Dynamic Evaluation and Forecasting Analysis of Touristic Ecological Carrying Capacity of Forest Parks in China
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Ecological Footprint Model
3.1.1. Ecological Footprint
3.1.2. Ecological Capacity
3.1.3. Ecological Surplus and Deficit
3.1.4. Ecological Footprint Index
3.1.5. Ecological Tension Index
3.2. Hotspot Analysis
3.3. Trend Surface Analysis
3.4. The Standard Deviation Ellipse
3.5. The Grey Prediction Model
4. Data
4.1. Data Sources
4.2. Descriptive Statistics
5. Temporal and Spatial Evolution of Tourism Ecology in China’s Forest Parks
5.1. Analysis of the Time Evolution of the Ecological Status of Forest Parks in China
5.2. Analysis of the Temporal Evolution of the Tourism Ecological Status of Forest Parks in China’s Provinces
5.3. Spatial Distribution Characteristics of the Ecological Status of Forest Parks in China
5.3.1. Spatial Distribution Characteristics of Sustainable Development of Forest Parks in China
5.3.2. Spatial Characteristics of Ecological Pressure in Forest Parks in China
5.3.3. Characterization of the Spatial Trend in Ecological Surplus and Deficit in China’s Forest Parks
5.3.4. Spatial Change in Touristic Ecological Surplus and Deficit in China’s Forest Parks
5.4. Analysis of Touristic Ecological Surplus and Deficit Prediction of Forest Parks in China
6. Discussion
7. Conclusions and Suggestions
7.1. Conclusions
7.2. Suggestions
7.3. Limitation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Limaei, S.M.; Ghesmati, H.; Rashidi, R.; Yamini, N. Economic Evaluation of Natural Forest Park Using the Travel Cost Method (Case Study; Masouleh Forest Park, North of Iran). J. For. Sci. 2014, 60, 254–261. [Google Scholar] [CrossRef]
- Safe’i, R.; Darmawan, A.; Kaskoyo, H.; Rezinda, C.F.G. Analysis of Changes in Forest Health Status Values in Conservation Forest (Case Study: Plant and Animal Collection Blocks in Wan Abdul Rachman Forest Park (Tahura WAR)). J. Phys. Conf. Ser. 2021, 1842, 012049. [Google Scholar] [CrossRef]
- Singkran, N. Carbon Sink Capacity of Public Parks and Carbon Sequestration Efficiency Improvements in a Dense Urban Landscape. Env. Monit. Assess. 2022, 194, 750. [Google Scholar] [CrossRef]
- Allen, K.A.; Lehsten, V.; Hale, K.; Bradshaw, R. Past and Future Drivers of an Unmanaged Carbon Sink in European Temperate Forest. Ecosystems 2016, 19, 545–554. [Google Scholar] [CrossRef]
- Huang, X.; An, R.; Yu, M.-M.; He, F. Tourism Efficiency Decomposition and Assessment of Forest Parks in China Using Dynamic Network Data Envelopment Analysis. J. Clean. Prod. 2022, 363, 132405. [Google Scholar] [CrossRef]
- Kumar, H.; Pandey, B.W.; Anand, S. Analyzing the Impacts of Forest Ecosystem Services on Livelihood Security and Sustainability: A Case Study of Jim Corbett National Park in Uttarakhand. Int. J. Geoheritage Parks 2019, 7, 45–55. [Google Scholar] [CrossRef]
- Ahammad, R.; Hossain, M.K.; Sobhan, I.; Hasan, R.; Biswas, S.R.; Mukul, S.A. Social-Ecological and Institutional Factors Affecting Forest and Landscape Restoration in the Chittagong Hill Tracts of Bangladesh. Land Use Policy 2023, 125, 106478. [Google Scholar] [CrossRef]
- Danielson, S.C.; Mascia, R.; Metzger, M.; Stuble, K.L.; Medeiros, J.S. Stress-Resistant Trees Are More Common in Urban than Rural Forests: A Case Study of Cleveland, Ohio’s Natural Parks. Urban For. Urban Green. 2023, 82, 127864. [Google Scholar] [CrossRef]
- Ulrich, B. Forest Ecosystem Theory Based on Material Balance. Ecol. Model. 1992, 63, 163–183. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and Forest Effects on Air Quality and Human Health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Amini Parsa, V.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M. Analyzing Temporal Changes in Urban Forest Structure and the Effect on Air Quality Improvement. Sustain. Cities Soc. 2019, 48, 101548. [Google Scholar] [CrossRef]
- Kreye, M.M.; Adams, D.C.; Escobedo, F.J. The Value of Forest Conservation for Water Quality Protection. Forests 2014, 5, 862–884. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Guo, Y.; Wang, C.; Wang, G.; Ma, Z.; Zhou, W.; Zhang, D.; Ren, Z.; Wang, W. Urban Forest Soil Is Becoming Alkaline under Rapid Urbanization: A Case Study of Changchun, Northeast China. CATENA 2023, 224, 106993. [Google Scholar] [CrossRef]
- Agarwal, P.; Sahoo, D.; Parida, Y.; Ranjan Paltasingh, K.; Roy Chowdhury, J. Land Use Changes and Natural Disaster Fatalities: Empirical Analysis for India. Ecol. Indic. 2023, 154, 110525. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European Forests under Global Climate Change: Review of Tree Growth Processes, Crises and Management Strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef] [PubMed]
- China Has Added 11 New National Forest Parks, with a Total of 897—Economy, Science and Technology—People’s Daily Online. Available online: http://finance.people.com.cn/n1/2019/0213/c1004-30642222.html (accessed on 26 November 2023).
- Fitz, J.; Adenle, A.A.; Ifejika Speranza, C. Increasing Signs of Forest Fragmentation in the Cross River National Park in Nigeria: Underlying Drivers and Need for Sustainable Responses. Ecol. Indic. 2022, 139, 108943. [Google Scholar] [CrossRef]
- Ballantyne, M.; Pickering, C.M. Recreational Trails as a Source of Negative Impacts on the Persistence of Keystone Species and Facilitation. J. Environ. Manag. 2015, 159, 48–57. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Asibey, M.O.; Azumah, A.D. Urban Forest and the Question of Planning-Sustainability Inadequacy. Cities 2023, 140, 104453. [Google Scholar] [CrossRef]
- Chen, L. Study on Tourism Development Level of China’s Forest Parks Based on Ecological Carrying Capacity. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Tussadiah, A.; Sujiwo, A.S.; Andesta, I.; Daeli, W. Assessment of Coastal Ecosystem Services and Its Condition for Policy Management Plan in East Nusa Tenggara, Indonesia. Reg. Stud. Mar. Sci. 2021, 47, 101941. [Google Scholar] [CrossRef]
- Yu, X. Measurement Study of Forestry Ecological Security and Analysis of Its Influencing Factors Based on Ecological Footprint. Ph.D. Thesis, Nanjing Forestry University, Harbin, China, 2017. [Google Scholar]
- Bonye, S.Z.; Yiridomoh, G.Y.; Nsiah, V. Our Forest, Our Livelihood: Natural Resources’ Use Controversies and Community Livelihood Sustainability in the Mole National Park, Ghana. Land Use Policy 2023, 127, 106589. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Gardiner, B.; Jacobsen, J.B.; Jump, A.S.; Parra, C.; Plieninger, T.; Schuck, A.; Seidl, R.; et al. A Balancing Act: Principles, Criteria and Indicator Framework to Operationalize Social-Ecological Resilience of Forests. J. Environ. Manag. 2023, 331, 117039. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Luo, P.; Yang, H.; Luo, C.; Li, H.; Cheng, Y.; Huang, Y. Constructing an Indices System for Evaluating the Ecological Integrity of Forests in Western Sichuan, China Based on Structural Equation Modeling. Ecol. Indic. 2023, 146, 109745. [Google Scholar] [CrossRef]
- Kurniawan, F.; Adrianto, L.; Bengen, D.G.; Prasetyo, L.B. The Social-Ecological Status of Small Islands: An Evaluation of Island Tourism Destination Management in Indonesia. Tour. Manag. Perspect. 2019, 31, 136–144. [Google Scholar] [CrossRef]
- Sgroi, F. Forest Resources and Sustainable Tourism, a Combination for the Resilience of the Landscape and Development of Mountain Areas. Sci. Total Environ. 2020, 736, 139539. [Google Scholar] [CrossRef] [PubMed]
- Viccaro, M.; Cozzi, M.; Fanelli, L.; Romano, S. Spatial Modelling Approach to Evaluate the Economic Impacts of Climate Change on Forests at a Local Scale. Ecol. Indic. 2019, 106, 105523. [Google Scholar] [CrossRef]
- Han, X.; Sun, T.; Cao, T. Study on Landscape Quality Assessment of Urban Forest Parks: Take Nanjing Zijinshan National Forest Park as an Example. Ecol. Indic. 2021, 120, 106902. [Google Scholar] [CrossRef]
- Su, L.; Ji, X. Spatial-Temporal Differences and Evolution of Eco-Efficiency in China’s Forest Park. Urban For. Urban Green. 2021, 57, 126894. [Google Scholar] [CrossRef]
- Zheng, Y.; Lan, S.; Chen, W.Y.; Chen, X.; Xu, X.; Chen, Y.; Dong, J. Visual Sensitivity versus Ecological Sensitivity: An Application of GIS in Urban Forest Park Planning. Urban For. Urban Green. 2019, 41, 139–149. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, R.; Xue, C.; Xia, Z. Ecological Sensitivity Evaluation and Explanatory Power Analysis of the Giant Panda National Park in China. Ecol. Indic. 2023, 146, 109792. [Google Scholar] [CrossRef]
- Bernard, F.; de Groot, R.S.; Campos, J.J. Valuation of Tropical Forest Services and Mechanisms to Finance Their Conservation and Sustainable Use: A Case Study of Tapantí National Park, Costa Rica. For. Policy Econ. 2009, 11, 174–183. [Google Scholar] [CrossRef]
- Coppinger, C.R.; Gorman, M.; Markey, A.; Stanley, D.A. Are Indicators Useful for Measuring and Supporting the Sustainability of Forest Use? A Zambian Case Study. For. Policy Econ. 2023, 149, 102926. [Google Scholar] [CrossRef]
- Mancini, M.S.; Barioni, D.; Danelutti, C.; Barnias, A.; Bračanov, V.; Capanna Piscè, G.; Chappaz, G.; Đuković, B.; Guarneri, D.; Lang, M.; et al. Ecological Footprint and Tourism: Development and Sustainability Monitoring of Ecotourism Packages in Mediterranean Protected Areas. J. Outdoor Recreat. Tour. 2022, 38, 100513. [Google Scholar] [CrossRef]
- Dvarskas, A. Dynamically Linking Economic Models to Ecological Condition for Coastal Zone Management: Application to Sustainable Tourism Planning. J. Environ. Manag. 2017, 188, 163–172. [Google Scholar] [CrossRef]
- Ferguson, M.D.; Giles, G.; Ferguson, L.A.; Barcelona, R.; Evensen, D.; Barrows, C.; Leberman, M. Seeing the Forest for the Trees: A Social-Ecological Systems Approach to Managing Outdoor Recreation Visitation in Parks and Protected Areas. J. Outdoor Recreat. Tour. 2022, 38, 100473. [Google Scholar] [CrossRef]
- Brandt, J.S.; Buckley, R.C. A Global Systematic Review of Empirical Evidence of Ecotourism Impacts on Forests in Biodiversity Hotspots. Curr. Opin. Environ. Sustain. 2018, 32, 112–118. [Google Scholar] [CrossRef]
- Vakhlamova, T.; Rusterholz, H.-P.; Kamkin, V.; Baur, B. Recreational Use of Urban and Suburban Forests Affects Plant Diversity in a Western Siberian City. Urban For. Urban Green. 2016, 17, 92–103. [Google Scholar] [CrossRef]
- Shan, S.; Xu, H.; Qi, X.; Chen, T.; Wang, X. Evaluation and Prediction of Ecological Carrying Capacity in the Qilian Mountain National Park, China. J. Environ. Manag. 2023, 339, 117856. [Google Scholar] [CrossRef]
- Du, W.; Yan, H.; Yang, Y.; Liu, F. Evaluation methods and research trends for ecological carrying capacity. J. Resour. Ecol. 2018, 9, 115–124. [Google Scholar]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Spatial and Temporal Variation and Prediction of Ecological Carrying Capacity Based on Machine Learning and PLUS Model. Ecol. Indic. 2023, 154, 110611. [Google Scholar] [CrossRef]
- Adrianto, L.; Kurniawan, F.; Romadhon, A.; Bengen, D.G.; Sjafrie, N.D.M.; Damar, A.; Kleinertz, S. Assessing Social-Ecological System Carrying Capacity for Urban Small Island Tourism: The Case of Tidung Islands, Jakarta Capital Province, Indonesia. Ocean Coast. Manag. 2021, 212, 105844. [Google Scholar] [CrossRef]
- He, H.; Shen, L.; Wong, S.W.; Cheng, G.; Shu, T. A “Load-Carrier” Perspective Approach for Assessing Tourism Resource Carrying Capacity. Tour. Manag. 2023, 94, 104651. [Google Scholar] [CrossRef]
- Dai, J.; Ouyang, Y.; Hou, J.; Cai, L. Long-Time Series Assessment of the Sustainable Development of Xiamen City in China Based on Ecological Footprint Calculations. Ecol. Indic. 2023, 148, 110130. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S. Ecological Footprint and Life Cycle Assessment in the Sustainability Assessment of Tourism Activities. Ecol. Indic. 2012, 16, 135–147. [Google Scholar] [CrossRef]
- Patterson, T.M.; Niccolucci, V.; Marchettini, N. Adaptive Environmental Management of Tourism in the Province of Siena, Italy Using the Ecological Footprint. J. Environ. Manag. 2008, 86, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Jiang, Y.; Du, W.; Cao, P.; Wang, Z.; Lei, J. A Modified Ecological Footprint Calculation Method for Drylands and Its Application to Xinjiang Uygur Autonomous Region, China. J. Clean. Prod. 2023, 419, 138176. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chen, M.-P. Ecological Footprint, Tourism Development, and Country Risk: International Evidence. J. Clean. Prod. 2021, 279, 123671. [Google Scholar] [CrossRef]
- Rendeiro Martín-Cejas, R.; Pablo Ramírez Sánchez, P. Ecological Footprint Analysis of Road Transport Related to Tourism Activity: The Case for Lanzarote Island. Tour. Manag. 2010, 31, 98–103. [Google Scholar] [CrossRef]
- Wang, B.; Feng, Y.; Wang, Y.; Yao, S. SWOT Analysis on Tourist Eco-Footprint and Ecological Carrying Capacity in Poverty-Stricken Areas. Environ. Eng. Manag. J. 2020, 19, 1481–1489. [Google Scholar]
- Shang, H.; Na, S. Study of tourism ecological footprint of forest park based on comprehensive method. For. Econ. 2021, 43, 45–56. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Xiu, X.; Lin, P.; Huang, Y.; Liu, L. Study on Low-Carbon Development of Forest Tourism in Fujian Province Based on Ecological Footprint Model. China For. Econ. 2016, 7, 77–83. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y. Evolution and Enlightenment of Ecological Footprint of Forest Tourism in Beijing: Based on Statistical Data of Forest Parks from 1999 to 2011. J. Hunan Agric. Univ. (Soc. Sci.) 2015, 16, 5. [Google Scholar]
- Zhang, J.; Sui, Y. Theoretical Research on Sustainable Ecological Environment Based on the Concept of Green Tourism Consumption. Int. J. Environ. Technol. Manag. 2020, 23, 83. [Google Scholar] [CrossRef]
- Liu, T.; Liu, C.; Zeng, K.; Yi, Y. Assessment of sustainable development of Wujiang Karst National Geo-park in Sinan, Guizhou province based on ecological footprint index. Sci. Technol. Manag. Land Resour. 2013, 30, 46–51. [Google Scholar]
- Zhao, X.; Ma, C.; Gao, L.; Wei, L. Evaluation of regional ecological security at different scales based on ecological pressure index. Chin. J. Eco-Agric. 2007, 6, 135–138. [Google Scholar]
- Feng, Y.; Chen, X.; Gao, F.; Liu, Y. Impacts of Changing Scale on Getis-Ord Gi Hotspots of CPUE: A Case Study of the Neon Flying Squid (Ommastrephes Bartramii) in the Northwest Pacific Ocean. Acta Oceanol. Sin.-Engl. Ed. 2018, 37, 67–76. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Yang, C.; He, G. Spatio-temporal evolution and prediction of the development level of rural revitalization in the Yangtze River Economic Belt. Stat. Decis. 2023, 39, 77–82. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Liu, M.; Li, W. Calculation of equivalence factor used in ecological footprint for China and its provinces based on net primary production. J. Ecol. Rural Environ. 2010, 26, 401–406. [Google Scholar]
- Liu, M.; Li, W.; Xie, G. Estimation of China ecological footprint production coefficient based on net primary productivity. Chin. J. Ecol. 2010, 29, 592–597. [Google Scholar] [CrossRef]
- Shang, H. Study on Tourism Ecological Footprint Analysis and Development Countermeasures of Forest Parks in Heilongjiang Province. Master’s Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Chen, L.; Su, J.; Wan, Z. Study on the temporal evolution of tourism ecological carrying capacity of forest park from the perspective of ecological civilization. For. Econ. 2019, 25–29. [Google Scholar]
EFI | ≤−1 | −1–0 | 0–0.5 | 0.5–1 |
---|---|---|---|---|
Degree of sustainable development | Strong unsustainable development | Unsustainable development | Weak sustainable development | Strong sustainable development |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
ETI | <0.5 | 0.5–0.8 | 0.8–1.5 | >1.5 |
Ecological security | Very safe | Relatively safe | Unsafe | Very unsafe |
Year | Area of Forest Park (hm2) | Area of National Forest Park (hm2) | Total Tourists (104) | Overseas Tourists (104) |
---|---|---|---|---|
2004 | 14,601,855.80 | 10,586,692.67 | 14,745.03 | 448.26 |
2005 | 15,134,174.70 | 11,051,517.30 | 17,427.19 | 541.73 |
2006 | 15,693,203.31 | 11,252,047.13 | 21,321.77 | 543.56 |
2007 | 15,974,702.48 | 11,249,409.93 | 24,746.00 | 714.00 |
2008 | 16,298,336.00 | 11,432,664.00 | 27,379.00 | 693.00 |
2009 | 16,525,010.00 | 11,519,312.00 | 33,287.00 | 912.00 |
2010 | 16,776,936.00 | 11,776,635.00 | 39,611.00 | 1077.00 |
2011 | 17,063,066.00 | 11,764,849.00 | 46,808.00 | 1207.00 |
2012 | 17,382,116.00 | 12,051,117.00 | 54,797.00 | 1542.00 |
2013 | 17,580,006.00 | 12,143,291.00 | 58,948.00 | 2169.00 |
2014 | 17,805,428.00 | 12,260,972.00 | 70,987.00 | 1371.00 |
2015 | 18,017,072.00 | 12,510,602.00 | 79,512.00 | 1414.00 |
2016 | 18,866,757.00 | 13,200,939.00 | 91,682.00 | 1498.00 |
2017 | 20,281,900.00 | 14,410,502.00 | 96,189.00 | 1361.00 |
2018 | 18,640,888.00 | 12,819,329.00 | 98,638.00 | 1572.00 |
2019 | 18,607,393.00 | 12,799,963.00 | 105,884.00 | 1896.00 |
Mean | 17,203,052.77 | 12,051,865.13 | 55,122.62 | 1184.97 |
SD | 1,501,128.30 | 950,471.33 | 31,651.62 | 508.96 |
Min | 14,601,855.80 | 10,586,692.67 | 14,745.03 | 448.26 |
Max | 20,281,900.00 | 14,410,502.00 | 105,884.00 | 2169.00 |
Year | Touristic Ecological Footprint | Touristic Ecological Capacity | Touristic Ecological Surplus and Deficit | |||
---|---|---|---|---|---|---|
Total (104 hm2) | Per Capita (hm2) | Total (104 hm2) | Per Capita (hm2) | Total (104 hm2) | Per Capita (hm2) | |
2004 | 2058.8617 | 0.1396 | 1770.6210 | 0.1201 | −288.2406 | −0.0195 |
2005 | 2133.9186 | 0.1224 | 1835.1700 | 0.1053 | −298.7486 | −0.0171 |
2006 | 2212.7417 | 0.1038 | 1902.9578 | 0.0892 | −309.7838 | −0.0145 |
2007 | 2252.4330 | 0.0910 | 1937.0924 | 0.0783 | −315.3406 | −0.0127 |
2008 | 2298.0654 | 0.0839 | 1976.3362 | 0.0722 | −321.7292 | −0.0118 |
2009 | 2330.0264 | 0.0700 | 2003.8227 | 0.0602 | −326.2037 | −0.0098 |
2010 | 2365.5480 | 0.0597 | 2034.3713 | 0.0514 | −331.1767 | −0.0084 |
2011 | 2405.8923 | 0.0514 | 2069.0674 | 0.0442 | −336.8249 | −0.0072 |
2012 | 2450.8784 | 0.0447 | 2107.7554 | 0.0385 | −343.1230 | −0.0063 |
2013 | 2478.7808 | 0.0421 | 2131.7515 | 0.0362 | −347.0293 | −0.0059 |
2014 | 2510.5653 | 0.0354 | 2159.0862 | 0.0304 | −351.4791 | −0.0050 |
2015 | 2540.4072 | 0.0319 | 2184.7502 | 0.0275 | −355.6570 | −0.0045 |
2016 | 2660.2127 | 0.0290 | 2287.7830 | 0.0250 | −372.4298 | −0.0041 |
2017 | 2859.7479 | 0.0297 | 2459.3832 | 0.0256 | −400.3647 | −0.0042 |
2018 | 2628.3652 | 0.0266 | 2260.3941 | 0.0229 | −367.9711 | −0.0037 |
2019 | 2623.6424 | 0.0248 | 2256.3325 | 0.0213 | −367.3099 | −0.0035 |
Province | 2004 | 2009 | 2014 | 2019 | ||||
EF | EC | EF | EC | EF | EC | EF | EC | |
Anhui | 19.54 | 10.29 | 22.33 | 11.62 | 38.30 | 13.05 | 54.08 | 13.57 |
Beijing | 12.03 | 1.17 | 9.86 | 2.77 | 12.28 | 3.41 | 37.06 | 3.41 |
Fujian | 45.13 | 20.25 | 53.37 | 30.71 | 55.09 | 36.73 | 48.10 | 36.67 |
Gansu | 50.43 | 81.51 | 20.32 | 95.26 | 27.58 | 102.47 | 20.32 | 94.25 |
Guangdong | 170.84 | 64.28 | 202.45 | 68.87 | 226.30 | 76.51 | 290.67 | 76.33 |
Guangxi | 18.65 | 2.41 | 13.88 | 2.54 | 16.78 | 2.56 | 17.32 | 2.63 |
Guizhou | 36.08 | 17.99 | 35.04 | 22.40 | 67.68 | 23.55 | 41.66 | 24.79 |
Hainan | 2.92 | 21.46 | 1.71 | 18.96 | 5.08 | 23.58 | 6.21 | 23.96 |
Hebei | 34.01 | 17.81 | 24.35 | 23.27 | 22.87 | 23.93 | 26.54 | 23.79 |
Henan | 85.92 | 19.64 | 116.61 | 28.06 | 66.95 | 39.23 | 104.12 | 41.27 |
Heilongjiang | 30.80 | 183.88 | 27.37 | 190.47 | 30.29 | 191.26 | 14.56 | 231.35 |
Hubei | 26.96 | 24.69 | 29.30 | 29.52 | 43.28 | 32.16 | 47.26 | 32.37 |
Hunan | 52.79 | 1.96 | 57.19 | 3.35 | 75.65 | 4.32 | 82.82 | 4.93 |
Jilin | 61.98 | 516.14 | 53.69 | 519.08 | 42.36 | 526.72 | 16.19 | 180.90 |
Jiangsu | 78.87 | 2.62 | 88.61 | 3.37 | 75.94 | 3.26 | 78.26 | 6.83 |
Jiangxi | 35.72 | 27.02 | 71.49 | 36.36 | 97.21 | 39.29 | 93.96 | 40.30 |
Liaoning | 23.55 | 20.63 | 73.42 | 23.93 | 54.44 | 24.57 | 19.61 | 24.18 |
Inner Mongolia | 17.05 | 111.65 | 19.81 | 120.64 | 17.23 | 124.64 | 28.03 | 141.42 |
Ningxia | 5.23 | 4.42 | 3.59 | 4.42 | 9.33 | 5.82 | 9.61 | 7.45 |
Qinghai | 3.82 | 2.75 | 6.68 | 2.63 | 10.07 | 2.71 | 8.01 | 2.92 |
Shandong | 179.43 | 36.34 | 123.02 | 51.28 | 118.29 | 56.73 | 99.73 | 55.27 |
Shanxi | 21.24 | 20.41 | 22.08 | 24.34 | 42.97 | 25.54 | 48.48 | 26.97 |
Shaanxi | 31.39 | 20.82 | 39.39 | 23.98 | 27.70 | 27.44 | 26.74 | 28.77 |
Shanghai | 14.26 | 0.51 | 28.19 | 0.54 | 25.09 | 0.63 | 18.09 | 0.51 |
Sichuan | 85.65 | 0.65 | 53.17 | 0.65 | 63.61 | 0.67 | 53.89 | 2.06 |
Tianjin | 0.68 | 0.31 | 0.77 | 0.13 | 0.71 | 0.13 | 0.83 | 0.13 |
Tibet | 2.07 | 124.05 | 1.92 | 124.64 | 2.73 | 126.79 | 3.61 | 113.17 |
Xinjiang | 25.69 | 182.73 | 16.87 | 270.96 | 45.88 | 348.29 | 15.76 | 380.47 |
Yunnan | 8.61 | 16.97 | 20.49 | 17.09 | 22.91 | 17.15 | 17.06 | 20.86 |
Zhejiang | 57.93 | 9.16 | 61.64 | 11.12 | 55.68 | 12.69 | 59.38 | 13.64 |
Chongqing | 28.49 | 10.77 | 89.42 | 11.18 | 97.85 | 12.01 | 103.68 | 11.74 |
Year | The Center of Gravity Coordinate | Displacement of Center of Gravity | Center of Gravity Position | Ellipse Perimeter (km) | Ellipse Area (km2) | Rotation | Oblateness | ||
---|---|---|---|---|---|---|---|---|---|
Longitude | Latitude | Direction | Distance (km) | ||||||
2004 | 105°13′38″ E | 41°31′42″ N | - | - | Wulanchabu | 12,624.20 | 8,244,500 | 77.80° | 0.75 |
2005 | 104°50′34″ E | 41°32′17″ N | Northwest | 85.79 | Wulanchabu | 12,812.80 | 8,323,210 | 79.05° | 0.76 |
2006 | 109°50′24″ E | 41°56′57″ N | Northwest | 100.12 | Wulanchabu | 12,870.90 | 8,026,700 | 79.71° | 0.77 |
2007 | 110°19′23″ E | 41°54′40″ N | Northeast | 16.50 | Wulanchabu | 12,807.70 | 7,966,740 | 79.70° | 0.77 |
2008 | 110°05′52″ E | 41°48′39″ N | Southwest | 72.51 | Wulanchabu | 12,785.40 | 7,871,850 | 79.76° | 0.78 |
2009 | 110°11′57″ E | 41°43′24″ N | Southwest | 33.22 | Baotou | 12,816.70 | 7,923,750 | 79.86° | 0.78 |
2010 | 110°02′22″ E | 41°45′57″ N | Southeast | 5.08 | Baotou | 12,851.30 | 8,092,160 | 79.89° | 0.77 |
2011 | 109°54′50″ E | 41°46′09″ N | Northwest | 25.98 | Baotou | 12,688.90 | 7,259,640 | 80.05° | 0.80 |
2012 | 110°53′10″ E | 41°51′37″ N | Southwest | 109.08 | Baotou | 12 806.40 | 7,377,100 | 80.62° | 0.80 |
2013 | 111°00′17″ E | 41°42′35″ N | Southeast | 13.96 | Baotou | 12,851.60 | 7,615,090 | 80.66° | 0.79 |
2014 | 110°59′01″ E | 41°44′24″ N | Southeast | 18.90 | Baotou | 12,947.00 | 8,044,760 | 80.50° | 0.78 |
2015 | 111°16′46″ E | 41°46′11″ N | Northwest | 17.22 | Baotou | 12,936.90 | 8,017,880 | 80.91° | 0.78 |
2016 | 111°54′16″ E | 41°54′26″ N | Northeast | 29.19 | Baotou | 12,977.20 | 8.091.780 | 80.80° | 0.78 |
2017 | 111°46′06″ E | 41°51′47″ N | Northwest | 54.08 | Baotou | 13,105.10 | 8,254,170 | 81.04° | 0.78 |
2018 | 112°39′55″E | 41°48′50″ N | Southwest | 559.62 | Bayan Nur | 13,201.20 | 8,512,810 | 79.96° | 0.77 |
2019 | 113°25′36″ E | 41°43′30″ N | Southeast | 42.82 | Alxa League | 13,316.30 | 9,022,380 | 80.00° | 0.76 |
Year | EF | ef | ||||||
---|---|---|---|---|---|---|---|---|
Observed Value | Fitted Value | Deviation | % | Observed Value | Fitted Value | Deviation | % | |
2005 | 2133.9186 | 2176.9888 | −43.0702 | −2.0184 | 0.1224 | 0.1188 | 0.0036 | 2.9533 |
2006 | 2212.7417 | 2213.2536 | −0.5119 | −0.0231 | 0.1038 | 0.1045 | −0.0007 | −0.6953 |
2007 | 2252.4331 | 2250.1225 | 2.3106 | 0.1026 | 0.091 | 0.0919 | −0.0009 | −0.9642 |
2008 | 2298.0654 | 2287.6055 | 10.4599 | 0.4552 | 0.0839 | 0.0808 | 0.0031 | 3.7074 |
2009 | 2330.0264 | 2325.713 | 4.3135 | 0.1851 | 0.07 | 0.0711 | −0.0011 | −1.5363 |
2010 | 2365.548 | 2364.4552 | 1.0928 | 0.0462 | 0.0597 | 0.0625 | −0.0028 | −4.6569 |
2011 | 2405.8923 | 2403.8428 | 2.0495 | 0.0852 | 0.0514 | 0.055 | −0.0036 | −6.9312 |
2012 | 2450.8784 | 2443.8866 | 6.9918 | 0.2853 | 0.0447 | 0.0483 | −0.0036 | −8.063 |
2013 | 2478.7808 | 2484.5974 | −5.8166 | −0.2347 | 0.0421 | 0.0425 | −0.0005 | −1.0959 |
2014 | 2510.5653 | 2525.9864 | −15.421 | −0.6142 | 0.0354 | 0.0374 | −0.002 | −5.6949 |
2015 | 2540.4072 | 2568.0648 | −27.6577 | −1.0887 | 0.0319 | 0.0329 | −0.0009 | −2.8971 |
2016 | 2660.2127 | 2610.8442 | 49.3685 | 1.8558 | 0.029 | 0.0289 | 0.0001 | 0.3485 |
2017 | 2859.7479 | 2654.3363 | 205.4116 | 7.1829 | 0.0297 | 0.0254 | 0.0043 | 14.4236 |
2018 | 2628.3652 | 2698.5528 | −70.1876 | −2.6704 | 0.0266 | 0.0224 | 0.0043 | 16.0194 |
2019 | 2623.6424 | 2743.5059 | −119.8635 | −4.5686 | 0.0248 | 0.0197 | 0.0051 | 20.5511 |
Year | EC | ec | ||||||
---|---|---|---|---|---|---|---|---|
Observed Value | Fitted Value | Deviation | % | Observed Value | Fitted Value | Deviation | % | |
2005 | 1835.17 | 1872.2104 | −37.0404 | −2.0184 | 0.1053 | 0.1022 | 0.0031 | 2.9529 |
2006 | 1902.9578 | 1903.3981 | −0.4403 | −0.0231 | 0.0892 | 0.0899 | −0.0006 | −0.6952 |
2007 | 1937.0924 | 1935.1053 | 1.9871 | 0.1026 | 0.0783 | 0.079 | −0.0008 | −0.964 |
2008 | 1976.3362 | 1967.3407 | 8.9955 | 0.4552 | 0.0722 | 0.0695 | 0.0027 | 3.7066 |
2009 | 2003.8227 | 2000.1131 | 3.7096 | 0.1851 | 0.0602 | 0.0611 | −0.0009 | −1.536 |
2010 | 2034.3713 | 2033.4315 | 0.9398 | 0.0462 | 0.0514 | 0.0538 | −0.0024 | −4.6556 |
2011 | 2069.0674 | 2067.3048 | 1.7625 | 0.0852 | 0.0442 | 0.0473 | −0.0031 | −6.929 |
2012 | 2107.7554 | 2101.7425 | 6.0129 | 0.2853 | 0.0385 | 0.0416 | −0.0031 | −8.0601 |
2013 | 2131.7515 | 2136.7538 | −5.0022 | −0.2347 | 0.0362 | 0.0366 | −0.0004 | −1.0954 |
2014 | 2159.0862 | 2172.3483 | −13.2621 | −0.6142 | 0.0304 | 0.0322 | −0.0017 | −5.6923 |
2015 | 2184.7502 | 2208.5358 | −23.7856 | −1.0887 | 0.0275 | 0.0283 | −0.0008 | −2.8956 |
2016 | 2287.783 | 2245.326 | 42.4569 | 1.8558 | 0.025 | 0.0249 | 0.0001 | 0.3483 |
2017 | 2459.3832 | 2282.7292 | 176.654 | 7.1829 | 0.0256 | 0.0219 | 0.0037 | 14.4157 |
2018 | 2260.3941 | 2320.7554 | −60.3613 | −2.6704 | 0.0229 | 0.0192 | 0.0037 | 16.0097 |
2019 | 2256.3325 | 2359.4151 | −103.0826 | −4.5686 | 0.0213 | 0.0169 | 0.0044 | 20.5377 |
EF | ef | EC | ec | |
---|---|---|---|---|
2020 | 2789.20783 | 0.01729 | 2398.71874 | 0.01487 |
2021 | 2835.67109 | 0.01521 | 2438.67713 | 0.01308 |
2022 | 2882.90833 | 0.01338 | 2479.30117 | 0.0115 |
2023 | 2930.93247 | 0.01176 | 2520.60192 | 0.01012 |
2024 | 2979.7566 | 0.01034 | 2562.59068 | 0.0089 |
2025 | 3029.39405 | 0.0091 | 2605.27889 | 0.00782 |
2026 | 3079.85838 | 0.008 | 2648.67821 | 0.00688 |
2027 | 3131.16336 | 0.00704 | 2692.80049 | 0.00605 |
2028 | 3183.32298 | 0.00619 | 2737.65776 | 0.00532 |
2029 | 3236.35149 | 0.00544 | 2783.26228 | 0.00468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Chen, H. Dynamic Evaluation and Forecasting Analysis of Touristic Ecological Carrying Capacity of Forest Parks in China. Forests 2024, 15, 38. https://doi.org/10.3390/f15010038
Lu J, Chen H. Dynamic Evaluation and Forecasting Analysis of Touristic Ecological Carrying Capacity of Forest Parks in China. Forests. 2024; 15(1):38. https://doi.org/10.3390/f15010038
Chicago/Turabian StyleLu, Jiawei, and Haibo Chen. 2024. "Dynamic Evaluation and Forecasting Analysis of Touristic Ecological Carrying Capacity of Forest Parks in China" Forests 15, no. 1: 38. https://doi.org/10.3390/f15010038
APA StyleLu, J., & Chen, H. (2024). Dynamic Evaluation and Forecasting Analysis of Touristic Ecological Carrying Capacity of Forest Parks in China. Forests, 15(1), 38. https://doi.org/10.3390/f15010038