Growth, Morphological Alterations, and Enhanced Photosynthetic Performance Promote Tolerance of Distylium chinense to Alternate Drought–Flooding Stresses
Abstract
:1. Introduction
- (1)
- D. chinense exhibits differences in growth, morphological, and physiological activity alterations under alternate hydrological regimes (D-R-FF and FF-R-D) compared with single drought and flooding events.
- (2)
- The enhanced photosynthetic performance was functionally coupled with the adequate water supply to promote the tolerance of D. chinense to alternate drought–flooding condition. Drought in the early stage could promote the tolerance of D. chinense to flooding in the later stage.
- (3)
- More hypertrophied lenticels and adventitious root occurrence may be attributed to the enhanced heme oxygenase (HO) activities of D. chinense seedlings. It may be a vital adaptation to the D-R-FF hydrological regime.
2. Materials and Methods
2.1. Experimental Materials
2.2. Sampling Sites and Field Studies
2.3. Experimental Design
2.4. Measurement of Growth Parameters
2.5. Measurement of Chlorophyll Content
2.6. Measurement of Photosynthesis Parameters
2.7. Extraction and Determination of Soluble Sugar
2.8. Data Processing
3. Results
3.1. Field Studies: Photosynthetic Responses
3.2. Morphological Variations and Plant Growth under Single Drought, Flooding, and Alternate Drought and Flooding Stresses
3.3. Effects of Single and Alternate Drought and Flooding Stresses on Chlorophyll Content
3.4. Effects of Single and Alternate Drought and Flooding Stresses on Photosynthesis
3.5. Correlation of Heme Oxygenase and Net Photosynthetic Rate about Different Hydrological Regimes
3.6. Effects of Single and Alternate Drought and Flooding Stresses on Soluble Sugar Content
3.7. Effects of Single and Alternate Drought and Flooding Stresses on Soil Nitrogen and Phosphorus Releasing
4. Discussion
4.1. Growth, Morphological Adaptations of D. chinense to Drought–Recovery–Flooding Hydrological Condition
4.2. Accumulation of Soluble Sugar of D. chinense to Drought–Recovery–Flooding Hydrological Condition
4.3. Enhanced Photosynthesis of D. chinense to Drought–Recovery–Flooding Hydrological Condition
4.4. Soil Nitrogen and Phosphorus Releasing of D. chinense to Drought–Recovery–Flooding Condition
5. Conclusions
- (1)
- Distylium chinense triggered a suite of growth, morphological alterations, and enhanced photo–physiological responses under alternate hydrological conditions and single drought and flooding. The early drought stress could facilitate the tolerance of Distylium chinense to the later flooding stress by growth, morphological adaptations, and higher photosynthesis.
- (2)
- Heme oxygenase degrades free heme released with the generation of carbon monoxide, which may induce the formation of more adventitious roots, enhancing Distylium chinense adaptation to early drought stress.
- (3)
- The increase of net photosynthetic rate due to the increased heme degradation by heme oxygenase in the D-R-FF. And net photosynthetic rate was higher in the D-R-FF than in the FF, followed by alternating FF-R-D and D.
- (4)
- Distylium chinense could supply adequate water for stomatal conductance to enhance transpiration rate in response to drought–flooding conditions, which is functionally coupled with enhanced photosynthesis and higher water-use efficiency.
- (5)
- Intercellular CO2 concentration follows a different trend of the net photosynthetic rate as the stomatal limiting value decreases (DF, Ls = 0.48; NF, Ls = 0.61). This decline in the alternate drought–flooding condition on the photosynthesis rate could be attributed to non-stomatal factors.
- (6)
- The soluble sugar accumulation during the prolonged drought period promoted the tolerance of Distylium chinense to later flooding. The higher chlorophyll b content to absorb more light energy could assist in maintaining a higher level of photosynthesis in the D-R-FF hydrological condition. Total phosphorus availability via soil has been assumed to be a reaction mechanism to affect the above- and below-ground nutrition supply of Distylium chinense seedlings.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parad, G.A.; Kouchaksaraei, M.T.; Striker, G.G.; Sadati, S.E.; Nourmohammadi, K. Growth, morphology and gas exchange responses of two-year-old Quercus Castaneifolia seedlings to flooding stress. Scand. J. Forest. Res. 2015, 31, 458–466. [Google Scholar] [CrossRef]
- Daniels, A.E.; Cumming, G.S. Conversion or conservation? Understanding wetland change in northwest Costa Rica. Ecol. Appl. 2008, 18, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Pucciariello, C.; Perata, P. Flooding Tolerance in Plants; CABI Books; CABI International: Oxford, UK, 2012; pp. 148–170. [Google Scholar] [CrossRef]
- Xiang, L.; Li, X.L.; Wang, X.S.; Yang, J.; Lv, K. Genetic diversity and population structure of Distylium Chinense revealed by ISSR and SRAP analysis in the Three Gorges Reservoir Region of the Yangtze River, China. Glob. Ecol. Conserv. 2020, 21, e00805. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; You, Q.L.; Ullah, S.; Chen, C.C.; Shen, L.C.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci. Total Environ. 2023, 876, 162822. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shen, Z.; Leng, G. Synergistic effect of drought and rainfall events of different patterns on watershed systems. Sci. Rep. 2021, 11, 18957. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Cheng, X.L.; Liu, W.Z.; Zhang, Q.F. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2015, 517, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Z.C. Impact of the Three Gorges Dam on the hydrology and ecology of the Yangtze River. Water 2016, 8, 590. [Google Scholar] [CrossRef]
- Li, X.L.; He, D.; Chen, G.; Yang, J. Responses of leaf functional traits to different hydrological regimes and leaf economics spectrum in the water level fluctuation zone of Three Gorges Reservoir, China. Front. Plant Sci. 2022, 13, 939452. [Google Scholar] [CrossRef]
- Parolin, P.; Lucas, C.; Piedade, M.T.F. Drought responses of flood-tolerant trees in Amazonian floodplains. Ann. Bot. 2010, 105, 129–139. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Chen, Z.L.; Li, L.; Shao, Y. Response of dominant plant species to periodic flooding in the riparian zone of the Three Gorges Reservoir (TGR), China. Sci. Total Environ. 2020, 747, 141101. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Mushtaq, M.; Wani, S.H. Interactions of phytohormones with abiotic stress factors under changing climate. In Frontiers in Plant-Soil Interaction, 1st ed.; Tariq, A., Khalid, R.H., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 221–236. [Google Scholar] [CrossRef]
- Setter, T.L.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil. 2003, 253, 1–34. [Google Scholar] [CrossRef]
- Greenway, H.; Gibbs, J. Review: Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct. Plant Biol. 2003, 30, 999–1036. [Google Scholar] [CrossRef]
- Fukao, T.; Bailey-Serres, J. Plant responses to hypoxia--is survival a balancing act? Trends Plant Sci. 2004, 9, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Li, N.; Yang, J. Morphological and Photosynthetic Responses of Riparian Plant Distylium Chinense Seedlings to Simulated Autumn and Winter Flooding in Three Gorges Reservoir Region of the Yangtze River, China. Acta Ecol. Sin. 2011, 31, 31–39. [Google Scholar] [CrossRef]
- Li, X.L. Phenotypic Plasticity of Leaves in Relation to Soil Environmental Factors in Heterogeneous Habitats in the Three Gorges Reservoir Region. Acta Ecol. Sin. 2018, 38, 3581–3591. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ismail, A.M. Introduction to the Special Issue: Electrons, water and rice fields: Plant response and adaptation to flooding and submergence stress. AoB Plants. 2015, 7, plv078. [Google Scholar] [CrossRef]
- Iwanaga, F.; Yamamoto, F. Effects of flooding depth on growth, morphology and photosynthesis in Alnus japonica species. New For. 2008, 35, 1–14. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.L.; Wang, X.S.; Xiang, L.; Yang, J.; Min, Q.F.; Chen, G.H.; Chen, F.Q.; Huang, C.M.; Wang, G.X. Growth and respiratory metabolic adaptation strategies of riparian plant Distylium Chinense to submergence by the field study and controlled experiments. Plant Physiol. Bioch. 2020, 157, 1–12. [Google Scholar] [CrossRef]
- Jackson, M.B.; Drew, M.C. Effects of flooding on growth and metabolism of herbaceous plants. In Flooding and Plant Growth; Kozlowski, E.T., Ed.; Academic Press: Orlando, FL, USA, 1984; pp. 47–128. [Google Scholar] [CrossRef]
- Vasellati, V.; Oesterheld, M.; Medan, D.; Loreti, J. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann. Bot. 2001, 88, 355–360. [Google Scholar] [CrossRef]
- Blackman, C.J.; Brodribb, T.J.; Jordan, G.J. Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species. Plant Cell Environ. 2009, 32, 1584–1595. [Google Scholar] [CrossRef]
- Silva, F.C.E.; Shvaleva, A.; Maroco, J.P.; Almeida, M.H.; Chaves, M.M.; Pereira, J.S. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol. 2004, 24, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Monclus, R.; Villar, M.; Barbaroux, C.; Bastien, C.; Fichot, R.; Delmotte, F.M.; Delay, D.; Petit, J.M.; Brechet, C.; Dreyer, E.; et al. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny. Tree Physiol. 2009, 29, 1329–1339. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 2020, 251, 3. [Google Scholar] [CrossRef] [PubMed]
- Granda, V.; Delatorre, C.; Cuesta, C. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: A multivariate approach. Tree Physiol. 2014, 34, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Chang, H.T.; Endress, P.K. Hamamelidaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China, 2003; Volume 9, pp. 18–42. [Google Scholar]
- Li, H.S. Principles and Techniques of Plant Physiological Biochemical Experiment; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Baslam, M.; Mitsui, T.; Hodges, M.; Priesack, E.; Herritt, M.T.; Aranjuelo, I. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. Front. Plant Sci. 2020, 11, 882. [Google Scholar] [CrossRef]
- Hu, M.J.; Guo, Y.P.; Shen, Y.Q.; Zhang, L.C. Environmental Regulation of Citrus Photosynthesis. Chin. J. Appl. Ecol. 2006, 17, 535–540. [Google Scholar]
- Minagawa, J.; Ryutaro, T. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. Plant J. 2015, 82, 413–428. [Google Scholar] [CrossRef]
- Schaffer, B.; Whiley, A. Environmental Regulation of Photosynthesis in Avocado Trees—A Mini-Review. In Proceedings V World Avocado Congress; Junta de Andalucía: Consejería de Agricultura y Pesca, Spain, 2003; pp. 335–342. [Google Scholar]
- Glenz, C.; Schlaepfer, R.; Iorgulescu, I.; Kienast, F. Flooding tolerance of Central European tree and shrub species. Forest Ecol. and Manag. 2006, 235, 1–13. [Google Scholar] [CrossRef]
- Glenz, C.; Iorgulescu, I.; Kienast, F.; Schlaepfer, R. Modelling the impact of flooding stress on the growth performance of woody species Using Fuzzy Logic. Ecol. Model. 2008, 218, 18–28. [Google Scholar] [CrossRef]
- Yamamoto, F.; Sakata, T.; Terazawa, K. Physiological, morphological and anatomical response of Fraxinus mandshurica Seedlings to Flooding. Tree Physiol. 1995, 15, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Buchel, H.B.; Grosse, W. Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiol. 1990, 6, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Stiller, V.; Sperry, J.S.; Pittermann, J.; McCulloh, K.A. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 2001, 125, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Qualls, R.G.; Miller, G.C. Adaptive responses of Lepidium Latifolium to soil flooding: Biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 2002, 48, 119–128. [Google Scholar] [CrossRef]
- Doležal, J.; Kučerová, A.; Jandová, V.; Klimeš, A.; Říha, P.; Adamec, L.; Schweingruber, F.H. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environ. Exp. Bot. 2021, 187, 104495. [Google Scholar] [CrossRef]
- Chen, F.Q.; Xiong, G.M.; Xie, Z.Q. Effects of density on seedling survival and growth of an endangered species Myricaria Laxiflora. Biodivers. Sci. 2005, 13, 332. [Google Scholar] [CrossRef]
- Chen, D.; Brown, J.D.; Kawasaki, Y.; Bommer, J.; Takemoto, J.Y. Scalable production of biliverdin IXα by Escherichia coli. BMC Biotechnol. 2012, 12, 89. [Google Scholar] [CrossRef]
- Guo, K.; Xia, K.; Yang, Z.M. Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J. Exp. Bot. 2008, 59, 3443–3452. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Yuan, F. Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil. 2012, 359, 85–105. [Google Scholar] [CrossRef]
- Meng, D.K.; Chen, J.; Yang, Z.M. Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J. Hazard. Mater. 2011, 186, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, S.; Xuan, W. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci. 2007, 172, 544–555. [Google Scholar] [CrossRef]
- Xuan, W.; Zhu, F.Y.; Xu, S.; Huang, B.K.; Ling, T.F.; Qi, J.Y.; Ye, M.B.; Shen, W.B. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol. 2008, 148, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Han, Y.; Wang, C.K. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecol. Sin. 2014, 34, 6090–6100. [Google Scholar]
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Myers, J.A.; Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 2007, 95, 383–395. [Google Scholar] [CrossRef]
- Afzal, S.; Chaudhary, N.; Singh, N.K. Role of soluble sugars in metabolism and sensing under abiotic stress. In Plant Growth Regulators: Signalling under Stress Conditions; Aftab, T., Hakeem, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 305–334. [Google Scholar] [CrossRef]
- Falchi, R.; Petrussa, E.; Braidot, E.; Sivilotti, P.; Boscutti, F.; Vuerich, M. Analysis of non-structural carbohydrates and xylem anatomy of leaf petioles offers new insights in the drought response of two grapevine cultivars. Int. J. Mol. Sci. 2020, 21, 1457. [Google Scholar] [CrossRef]
- Wang, Z.; Quebedeaux, B.; Stutte, G. Osmotic adjustment: Effect of water stress on carbohydrates in leaves, stems and roots of apple. Funct. Plant Biol. 1995, 22, 747. [Google Scholar] [CrossRef]
- Yakushiji, H.; Nonami, H.; Fukuyama, T.; Ono, S.; Takagi, N.; Hashimoto, Y. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Horticult. Sci. 1996, 121, 466–472. [Google Scholar] [CrossRef]
- Ogawa, A.; Yamauchi, A. Root osmotic adjustment under osmotic stress in maize seedlings mode of accumulation of several solutes for osmotic adjustment in the root. Plant Product. Sci. 2006, 9, 39–46. [Google Scholar] [CrossRef]
- Masouleh, S.S.; Aldine, N.J.; Sassine, Y.N. The role of organic solutes in the osmotic adjustment of chilling-stressed plants (vegetable, ornamental and crop plants). Ornamental Horticult. 2019, 25, 434–442. [Google Scholar] [CrossRef]
- Holland, V.; Koller, S.; Lukas, S.; Brüggemann, W. Drought- and frost- induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees 2015, 30, 215–226. [Google Scholar] [CrossRef]
- Bradford, K.J. Effect of soil flooding on leaf gas exchange of plants. Plant Physiol. 1983, 73, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qualls, R.G.; Blank, R.R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot. 2005, 82, 250–268. [Google Scholar] [CrossRef]
- Terry, M.J.; Wahleithner, J.A.; Lagarias, J.C. Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem. Biophys. 1993, 306, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.J.; Linley, P.J.; Kohchi, T. Making light of it: The role of plant heme oxygenases in phytochrome chromophore synthesis. Biochem. Soc. Trans. 2002, 30, 604–609. [Google Scholar] [CrossRef]
- Seth, J.D.; Seong, H.B.; Adam, M.D.; Joseph, M.W.; Richard, D.V. The Heme-Oxygenase Family Required for Phytochrome Chromophore Biosynthesis Is Necessary for Proper Photomorphogenesis in Higher Plants. Plant Physiol. 2001, 126, 656–669. [Google Scholar] [CrossRef]
- Muramoto, T.; Kohchi, T.; Yokota, A.; Hwang, I.; Goodman, H.M. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. The Plant Cell. 1999, 11, 335–348. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Fan, D.Y.; Li, Z.J.; Xiong, G.M.; Xie, Z.Q. Enhanced photosynthetic capacity by perennials in the riparian zone of the Three Gorges Reservoir Area, China. Ecol. Eng. 2016, 90, 6–11. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Souza, A.H.D.; Oliveira, U.S.D.; Oliveira, L.A.; Carvalho, P.H.D.D.; Andrade, M.T.D.; Pereira, T.S.; Junior, C.C.G.; Cardoso, A.A.; Ramalho, J.D.C.; Samuel, C.V.M.; et al. Growth and Leaf Gas Exchange Upregulation by Elevated [CO2] Is Light Dependent in Coffee Plants. Plants 2023, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.D.; Zhou, L.; Xu, W.C.; Xu, N.; Hu, X.Z.; Li, X.Q.; Lv, G.X.; Zheng, Q.H.; Zhu, S.; Wang, Z.L.; et al. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering. Adv. Sci. 2017, 5, 1700497. [Google Scholar] [CrossRef]
- Soumaya, B.; Maxwell, R.S.; Alan, H.T.; Kenneth, J.D.; Rossella, G.; David, J.P.M.; Shelly, A.R. Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Glob. Chang. Biol. 2021, 27, 1560–1571. [Google Scholar] [CrossRef]
- Szejner, P.; Wright, W.E.; Belmecheri, S.; Meko, D.; Leavitt, S.W.; Ehleringer, J.R.; Monson, R.K. Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree-ring stable isotopes. Glob. Chang. Biol. 2018, 24, 5332–5347. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Jalabert, R.; Malhi, Y.; Barichivich, J.; Lara, A.; Delgado-Huertas, A.; Rodríguez, C.G.; Cuq, E. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J. Geophys. 2015, 120, 2505–2524. [Google Scholar] [CrossRef]
- Casanova, M.T.; Brock, M.A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol. 2000, 147, 237–250. [Google Scholar] [CrossRef]
- Larcher, W. Physiological plant ecology. 4th edn. Ann. Bot. 2004, 93, 616–617. [Google Scholar] [CrossRef]
- Yamasato, A.; Nozomi, N.; Ryouichi, T.; Ayumi, T. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell. 2005, 17, 1585–1597. [Google Scholar] [CrossRef]
- Panda, D.; Rao, D.N.; Sharma, S.G. Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transients. Photosynthetica 2006, 44, 69–75. [Google Scholar] [CrossRef]
- Woodward, K.B.; Fellows, C.S.; Mitrovic, S.M.; Sheldon, F. Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, Murray-Darling Basin, Australia. Agric. Ecosyst. Environ. 2015, 205, 1–8. [Google Scholar] [CrossRef]
- Ye, C.; Chen, C.R.; Butler, O.M.; Rashti, M.R.; Esfandbod, M.; Du, M.; Zhang, Q.F. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 664, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Hao, Z.; Xu, Y.J. Mechanism of sediment nitrogen release and its contribution to nitrogen output in the alternating flooding and drying conditions of Xiangxi Basin, Jiangxi Province, China. Environ. Sci. 2016, 37, 534–541. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Zhou, J.; Bing, H.; Sun, H. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 282–289. [Google Scholar] [CrossRef] [PubMed]
Latitude and Longitude | Soil Water Content (%) | Air Humidity (%) | Light Intensity/μmol·m−2 S−1 | Air Temperature (°C) | |
---|---|---|---|---|---|
Site 1 | 111°23′ E, 30°53′ N, 212.91 m | 30.37 ± 0.73 | 82.00 ± 1.73 | 1417.7 ± 55.0 | 25.00 ± 0.58 |
Site 2 | 111°48′ E, 30°45′ N, 130.15 m | 21.40 ± 0.59 | 55.33 ± 1.33 | 1343.3 ± 17.8 | 30.67 ± 0.88 |
Temperature (°C) | pH | EC/mS cm−1 | Soil Water Content/% | Organic Matter/mg kg−1 | TN/mg g−1 | TP/mg g−1 | |
---|---|---|---|---|---|---|---|
Soil | 13.51 ± 0.27 | 6.67 ± 0.07 | 0.87 ± 0.12 | 32.37 ± 1.45 | 22.42 ± 0.46 | 2.08 ± 0.15 | 0.86 ± 0.07 |
Floodwater | 14.32 ± 0.33 | 7.27 ± 0.08 | 0.46 ± 0.04 | - | - | 0.64 ± 0.24 | 0.05 ± 0.00 |
Treatments | Plant-Height Increment (cm) | Stem-Diameter Increment (cm) | Number of Adventitious Roots | Number of Stem Lenticels | Number of Epicormic Shoots |
---|---|---|---|---|---|
CK | 4.37 ± 0.21 b | 0.13 ± 0.02 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 8.74 ± 0.56 a |
D | 2.05 ± 0.19 d | 0.22 ± 0.04 e | 8.20 ± 0.84 b | 22.40 ± 1.82 a | 5.80 ± 1.92 c |
FF | 1.47 ± 0.34 c | 0.25 ± 0.07 c | 5.20 ± 0.45 b | 16.00 ± 2.12 a | 4.60 ± 1.14 b |
FF-R-D | 0.86 ± 0.22 c | 0.22 ± 0.04 c | 4.60 ± 0.55 b | 19.20 ± 1.79 a | 1.20 ± 0.84 c |
D-R-FF | 1.89 ± 0.12 d | 0.32 ± 0.07 e | 13.40 ± 1.34 b | 24.20 ± 1.10 a | 6.40 ± 0.89 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, L.; Yu, C.; Abdoussalami, A.; Li, X.; Lv, K.; Huang, G.; Hu, M.; Yang, Z. Growth, Morphological Alterations, and Enhanced Photosynthetic Performance Promote Tolerance of Distylium chinense to Alternate Drought–Flooding Stresses. Forests 2024, 15, 125. https://doi.org/10.3390/f15010125
Yue L, Yu C, Abdoussalami A, Li X, Lv K, Huang G, Hu M, Yang Z. Growth, Morphological Alterations, and Enhanced Photosynthetic Performance Promote Tolerance of Distylium chinense to Alternate Drought–Flooding Stresses. Forests. 2024; 15(1):125. https://doi.org/10.3390/f15010125
Chicago/Turabian StyleYue, Lei, Chengrui Yu, Andlia Abdoussalami, Xiaoling Li, Kun Lv, Guiyun Huang, Meixiang Hu, and Zhengjian Yang. 2024. "Growth, Morphological Alterations, and Enhanced Photosynthetic Performance Promote Tolerance of Distylium chinense to Alternate Drought–Flooding Stresses" Forests 15, no. 1: 125. https://doi.org/10.3390/f15010125
APA StyleYue, L., Yu, C., Abdoussalami, A., Li, X., Lv, K., Huang, G., Hu, M., & Yang, Z. (2024). Growth, Morphological Alterations, and Enhanced Photosynthetic Performance Promote Tolerance of Distylium chinense to Alternate Drought–Flooding Stresses. Forests, 15(1), 125. https://doi.org/10.3390/f15010125