Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Collection, Processing and Characterization
2.3. Inoculation of Seedlings
2.4. Microbial Population Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Nutrient Status after Six (6) Months
3.2. Mycorrhizal Spore Count
3.3. NFB Colonization
3.4. Microbial Root Colonization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vergani, L.; Mapelli, F.; Marasco, R.; Crotti, E.; Fusi, M.; di Guardo, A.; Armiraglio, S.; Daffonchio, D.; Borin, S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front. Microbiol. 2017, 8, 1385. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Geetha, T.; Yuvaraj, M. Role of Biofertilizers in Plant Growth and Soil Health. Nitrogen Fixat. J. 2020. [CrossRef]
- Vishwakarma, G.S.; Bhattacharjee, G.; Gohil, N.; Singh, V. Current status, challenges and future of bioremediation. In Bioremediation of Pollutants; Pandey, V.C., Singh, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 403–415. ISBN 9780128190258. [Google Scholar] [CrossRef]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D.; Saxena, A.K. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 24917–24939. [Google Scholar] [CrossRef] [PubMed]
- Elekwachi, C.O.; Andresen, J.; Hodgman, T.C. Global Use of Bioremediation Technologies for Decontamination of Ecosystems. J. Bioremediation Biodegrad. 2014, 5, 225. [Google Scholar] [CrossRef]
- Andrei, M. BioRemediation in Manila, Philippines. ZME Sci. 2013. Available online: https://www.zmescience.com/ecology/bioremediation-in-manila-philippines/ (accessed on 25 August 2022).
- Alaira, S.; Padilla, C.; Alcantara, E.; Aggangan, N. Social Acceptability of the Bioremediation Technology for the Rehabilitation of an Abandoned Mined-Out Area in Marinduque, Philippines. J. Environ. Sci. Manag. 2021, 24, 77–91. [Google Scholar] [CrossRef]
- Karaca, O.; Cameselle, C.; Reddy, K.R. Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Rev. Environ. Sci. Bio/Technol. 2017, 17, 205–228. [Google Scholar] [CrossRef]
- Martinez, J.G.; Balondo, K.A.; Santos, G.D.; van Ranst, E.; Moens, T. Re-establishment of nematode communities in a rehabilitated surface mining area in Sibutad, southern Philippines. Eur. J. Soil Biol. 2021, 102, 103254. [Google Scholar] [CrossRef]
- Sun, W.; Ji, B.; Khoso, S.A.; Ji, B.; Khoso, S.A.; Tang, H.; Runqing Liu, R.; Wang, L.; Hu, Y. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 2018, 25, 33911–33925. [Google Scholar] [CrossRef]
- Singh, B.P. Screening and Characterization of Plant Growth Promoting Rhizobacteria (PGPR): An overview. Bull. Environ. Sci. Res. 2015, 4, 1–14. Available online: http://besr.org.in/index.php/besr/article/view/45 (accessed on 20 September 2022).
- Sinha, D.; Mukherjee, S.; Mahapatra, D. Multifaceted Potential of Plant Growth Promoting Rhizobacteria (PGPR): An Overview. In Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil; IGI Global: Hershey, PA, USA, 2021; pp. 205–268. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Campo, S.; Martín-Cardoso, H.; Olivé, M.; Pla, E.; Catala-Forner, M.; Martínez-Eixarch, M.; San Segundo, B. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Aggangan, N.; Anarna, J. Microbial biofertilizers and soil amendments enhanced tree growth and survival in a barren mined-out area in Marinduque, Philippines. J. Environ. Sci. Manag. 2019, 22, 77–88. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations, and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Pleto, J.V.R.; Arboleda, M.D.M.; Simbahan, J.F.; Migo, V.P. Assessment of the Effect of Remediation Strategies on the Environmental Quality of Aquaculture Ponds in Marilao and Meycauayan, Bulacan, Philippines. J. Health Pollut. 2018, 8, 181205. [Google Scholar] [CrossRef] [PubMed]
- Varela, R.P.; Garcia, G.A.A.; Garcia, C.M.; Asube, L.C.S. Ecobelt construction adopting agroforestry for rehabilitation of mined-out nickel areas in Surigao, Philippines. Adv. Environ. Sci. Bioflux 2019, 11, 187–194. Available online: http://www.aes.bioflux.com.ro (accessed on 20 September 2022).
- Aggangan, N.; Cortes, A. Screening mined-out indigenous mycorrhizal fungi for the rehabilitation of mine tailing areas in the Philippines. Reforesta 2018, 6, 71–85. [Google Scholar] [CrossRef]
- Day, J.M.; Döbereiner, J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem. 1976, 8, 45–50. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996; Volume 32, p. 374.
- Aggangan, N.S.; Cortes, A.D.; Opulencia, R.B.; Jomao-as, J.G.; Yecyec, R.P. Effects of mycorrhizal fungi and bamboo biochar on the rhizosphere bacterial population and nutrient uptake of cacao (Theobroma cacao L.) seedlings. Philipp. J. Crop Sci. 2019, 44, 1–9. [Google Scholar]
- Junia, R.; Kasana, R.C.; Jain, N.; Aseri, G.K. Guar (Cyamopsis tetragonoloba L.): A Potential Candidate for the Rehabilitation of Feldspar Mine Spoil Amended with Bioinoculants. Indian J. Agric. Res. 2020, 55, 129–136. [Google Scholar] [CrossRef]
- Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz, L.; et al. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front. Microbiol. 2020, 11, 509919. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Garg, N. Chapter 24-Microbial community in soil-plant systems: Role in heavy metal(loid) detoxification and sustainable agriculture. In Rhizosphere Engineering; Academic Press: Cambridge, MA, USA, 2022; pp. 471–498. [Google Scholar] [CrossRef]
- Gadd, G.M. Heavy Metal Pollutants: Environmental and Biotechnological Aspects. Ref. Modul. Life Sci. 2019. [CrossRef]
- Meier, S.; Borie, F.; Bolan, N.; Cornejo, P. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit. Rev. Environ. Sci. Technol. 2012, 42, 741–775. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Evelin, H.; Mathur, P.; Giri, B. Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In Plant Acclimation to Environmental Stress; Springer: New York, NY, USA, 2013; pp. 359–401. [Google Scholar]
- Raffi, M.M.; Charyulu, P.B.B. Azospirillum-biofertilizer for sustainable cereal crop production: Current status. Recent Dev. Appl. Microbiol. Biochem. 2021, 2, 193–209. [Google Scholar] [CrossRef]
- Sahab, S.; Suhani, I.; Singh, R.P. Valuing each patch of land: Utilizing plant-microbe interactions for the betterment of agriculture. In Microbes in Land Use Change Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 471–507. [Google Scholar]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of arbuscular mycorrhizal fungi, Phosphate–Solubilizing bacteria, and silicon to P uptake by plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef]
- Ren, C.G.; Kong, C.C.; Wang, S.X.; Xie, Z.H. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 2019, 217, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Khade, S.W.; Adholeya, A. Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: A retrospective. Bioremediation J. 2007, 11, 33–43. [Google Scholar] [CrossRef]
- Leung, H.M.; Zhen-Wen, W.A.; Zhi-Hong, Y.E.; Kin-Lam, Y.U.; Xiao-Ling, P.E.; Cheung, K.C. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere 2013, 23, 549–563. [Google Scholar] [CrossRef]
- Gong, X.; Tian, D.Q. Study on the effect mechanism of Arbuscular Mycorrhiza on the absorption of heavy metal elements in soil by plants. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 052064. [Google Scholar] [CrossRef]
- Yu, G.; Ma, J.; Jiang, P.; Li, J.; Gao, J.; Qiao, S.; Zhao, Z. The mechanism of plant resistance to heavy metal. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 052004. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
Parameters | Mined-Out Soils | |
---|---|---|
TMC (Ni) | MMC (Au) | |
% Organic matter | 0.4 (low) | 0.43 (low) |
pH | 7.17 | 6.14 (slightly acid) |
Available P (ppm) | 1.3 (low) | 7 (moderately high) |
Exchangeable K (ppm) | 6.0 (deficient) | 77 (moderately sufficient) |
Total N (%) | - | 0.048 |
Electrical conductivity (µS/cm) | 113.3 | 837.4 |
Iron (ppm) | 326,600 | - |
Nickel (ppm) | 7166.66 | - |
Copper (ppm) | - | 472.1 |
Manganese (ppm) | - | 449.2 |
Molybdenum (ppm) | - | 39,400 |
Treatment | Mode of Application/Inoculation | |
---|---|---|
1 | Control (no inoculation but applied with complete fertilizer) | No inoculation |
2 | MYKORICH® (composed of 12 species of AMF in a capsule) | Four capsules were inserted in the holes (2–3 inches depth) of the seedling |
3 | MYKOVAM® (composed of 12 species of AMF in the sand substrate) | 10 g was placed in the holes (5 g on each hole) |
4 | newMYC (composed of 5 high sporulating AMF isolated from the rhizosphere of plants growing in the mine tailing areas of Barangay Capayang, Mogpog, Marinduque) | 10 g was placed in the holes (5 g on each hole) |
5 | newNFB (composed of 5 fast-growing NFBs isolated from the rhizosphere of plants growing in the mine tailing areas of Barangay Capayang, Mogpog, Marinduque) | 10 g was placed in the holes (5 g on each hole) |
6 | Combined newMYC+newNFB (combination of Mogpog AMF and NFB isolates) | 10 g was placed in the holes (5 g on each hole) |
Treatment | TMC (Ni Mined-Out Soil) | |||||
---|---|---|---|---|---|---|
% Organic Matter | Total N (%) | Available P (ppm) | Exchangeable K (ppm) | Iron (ppm) | Nickel (ppm) | |
1-control | 5.5 | 0.31 | 4055.33 | 1064.67 | 16.89 | 4217.33 |
2-MYKORICH | 3.53 | 0.28 | 3571.33 | 1469.67 | 10.75 | 2220.33 |
3-MYKOVAM | 4.37 | 0.25 | 3599.33 | 971.33 | 12.41 | 2773 |
4-newNFB | 5.7 | 0.3 | 3817 | 1338 | 13.62 | 3233 |
5-newMYC | 5.67 | 0.3 | 4169 | 1529.33 | 11.98 | 2621 |
6-combined newNFB+newMYC | 5.33 | 0.28 | 4046.33 | 1304 | 14.45 | 3431 |
Treatment | MMC (Au Mined-Out Soil) | ||||||
---|---|---|---|---|---|---|---|
% Organic Matter | Total N (%) | Available P (ppm) | Exchangeable K (ppm) | Cu (ppm) | Mn (ppm) | Mo (ppm) | |
1-control | 3.47 | 0.18 | 2566 | 3412.67 | 452 | 443 | 47.67 |
2-MYKORICH | 3.27 | 0.18 | 2985 | 3082.33 | 295.67 | 531 | 44 |
3-MYKOVAM | 3.47 | 0.17 | 3301.67 | 2957 | 292.33 | 477.67 | 43.67 |
4-newNFB | 3.93 | 0.23 | 3857 | 5171 | 274 | 491 | 44.67 |
5-newMYC | 3.9 | 0.21 | 2690 | 4368.67 | 335 | 444.67 | 6.33 |
6-combined newNFB+newMYC | 3.4 | 0.19 | 2630 | 5922.33 | 351.67 | 419 | 8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magsayo, B.M.T.; Aggangan, N.S.; Gilbero, D.M.; Amparado, R.F., Jr. Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation. Forests 2024, 15, 180. https://doi.org/10.3390/f15010180
Magsayo BMT, Aggangan NS, Gilbero DM, Amparado RF Jr. Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation. Forests. 2024; 15(1):180. https://doi.org/10.3390/f15010180
Chicago/Turabian StyleMagsayo, Bethlehem Marie T., Nelly S. Aggangan, Dennis M. Gilbero, and Ruben F. Amparado, Jr. 2024. "Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation" Forests 15, no. 1: 180. https://doi.org/10.3390/f15010180
APA StyleMagsayo, B. M. T., Aggangan, N. S., Gilbero, D. M., & Amparado, R. F., Jr. (2024). Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation. Forests, 15(1), 180. https://doi.org/10.3390/f15010180