Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Study
2.3. Structural and Composition Analysis of Fuel Beds
2.3.1. Live Fuel
2.3.2. Dead Fuels: Woody Fuel and Litterfall
2.3.3. Data Processing and Calculations
2.4. Data Analysis
3. Results
3.1. Structure and Composition of Fuel Beds
3.2. Vertical Structure of Fuel Beds
3.3. Horizontal Structure of Fuel Beds
3.4. Dead Fuels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Formula | Variable Description | Reference |
---|---|---|---|
Basal area | BA = (π × 4 ([ND])2) | BA = total basal area in m2/0.1 ha π = 3.1416 ND = normal diameter | Ramos et al. [50] |
Absolute/Relative Coverage | CA = (((d1 + d2)/2)/2)2 × π CR = (Covi/Covt) × 100 | CA = absolute coverage d1 and d2 = canopy diameters π = 3.1416 CR = relative coverage Covi = absolute coverage of individuals of a species Covt = absolute coverage of individuals of all species | Zarco et al. [51] |
Relative Frequency | FR = fi/N × 100 | FR = relative frequency fi = number of occurrences of a species N = number of occurrences of all species | Gentry and Ortiz [55] |
Relative Density | DR = ni/N × 100 | DR = relative density ni = number of individuals of a species N = number of individuals of all species at each sampling site | Villavicencio and Valdez [56] |
Dominance Relative | DoR = (αi/α) × 100 | αi = basal area of a species at each sampling site α = total basal area of all species at each sampling site | Villavicencio and Valdez [56] |
Importance Value Index | IVI = DR + DoR + FR | DR = relative density DoR = relative dominance FR = relative frequency | Villavicencio and Valdez [56] |
Forest Value Index | FVI = NDR + HR + CR | NDR = normal diameter relative (ND absolute of a species/ND absolute of all species) HR = relative height (absolute height of a species between the absolute height of all species) CR = (canopy diameter of all species/sampled area) × 100 | Zarco et al. [54] |
Holdridge Complexity Index | HCI = (d × a × h × s)/100 | d = number of trees in the sample unit/0.1 ha a = total basal area (m2/0.1 ha). It was calculated with the formula π × 4(DAP)2 h = average stand height in meters s = total number of species in the sample unit (0.06 ha) | Holdridge et al. [57] |
References
- Ewel, K.C. Appreciating tropical coastal wetlands from a landscape perspective. Front. Ecol. Environ. 2010, 8, 20–26. [Google Scholar] [CrossRef]
- Infante, M.D.M.; Moreno, P.; Madero, C.; Castillo, G.; Warner, B.G. Floristic composition and soil characteristics of tropical freshwater forested wetland of Veracruz on the coastal plain of the Gulf of Mexico. For. Ecol. Manag. 2011, 262, 1514–1531. [Google Scholar] [CrossRef]
- Torres, J.R.; Barba, E.; Choix, J.F. Mangrove productivity and phenology in relation to hidroperiod and physical-chemistry properties of water and sediment in Biosphere Reserve, Centla Wetland, Mexico. Trop. Conserv. Sci. 2018, 11, 1940082918805188. [Google Scholar] [CrossRef]
- Moreno, P.; Infante, M.D.M. Conociendo los Manglares, las Selvas Inundables y los Humedales Herbáceos, 1st ed.; INECOL—OIMT—CONAFOR: Veracruz, México, 2016; p. 128. Available online: https://www.itto.int/files/itto_project_db_input/3000/Technical/Conociendo%20los%20manglares%20y%20selvas%20inundables.pdf (accessed on 13 March 2023).
- Moreno, P.; Infante, M.D.M. Manglares y Selvas Inundables, 1st ed.; INECOL—CONAFOR—OiMT: Veracruz, México, 2009; p. 150. Available online: http://www1.inecol.edu.mx/inecol/libros/Manual_manglares_selvas_inundables3.pdf (accessed on 13 November 2022).
- Infante, M.D.M. Pachira aquatica un indicador del límite manglar. Rev. Mex. Biodivers. 2014, 5, 143–160. [Google Scholar] [CrossRef]
- Infante, M.D.M. Estructura y Dinámica de las Selvas Inundables de la Planicie Costera Central del Golfo de México. Ph.D. Thesis, Instituto de Ecología A.C., Veracruz, México, 2011. [Google Scholar]
- Barrios-Calderón, R.J. Peligro de Incendios en el Sistema de Humedales El Castaño, Reserva de la Biosfera La Encrucijada, Chiapas/Romeo de Jesús Barrios Calderón. Ph.D. Thesis, El Colegio de la Frontera Sur, Chiapas, México, 2019. Available online: https://biblioteca.ecosur.mx/cgi-bin/koha/opac-retrieve-file.pl?id=00e280cce1bb58afbbef0b887feb6573 (accessed on 17 November 2022).
- Ascencio, R.J.M. Structure and Floristic Composition of a Lowland Flooded Forest of Pachira aquatica Aubl. (Apompal) in Ogarrio, Huimanguillo, Tabasco, Mexico. Bachelor’s Thesis, Academic of Biological Sciences. Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, 1994. [Google Scholar]
- Infante, M.D.M.; Moreno, P.; Madero, C. Litterfall of tropical forested wetlands of Veracruz in the coastal floodplains of the Gulf of Mexico. Aquat. Bot. 2011, 98, 1–11. [Google Scholar] [CrossRef]
- Rincón, M. Bosques de zapotonales (Pachira aquatica) en la Reserva de la Biosfera la Encrucijada, Chiapas, México. Master’s Thesis, Universidad Nacional Autónoma de México, Posgrado en Ciencias BiológicasMexico City, México, 2014. [Google Scholar]
- Barrios-Calderón, R.J. Combustibles Forestales y su Relación con Incendios en Humedales de la Reserva de la Biósfera La Encrucijada, Chiapas/Romeo de Jesús Barrios Calderón. Master’s Thesis, El Colegio de la Frontera Sur, Chiapas, México, 2015. Available online: https://biblioteca.ecosur.mx/cgi-bin/koha/opac-retrieve-file.pl?id=f5c54f721c09e0310078a2020d406780 (accessed on 17 January 2023).
- Ometto, J.P.; Kalaba, K.; Anshari, G.Z.; Chacón, N.; Farrell, A.; Halim, S.A.; Neufeldt, H.; Sukumar, R. CrossChapter Paper 7: Tropical Forests. In Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2369–2410. [Google Scholar] [CrossRef]
- Jardel, P.E.; Alvarado, E.; Morfín, R.J.; Castillo, N.F.; Flores, G.J.G. Regímenes de incendios en ecosistemas forestales de México. In Impacto Ambiental de Incendios Forestales; Flores, G.J.G., Ed.; Mundi-Prensa/Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias/Colegio de Postgraduados: Mexico City, México, 2000. [Google Scholar]
- Rodríguez, D.A.; Fulé, P. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildland. Fire 2003, 12, 23–37. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Fire Management—Global Assessment 2006; FAO Forestry Paper No. 151; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/3/A0969E/A0969E00.pdf (accessed on 5 October 2022).
- Page, S.; Hoscilo, A.; Langner, A.; Tansey, K.; Siegert, F.; Limin, S.; Rieley, J. Tropical peatland fires in Southeast Asia. In Tropical Fire Ecology; Springe Praxis Books; Springer: Berlin/Heidelberg, Germany, 2009; pp. 263–287. [Google Scholar] [CrossRef]
- García, J.B.; Esparza, L.G.; Martínez, E. Estructura y Composición de la Vegetación Leñosa de Selvas en Diferentes Estadios Sucesionales en el Ejido El Carmen II, Calakmul, México. Polibotánica 2014, 38, 1–26. Available online: https://www.redalyc.org/articulo.oa?id=62131503001 (accessed on 17 November 2022).
- Williams-Jara, G.M.; Espinoza-Tenorio, A.; Monzón-Alvarado, C.; Posada-Vanegas, G.; Infante-Mata, D. Fires in coastal wetlands: A review of research trends and management opportunities. Wetlands 2022, 42, 56. [Google Scholar] [CrossRef]
- Sales, G.; Lessa, T.A.M.; Freitas, D.A.; Veloso, M.D.M.; Silva, M.L.S.; Fernandes, L.A.; Frazão, L.A. Litterfall dynamics and soil carbon and nitrogen stocks in the Brazilian palm swamp ecosystems. For. Ecosyst. 2020, 7, 39. [Google Scholar] [CrossRef]
- Goldammer, J.G. Forests on Fire. Science 1999, 284, 1782–1783. Available online: https://gfmc.online/wp-content/uploads/Goldammer-Forests-on-Fire-Science-284-1782-83-11-June-1999.pdf (accessed on 7 June 2022). [CrossRef]
- Kaal, J.; Carrión, M.Y.; Asouti, E.; Martín, S.M.; Martínez, C.A.; Costa, C.M.; Criado, B.F. Long-term deforestation in NW Spain: Linking the Holocene fire history to vegetation change and human activities. Quat. Sci. Rev. 2011, 30, 161–175. [Google Scholar] [CrossRef]
- Scott, A.C.; Bowman, M.J.; Bond, W.J.; Pyne, S.J.; Alexander, M.E. Fire on Earth: An Introduction; Willey Blackwell: Hoboken, NJ, USA, 2014; p. 434. [Google Scholar]
- Rodríguez, D.A.; Rodríguez, A.M.; Fernández, S.F.; Pyne, S.J. Educación e Incendios Forestales, 2nd ed.; Mundi Prensa: Mexico City, México, 2002; p. 201. [Google Scholar]
- Riccardi, C.L.; Ottmar, R.D.; Sandberg, D.V.; Andreu, A.; Elman, E.; Kopper, K.; Long, J. The fuelbed: A key element of the fuel characteristic classification system. Can. J. For. Res. 2007, 37, 2394–2412. [Google Scholar] [CrossRef]
- Sandberg, D.; Ottmar, R.; Cushon, G. Characterizing Fuels in the 21st Century. Int. J. Wildland. Fire 2001, 10, 381–387. Available online: https://www.fs.usda.gov/pnw/pubs/journals/pnw_2001_sandberg001.pdf (accessed on 12 September 2022). [CrossRef]
- Dentoni, M.C.; Muñoz, M. Glosario de Términos Relacionados con el Manejo del Fuego. Plan Nacional de Manejo del Fuego. Secretaria de Desarrollo Sustentable y Política Ambiental: Argentina. 2001. Available online: https://www.argentina.gob.ar/sites/default/files/ambiente-itn8_glosario-1.pdf (accessed on 17 October 2022).
- Flores, G.J.G. Modeling the Spatial Variability of Forest Fuel Arrays. Ph.D. Thesis, Department of Forest Sciences, Colorado State University,, Fort Collins, CO, USA, 2001. [Google Scholar]
- Villers, M.L. Incendios Forestales. Ciencias 2006, 81, 61–66. Available online: https://www.revistas.unam.mx/index.php/cns/article/view/12036 (accessed on 13 November 2022).
- Turner, B.L.; Cortina, S.; Foster, D.; Geoghegan, J.; Keys, E.; Kepleis, P.; Lawrence, D.; Mendoza, P.; Manson, S.; Ogneva-Himmelberger, Y.; et al. Deforestation in the southern Yucatán peninsular region: An integrative approach. For. Ecol. Manag. 2001, 154, 353–370. [Google Scholar] [CrossRef]
- CONANP (Comisión Nacional de Áreas Naturales Protegidas). Informe Técnico Sobre el Impacto del Fuego y Estadísticas de Incendios en la Reserva de la Biósfera La Encrucijada: Tuxtla Gutiérrez, Chiapas, México. 2018. Available online: https://www.conabio.gob.mx/institucion/proyectos/resultados/InfDQ012.pdf (accessed on 8 October 2022).
- CONAFOR (Comisión Nacional Forestal). Reporte semanal de resultados de incendios forestales 2018. In Programa Nacional de Prevención de Incendios Forestales; Gerencia de Protección contra Incendios: Mexico City, México, 2018. Available online: https://snigf.cnf.gob.mx/wp-content/uploads/Incendios/2018/Sem%2050%2014%20de%20Diciembre.pdf (accessed on 3 February 2023).
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An Overview of the Fuel Characteristic Classification System-Quantifying, Classifying, and Creating Fuel Beds for Resource Planning. Can. J. For. Res. 2007, 37, 2383–2393. Available online: https://www.fs.usda.gov/pnw/pubs/journals/pnw_2007_ottmar001.pdf (accessed on 23 November 2022). [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef]
- Donato, D.C.; Fontaine, J.B.; Kauffman, J.B.; Robinson, W.D.; Law, B.E. Fuel mass and forest structure following stand-replacement fire and post-fire logging in a mixed-evergreen forest. Int. J. Wildland Fire. 2013, 22, 652–666. [Google Scholar] [CrossRef]
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire. 2013, 22, 51–62. [Google Scholar] [CrossRef]
- Bernau, C.R.; Strand, E.K.; Bunting, S.C. Fuel bed response to vegetation treatments in juniper-invaded sagebrush steppe. Fire Ecol. 2018, 14, 1. [Google Scholar] [CrossRef]
- Villers, M.L.; López, J. Comportamiento del fuego y evaluación del riesgo por incendios en las áreas forestales de México: Un estudio en el volcán de La Malinche. In Incendios Forestales en México: Métodos de Evaluación; Villers, M.L., López, J., Eds.; Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera: Mexico City, México, 2004; pp. 61–78. [Google Scholar]
- Bautista, R.J.; Treviño, E.J.; Návar, J.J.; Aguirre, O.A.; Cantú, I. Caracterización de Combustibles Leñosos en el Ejido Pueblo Nuevo, Durango. Rev. Chapingo Ser. Cienc. For. Ambiente 2005, 11, 51–56. Available online: https://www.redalyc.org/pdf/629/62911108.pdf (accessed on 25 August 2022).
- Muñoz, R.C.; Treviño, G.E.; Verástegui, C.J.; Jiménez, P.J.; Aguirre, O.A. Desarrollo de un modelo espacial para la evaluación del peligro de incendios forestales en la Sierra Madre Oriental de México. Investig. Geográficas 2005, 56, 101–117. Available online: https://www.redalyc.org/articulo.oa?id=56905608 (accessed on 18 September 2022).
- Wong, G.J.C.; Villers, M.L. Evaluación de combustibles y su disponibilidad en incendios forestales: Un estudio en el parque nacional La Malinche. Investig. Geográficas 2007, 62, 87–103. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Tchikoué, H.; Cíntora-González, C.; Contreras-Aguado, R.; Rosa-Vázquez, A. Modelaje del peligro de incendio forestal en las zonas afectadas por el huracán Dean. Agrociencia 2011, 45, 593–608. Available online: https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/903/903 (accessed on 4 January 2023).
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.; Herrera, J.A. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef]
- Adame, M.F.; Santini, N.S.; Tovilla, C.; Vázquez, A.; Castro, L.; Guevara, M. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 2015, 12, 3805–3818. [Google Scholar] [CrossRef]
- Barrios-Calderón, R.J.; Infante, D.M.; Flores, J.G.; Tovilla, C.; Grimaldi, S.J.; García, J.R. Woody fuel load in coastal wetlands of the La Encrucijada Biosphere Reserve, Chiapas, México. Rev Chapingo Ser. Cienc. For. Ambiente 2018, 24, 339–357. Available online: https://www.scielo.org.mx/pdf/rcscfa/v24n3/2007-4018-rcscfa-24-03-339-es.pdf (accessed on 14 December 2022). [CrossRef]
- RAMSAR The List of Wetlands of International Importance. México. 1999. Available online: https://simec.conanp.gob.mx/pdf_sinap_aviso/163_sinap-aviso.pdf (accessed on 18 May 2022).
- DOF (Diario Oficial de la Federación) Decree Declaring La Encrucijada as a Protected Natural Area with the Character of Biosphere Reserve, México. 1995. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4875031&fecha=06/06/1995#gsc.tab=0 (accessed on 25 September 2022).
- INE (Instituto Nacional de Ecología). Programa de Manejo Reserva de la Biosfera La Encrucijada. México: INE-SEMARNAP. 1999. Available online: http://www.paot.mx/centro/ine-semarnat/anp/AN09.pdf (accessed on 6 October 2022).
- Landres, P.B.; Morgan, P.; Swanson, F.J. Overview of the use of natural variability concepts in managing ecological systems. Ecol. Appl. 1999, 9, 1179–1188. [Google Scholar] [CrossRef]
- White, P.S.; Jentsch, A. (Eds.) The search for generality in studies of disturbance and ecosystem dynamics. Prog. Bot. 2001, 62, 399–450. [Google Scholar] [CrossRef]
- Valdez, H.J.I. Aprovechamiento Forestal de Manglares en el Estado de Nayarit, Costa Pacífica de México. Madera Bosques 2002, 8, 129–145. Available online: https://myb.ojs.inecol.mx/index.php/myb/article/view/1296/1466 (accessed on 17 November 2022). [CrossRef]
- Corella, J.F.; Valdez, J.I.; Cetina, V.M.; González, F.V.; Trinidad, S.A.; Aguirre, R.J. Estructura Forestal de un Bosque de Mangles en el Noreste del Estado de Tabasco, México. Cienc. For. En. Mex. 2001, 90, 73–102. Available online: https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/914 (accessed on 13 August 2022).
- Ramos, F.J.; Quiróz, F.A.; Ramírez, G.J.; Lot, H.A. Manual de Hidrobotánica: Muestreo y Análisis de la Vegetación Acuática; AGT Editor: Mexico City, México, 2004; p. 158. [Google Scholar]
- Zarco, V.M.; Valdez, H.J.I.; Ángeles, J.; Castillo, O. Estructura y Diversidad de la Vegetación Arbórea en el Parque Estatal Agua Blanca, Macuspana, Tabasco. Univ. Cienc. 2010, 26, 1–17. Available online: https://www.scielo.org.mx/pdf/uc/v26n1/v26n1a1.pdf (accessed on 15 November 2022).
- Gentry, A.; Ortiz, R. Patrones de composición florística en la Amazonía peruana. In Amazonia Peruana Vegetación Húmeda Subtropical en el Llano Subandino; Kalliola, R., Puhakka, M., Danyoy, W., Eds.; Universidad de Turku (PAUT): Turku, Finland, 1993; pp. 155–166. [Google Scholar]
- Villavicencio, E.L.; Valdez, H.J.I. Analysis of the tree structure of the Rustican coffee agroforestry system in San Miguel, Veracruz, Mexico. Agrociencia 2003, 37, 413–423. [Google Scholar]
- Holdridge, L.; Grenke, R.; Hathaway, W.C.; Liang, W.H.; Tosi, T. Forest Environments in Tropical Life Zone: A Pilot Study; Pergamon Press: New York, NY, USA, 1971; p. 128. Available online: https://apps.dtic.mil/sti/citations/AD0740520 (accessed on 6 September 2022).
- Brown, J.K. Handbook for Inventorying Downed Woody Material; General Technical Report INT—16; USDA Forest Service: Heber City, UT, USA, 1974; p. 24. Available online: https://www.fs.usda.gov/research/treesearch/28647 (accessed on 29 July 2022).
- Sánchez, C.J.; Zerecero, L.G. Método Práctico Para Calcular la Cantidad de Combustibles Leñosos Y Hojarasca; CIFONOR—INIF—SFF—SARH: Mexico City, México, 1983. [Google Scholar]
- Flores, G.J.G.; Wong, J.C.; Paz, F. Camas de combustibles forestales y carbono en México. Madera Bosques 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Morfín, J.E.; Jardel, E.J.; Alvarado, E.; Michel, R. Caracterización y Cuantificación de Combustibles Forestales. Comisión Nacional Forestal-Universidad de Guadalajara, Guadalajara, Jalisco, México, 2012. Available online: https://www.camafu.org.mx/wp-content/uploads/2017/12/Caracterizacion-y-cuantificacion-de-combustibles-Forestales.pdf (accessed on 14 September 2022).
- Ottmar, R.D.; Vihnanek, R.E.; Wright, C.S.; Olson, D.L. Stereo photo series for quantifying natural fuels. In Oregon White Oak, California Deciduous Oak, and Mixed-Conifer with Shrub Types in the Western United States; PMS 839; National Wildfire Coordinating Group, National Interagency Fire Center: Boise, ID, USA, 2004; p. 75. [Google Scholar]
- Hammer, O. Past: Paleontolgical statistics V 3.26. Reference manual. In Natural History Museum; University of Oslo: Norway, 2016; Available online: http://folk.uio.no/ohammer/past/past3manual.pdf (accessed on 19 September 2022).
- SAS (Statistical Analysis System) SAS Institute Inc. JMP 14; Statistical Discovery from SAS: Cary, NC, USA, 2018. [Google Scholar]
- Mackey, R.L.; Currie, D.J. The diversity–disturbance relationship: Is it generally strong and peaked? Ecology 2001, 82, 3479–3492. [Google Scholar] [CrossRef]
- Laurance, S.G.; Baider, C.; Florens, F.V.; Ramrekha, S.; Sevathian, J.C.; Hammond, D.S. Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic island. Biol. Conserv. 2012, 149, 136–142. [Google Scholar] [CrossRef]
- Díaz, J.R.; Castillo, O.; García, G. Distribución Espacial y Estructura de una Selva Baja en un Ejido de la Reserva de la Biosfera Calakmul, Campeche. Univ. Cienc. 2002, 18, 9–26. Available online: https://ri.ujat.mx/bitstream/20.500.12107/1389/1/-235-191-A.pdf (accessed on 14 March 2023).
- Zamora, P.; García, G.; Flores, J.S.; Javier, J. Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México. Polibotánica 2008, 26, 39–66. [Google Scholar]
- Maldonado, E.A.; Maldonado, F. Estructura y Diversidad Arbórea de una Selva Alta Perennifolia en Tacotalpa, Tabasco, México. Univ. Cienc. 2010, 26, 235–245. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186-29792010000300003 (accessed on 18 December 2022).
- Maldonado, E.A.; Ochoa, S.; Ramos, R.; Guadarrama, M.A.; González, N.; de Jong, B.H.J. La selva inundable de Canacoite en Tabasco, México, una comunidad vegetal amenazada. Acta Botánica Mex. 2016, 115, 75–101. [Google Scholar] [CrossRef]
- Chiquini, W.; Esparza, L.; Peña, Y.; Maya, A.; Martínez, E. Estructura y diversidad en selva inundable al centro y sur de Calakmul. Rev. Ecosistemas Recur. Agropecu. 2017, 4, 511–524. [Google Scholar] [CrossRef]
- Romero, E.; Acosta, J.; Tovilla, C.; Schmook, B.; Gómez, R. Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994–2011. Rev. Geográfica Am. Cent. 2015, 1, 153–169. [Google Scholar] [CrossRef]
- Kellogg, C.H.; Bridgham, S.D.; Leicht, S.A. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient. J. Ecol. 2003, 91, 274–282. [Google Scholar] [CrossRef]
- Chen, Z. Effects of fire on major forest ecosystem processes: An overview. Ying Yong Sheng Tai Xue Bao 2006, 17, 1726–1732. [Google Scholar] [PubMed]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.A.; Miller, C.; Ager, A.A.; Finney, M.A. Use of artificial landscapes to isolate controls on burn probability. Landsc. Ecol. 2010, 251, 79–93. [Google Scholar] [CrossRef]
- Carmenta, R.; Parry, L.; Blackburn, A.; Vermeylen, S.; Barlow, J. Understanding human-fire interactions in tropical forest regions: A case for interdisciplinary research across the natural and social sciences. Ecol. Soc. 2011, 16, 53. [Google Scholar] [CrossRef]
- Mistry, J.; Bilbao, B.A.; Berardi, A. Community owned solutions for fire management in tropical ecosystem: Case studies from indigenous communities of South America. Phil. Trans. R Soc. B 2016, 371, 20150174. [Google Scholar] [CrossRef]
- Pérez, A.; Sousa, M.; Hannan, A.M.; Chiang, F.; Tenorio, P. Vegetación terrestre. In Biodiversidad del Estado de Tabasco; Bueno, J., Álvarez, F., Santiago, S., Eds.; Instituto de Biología, UNAM-CONABIO: Portales, México, 2005; pp. 65–110. Available online: http://bioteca.biodiversidad.gob.mx/janium/Documentos/ETAPA01/PDF/4796/4796.pdf (accessed on 7 January 2023).
- Ramírez, A. Ecología: Métodos de Muestreo y Análisis de Poblaciones y Comunidades; Pontificia Universidad Javeriana: Bogotá, Colombia, 2006; p. 273. [Google Scholar]
- Keane, R.E.; Karau, E. Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models. Ecol. Modell. 2010, 221, 1162–1172. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; De Fries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- Reyes, O.; Coli, J. Diagnóstico de Combustibles Forestales en el área de Conservación el Zapotal, Municipio de Tizimí, Yucatán. Bachelor’s Thesis, Universidad Autónoma de Chapingo, Texcoco, México, 2009. [Google Scholar]
- Amiro, B.D.; Alexander, B.; Flannigan, M.; Wotton, M. Fire, climate change, carbon and fuel management in the Canadian Boreal forest. Int. J. Wildland Fire 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Flores, G.J.G.; Omi, P.N. Mapping Forest Fuels for Spatial Fire Behavior Simulations Using Geomatic Strategies. Agrociencia 2003, 37, 65–72. Available online: https://www.redalyc.org/pdf/302/30237107.pdf (accessed on 2 August 2022).
- Martínez, J.L.; Rodríguez, D.A.; Borja, M.A.; Rodríguez, G.A. Propiedades Físicas y Dinámica de los Combustibles Forestales en un Bosque de Encino. Madera Bosques 2018, 24, e2421467. [Google Scholar] [CrossRef]
- Flores, G.J.G. Sampling Unit for Determining the Spatial Variability of the Surface Area Burnt by Forest Fires. Rev Mex. Cienc. For. 2017, 8, 117–142. Available online: https://www.scielo.org.mx/scielo.php?pid=S2007-11322017000500117&script=sci_arttext&tlng=en (accessed on 12 February 2023).
- Souza, S.R.; Veloso, M.D.M.; Espírito-Santo, M.M.; Silva, J.O.; Sánchez-Azofeita, A.; Souza, B.G.; Fernandes, G.W. Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. For. Ecosyst. 2019, 6, 35. [Google Scholar] [CrossRef]
- Westcott, V.C.; Enright, N.J.; Miller, B.P.; Fontaine, J.B.; Lade, J.C.; Lamont, B.B. Biomass and litter accumulation patterns in species-rich shrublands for fire hazard assessment. Int. J. Wildland Fire 2014, 23, 860–871. [Google Scholar] [CrossRef]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E.A. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Neri, A.C.; Rodríguez, D.A.; Contreras, R. Inflamabilidad de Combustibles Forestales en las Selvas de Calakmul, Campeche. Univ. Cienc. 2009, 25, 125–132. Available online: https://www.scielo.org.mx/pdf/uc/v25n2/v25n2a2.pdf (accessed on 26 July 2022).
- Rodríguez, D.A. Ecología del Fuego: Su Ecología, Manejo e Historia; Editorial Colegio de Postgraduados, Universidad Autónoma Chapingo, Parque Nacional Iztaccíhuatl-Popocatépetl, ANCF, AMPF: Texcoco, México, 2014; p. 891. [Google Scholar]
- Contreras, R.; Nolasco, A.; Rodríguez, D.A. Plan de Manejo del Fuego del Complejo Calakmul-Balam Kin-Balam Ku; Despacho Integral Mexicano: Campeche, México, 2006; p. 113. [Google Scholar]
- Mahdizadeh, M.; Russell, W. Initial floristic response to high severity wildfire in an old-growth coast redwood (Sequoia sempervirens (D. Don) Endl.). Forests 2021, 12, 1135. [Google Scholar] [CrossRef]
- Shaw, D.; Beedlow, P.; Lee, E.; Woodruff, D.; Meigs, G.; Calkings, S.; Reilly, M.; Merschel, A.; Cline, S.; Comeleo, R. The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States. For. Ecol. Manag. 2022, 525, 120572. [Google Scholar] [CrossRef]
- Chávez, D.A.; Xelhuantzi, C.J.; Rubio, C.E.; Villanueva, D.J.; Flores, L.H.; de la Mora, O.C. Caracterización de cargas de combustibles forestales para el manejo de reservorios de carbono y la contribución al cambio climático. Rev. Mex. Cienc. Agrícolas 2016, 13, 2589–2600. [Google Scholar] [CrossRef]
- Hararuk, O.; Kurz, W.A.; Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 2015, 7, 36. [Google Scholar] [CrossRef]
- Navarro, A.; Durán, R.; Méndez, M. El impacto del huracán Dean sobre la estructura y composición arbórea de un bosque manejado en Quintana Roo, México. Madera Bosques 2016, 18, 57–76. [Google Scholar] [CrossRef]
- del Campo, A.; Berna, F.H. Incendios de cobertura vegetal y biodiversidad: Una mirada a los impactos y efectos ecológicos potenciales sobre la diversidad vegetal. El Hombre La Máquina 2010, 35, 67–81. [Google Scholar] [CrossRef]
Level | Criteria | ||||||
---|---|---|---|---|---|---|---|
Canopy Openness | Distance to Roads (km) | Human Activities | Illegal Extraction Wood | Hurricane/Wind Impact | Fires (1998–2018) | Forest Cover (%) | |
Low disturbance | 0 to 25% | 0.6 to 1 | None | Very low | No fallen trees | None | 75–100 |
Medium disturbance | 25 to 50% | 0.2 to 0.6 | Dirt road | Low to Medium | fallen trees (1 to 3) | Low frequency (5 events) | 50–75 |
High disturbance | >50% | <0.2 | Dirt road, poaching | High to Very high | fallen trees (>3) | High frequency (>15 events) | <50 |
Timelag Fuel | Diameter | Fuel Class | Equation |
---|---|---|---|
1 h | 0–0.6 cm | Fine fuel | P = (0.484 × f × c)/(N × l) |
10 h | 0.61–2.5 cm | Regular fuel | P = (3.369 × f × c)/(N × l) |
100 h | 2.51–7.5 cm | Medium fuel | P = (36.808 × f × c)/(N × l) |
1000 h firm (no rot) | >7.5 cm | Coarse fuel | P = (1.46 × d2 × c)/(N × l) |
1000 h (rotten) | >7.5 cm | Coarse fuel | P = (1.21 × d2 × c)/(N × l) |
Species | Height Class (%) | Total | |||||
---|---|---|---|---|---|---|---|
>22 m | 17–22 m | 12–17 m | 7–12 m | 2–7 m | <2 m | ||
Low disturbance | |||||||
Pachira aquatica | - | 0.09 | 1.25 | 28.27 | 51.80 | - | 81.41 |
Zygia conzattii | - | - | - | 0.62 | 5.52 | - | 6.14 |
Cynometra oaxacana | - | - | - | 1.07 | 2.14 | - | 3.21 |
Entadopsis polystachya | - | - | - | 0.27 | 2.49 | - | 2.76 |
Rhizophora mangle | - | 0.53 | 0.71 | 0.18 | 0.27 | - | 1.69 |
Laguncularia racemosa | - | 0.09 | 0.53 | 0.27 | 0.62 | - | 1.51 |
Hampea macrocarpa | - | - | - | 0.61 | 0.44 | - | 1.05 |
Leucaena leucocephala | - | - | - | 0.19 | - | - | 0.19 |
Paullinia pinnata | - | - | 0.09 | 0.44 | 0.53 | - | 1.06 |
Serjania mexicana | - | - | - | - | 0.53 | - | 0.53 |
* Lianas | - | - | - | - | 0.06 | - | 0.06 |
Combretum decandrum | - | - | - | - | 0.03 | - | 0.03 |
Tabebuia rosea | - | - | - | 0.09 | 0.00 | - | 0.09 |
Total | - | 0.71 | 2.58 | 32.10 | 64.61 | - | 100.00 |
Medium disturbance | |||||||
Pachira aquatica | 2.39 | 6.06 | 13.94 | 22.21 | 37.25 | 1.83 | 83.68 |
Cynometra oaxacana | - | - | - | 1.65 | 9.17 | - | 11.00 |
Zygia conzattii | - | - | - | 0.55 | 2.02 | - | 2.57 |
Entadopsis polystachya | - | - | - | 0.37 | 0.92 | - | 1.29 |
Rhizophora mangle | 0.73 | 0.37 | 0.18 | - | - | - | 1.28 |
Laguncularia racemosa | - | - | 0.18 | - | - | - | 0.18 |
Total | 3.12 | 6.43 | 14.48 | 24.78 | 49.36 | 1.83 | 100.00 |
High disturbance | |||||||
Pachira aquatica | 0.21 | 0.11 | 0.53 | 18.02 | 70.39 | 0.84 | 90.10 |
Laguncularia racemosa | - | 0.84 | 1.16 | 0.95 | 0.63 | - | 3.58 |
Zygia conzattii | - | - | - | - | 3.06 | - | 3.06 |
Rhizophora mangle | 0.11 | 0.11 | 0.11 | 0.53 | 1.16 | 0.32 | 2.32 |
* Lianas | 0.00 | 0.00 | 0.00 | 0.32 | 0.42 | 0.00 | 0.74 |
Hampea macrocarpa | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.21 |
Total | 0.32 | 1.05 | 1.79 | 19.81 | 75.87 | 1.16 | 100.00 |
Species | DA | DR (%) | FA | FR (%) | BA (m2 ha−1) | DoR (%) | IVI (%) | FVI (%) | HCI |
Low disturbance | |||||||||
Pachira aquatica | 2171 | 80.85 | 1.17 | 15.56 | 23.72 | 74.95 | 171.35 | 110 | 148.05 |
Rhizophora mangle | 69 | 2.57 | 1.17 | 15.56 | 3.61 | 11.40 | 29.53 | 45 | |
Zygia conzattii | 164 | 6.12 | 1.17 | 15.56 | 0.97 | 3.06 | 24.73 | 53 | |
Entadopsis polystachya | 74 | 2.75 | 1.00 | 13.33 | 0.76 | 2.39 | 18.47 | 25 | |
Laguncularia racemosa | 43 | 1.60 | 0.83 | 11.11 | 0.89 | 2.81 | 15.51 | 23 | |
Cynometra oaxacana | 86 | 3.19 | 0.33 | 4.44 | 1.14 | 3.59 | 11.23 | 19 | |
Paullinia pinnata | 29 | 1.06 | 0.33 | 4.44 | 0.36 | 1.15 | 6.66 | 8 | |
Serjania mexicana | 14 | 0.53 | 0.33 | 4.44 | 0.05 | 0.15 | 5.13 | 5 | |
* Lianas | 12 | 0.44 | 0.33 | 4.44 | 0.05 | 0.17 | 5.06 | 6 | |
Hampea macrocarpa | 12 | 0.44 | 0.33 | 4.44 | 0.03 | 0.08 | 4.97 | 4 | |
Tabebuia rosea | 2 | 0.09 | 0.17 | 2.22 | 0.06 | 0.20 | 2.52 | - | |
Leucaena leucocephala | 7 | 0.27 | 0.17 | 2.22 | 0.01 | 0.03 | 2.52 | 2 | |
Combretum decandrum | 2 | 0.09 | 0.17 | 2.22 | 0.01 | 0.02 | 2.33 | - | |
Total | 2686 | 100 | 7.5 | 100 | 26.59 | 100 | 300 | 300 | |
Medium disturbance | |||||||||
Pachira aquatica | 1900 | 81.72 | 1.00 | 21.05 | 29.67 | 75.30 | 178.07 | 146 | 102.59 |
Cynometra oaxacana | 250 | 10.75 | 1.00 | 21.05 | 1.40 | 3.55 | 35.36 | 77 | |
Rhizophora mangle | 29 | 1.25 | 0.75 | 15.79 | 6.86 | 17.40 | 34.44 | 29 | |
Lianas | 54 | 2.33 | 0.75 | 15.79 | 0.30 | 0.75 | 18.87 | 12 | |
Zygia conzattii | 58 | 2.51 | 0.75 | 15.79 | 0.22 | 0.55 | 18.85 | 21 | |
Entadopsis polystachya | 29 | 1.25 | 0.25 | 5.26 | 0.85 | 2.15 | 8.67 | 9 | |
Laguncularia racemosa | 4 | 0.18 | 0.25 | 5.26 | 0.12 | 0.30 | 5.74 | 6 | |
Total | 2325 | 100 | 4.75 | 100 | 39.41 | 100 | 300 | 300 | |
High disturbance | |||||||||
Pachira aquatica | 2386 | 90.61 | 1.00 | 27.27 | 25.60 | 89.59 | 207.47 | 195 | 72.03 |
Rhizophora mangle | 53 | 2.00 | 0.83 | 22.73 | 1.74 | 6.08 | 30.81 | 29 | |
Laguncularia racemosa | 89 | 3.38 | 0.67 | 18.18 | 0.65 | 2.26 | 23.82 | 37 | |
Zygia conzattii | 81 | 3.06 | 0.67 | 18.18 | 0.51 | 1.78 | 23.02 | 25 | |
Lianas | 19 | 0.74 | 0.33 | 9.09 | 0.06 | 0.21 | 10.04 | 11 | |
Hampea macrocarpa | 6 | 0.21 | 0.17 | 4.55 | 0.02 | 0.08 | 4.84 | 3 | |
Total | 2633 | 100 | 3.67 | 100 | 28.57 | 100 | 300 | 300 |
FB | S | α | DMg | H′ | d | D |
---|---|---|---|---|---|---|
Low disturbance | 19 | 2.91 ± 0.75 | 2.39 ± 0.41 | 1.06 ± 0.01 | 0.77 ± 0.003 | 0.39 ± 0.02 |
Medium disturbance | 14 | 1.8 ± 0.3 | 1.54 ± 0.19 | 0.91 ± 0.11 | 0.78 ± 0.04 | 0.37 ± 0.007 |
High disturbance | 9 | 1.16 ± 0.08 | 1.01 ± 0.58 | 0.56 ± 0.22 | 0.87 ± 0.02 | 0.22 ± 0.05 |
Tropical Coastal Freshwater Forested Wetlands/Disturbance Level | ||||
---|---|---|---|---|
Level | Fuel Beds Stratum Average (t ha−1) | SD | ||
0–0.6 cm (1 h) | ||||
Low disturbance | 4.33 | 1.21 | ab | F2,14 = 4.94 |
Medium disturbance | 3.26 | 0.23 | b | p = 0.02 |
High disturbance | 5.93 | 0.65 | a | |
0.61–2.5 cm (10 h) | ||||
Low disturbance | 10.72 | 0.93 | b | F2,14 = 19.92 |
Medium disturbance | 11.82 | 1.21 | b | p ≤ 0.0001 |
High disturbance | 15 | 1.54 | a | |
2.51–7.5 cm (100 h) | ||||
Low disturbance | 42.86 | 5.65 | F2,14 = 1.45 | |
Medium disturbance | 51.28 | 11.95 | p = 0.26 | |
High disturbance | 55.55 | 19.9 | ||
>7.5 cm rotten (1000 h) | ||||
Low disturbance | 48.7 | 26.89 | b | F2,14 = 8.47 |
Medium disturbance | 47.08 | 13.42 | b | p = 0.0039 |
High disturbance | 90.34 | 12.98 | a | |
>7.5 firm (1000 h) | ||||
Low disturbance | 14.42 | 9.33 | F2,14 = 1.57 | |
Medium disturbance | 15.71 | 3.17 | n.s. | p = 0.24 |
High disturbance | 11.55 | 2.86 | ||
Surface litterfall | ||||
Low disturbance | 27.85 | 3.47 | F2,14 = 0.13 | |
Medium disturbance | 28.42 | 4.59 | n.s. | p = 0.87 |
High disturbance | 25.66 | 3.73 | ||
Fermentation litterfall | ||||
Low disturbance | 15.97 | 8.54 | F2,14 = 0.50 | |
Medium disturbance | 18.08 | 7.81 | n.s. | p = 0.61 |
High disturbance | 20.3 | 6.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios-Calderón, R.d.J.; Infante Mata, D.; Flores Garnica, J.G.; Torres, J.R. Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire. Forests 2024, 15, 158. https://doi.org/10.3390/f15010158
Barrios-Calderón RdJ, Infante Mata D, Flores Garnica JG, Torres JR. Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire. Forests. 2024; 15(1):158. https://doi.org/10.3390/f15010158
Chicago/Turabian StyleBarrios-Calderón, Romeo de Jesús, Dulce Infante Mata, José Germán Flores Garnica, and Jony R. Torres. 2024. "Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire" Forests 15, no. 1: 158. https://doi.org/10.3390/f15010158
APA StyleBarrios-Calderón, R. d. J., Infante Mata, D., Flores Garnica, J. G., & Torres, J. R. (2024). Forest Fuel Bed Variation in Tropical Coastal Freshwater Forested Wetlands Disturbed by Fire. Forests, 15(1), 158. https://doi.org/10.3390/f15010158