22–70 |
Zhangcunyi B | 4715 | 555 | 977 | 65–88 |
Huangling B | 2266 | 585 | 1061 | 68–92 |
Station | Precipitation | ET0 | Streamflow | Stormflow | Baseflow |
---|---|---|---|---|---|
Z/p/β | Z/p/β | M/Z/p/β 1 | M/Z/p/β | M/Z/p/β | |
Wuqi | −0.33/ns/−0.47 | 0.28/ns/0.10 | 25.07/−5.38/***/−0.38 | 15.32/−5.44/***/−0.36 | 9.75/0.42/ns/0.01 |
Zhidan | −0.31/ns/−0.17 | 0.17/ns/0.06 | 34.21/−5.58/***/−0.70 | 23.30/−5.59/***/−0.64 | 10.91/−1.79/*/−0.03 |
Liujiahe | −0.76/ns/−0.80 | 0.20/ns/0.02 | 29.54/−4.05/***/−0.27 | 16.73/−4.94/***/−0.29 | 12.81/1.20/ns/0.03 |
Zhangcunyi | −1.18/ns/−1.17 | 0.50/ns/0.13 | 21.62/0.46/ns/0.01 | 9.03/−1.81/*/−0.05 | 12.59/1.79/*/0.07 |
Huangling | −0.75/ns/−0.42 | −0.84/ns/−0.45 | 48.02/0.24/ns/0.01 | 18.66/−1.51/ns/−0.11 | 29.36/1.25/ns/0.10 |
Catchment | Components | Spring | Summer | Autumn | Winter | Flood Season | Non-Flood Season |
---|---|---|---|---|---|---|---|
Wuqi | Streamflow | −0.046 *** | −0.274 *** | −0.036 ** | −0.006 | −0.251 *** | −0.106 *** |
Stormflow | −0.038 *** | −0.276 *** | −0.030 *** | −0.009 *** | −0.243 *** | −0.085 *** | |
Baseflow | −0.002 | 0.003 | −0.007 | 0.003 | −0.002 | 0.004 | |
Zhidan | Streamflow | −0.118 *** | −0.423 *** | −0.083 *** | 0.002 | −0.441 *** | −0.210 *** |
Stormflow | −0.058 *** | −0.411 *** | −0.060 *** | −0.015 *** | −0.430 *** | −0.162 *** | |
Baseflow | −0.035 *** | 0.001 | −0.014* | 0.017 *** | −0.007 | −0.021 | |
Liujiahe | Streamflow | −0.034 * | −0.226 *** | −0.032 ** | 0.016 *** | −0.222 *** | −0.058 ** |
Stormflow | −0.028 *** | −0.219 *** | −0.026 *** | −0.009 *** | −0.217 *** | −0.061 *** | |
Baseflow | −0.003 | 0.003 | −0.002 | 0.024 *** | −0.001 | 0.026 * | |
Zhangcunyi | Streamflow | 0.002 | 0.029 | 0.003 | −0.004 | 0.014 | 0.009 |
Stormflow | −0.018 *** | −0.004 | −0.016 * | −0.005 *** | −0.012 | −0.032 *** | |
Baseflow | 0.019 | 0.033 ** | 0.026 | 0.001 | 0.03 | 0.035 | |
Huangling | Streamflow | −0.022 | 0.013 | −0.007 | 0.03 | 0.015 | 0.064 |
Stormflow | −0.028 *** | −0.048 | −0.023 | −0.011 *** | −0.036 | −0.061 *** | |
Baseflow | −0.001 | 0.061 * | 0.019 | 0.043 | 0.049 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.; Wang, Y.; Lou, Y.; Han, X. Effects of Vegetation Restoration on the Hydrological Regimes of the Chinese Loess Plateau: A Comparative Analysis of Forested and Less-Forested Catchments. Forests 2023, 14, 1199. https://doi.org/10.3390/f14061199
Yi H, Wang Y, Lou Y, Han X. Effects of Vegetation Restoration on the Hydrological Regimes of the Chinese Loess Plateau: A Comparative Analysis of Forested and Less-Forested Catchments. Forests. 2023; 14(6):1199. https://doi.org/10.3390/f14061199
Chicago/Turabian StyleYi, Haijie, Yao Wang, Yongcai Lou, and Xiaojia Han. 2023. "Effects of Vegetation Restoration on the Hydrological Regimes of the Chinese Loess Plateau: A Comparative Analysis of Forested and Less-Forested Catchments" Forests 14, no. 6: 1199. https://doi.org/10.3390/f14061199
APA StyleYi, H., Wang, Y., Lou, Y., & Han, X. (2023). Effects of Vegetation Restoration on the Hydrological Regimes of the Chinese Loess Plateau: A Comparative Analysis of Forested and Less-Forested Catchments. Forests, 14(6), 1199. https://doi.org/10.3390/f14061199