Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Detection Method and Accuracy Assessment
2.4. Landscape Indexes and Dynamic Metrics
2.5. Centroid Migration
2.6. Spartina alterniflora Expansion Pattern Analysis
3. Results
3.1. Accuracy Assessment
3.2. Spatial–Temporal Distribution Changes of Mangroves and S. alterniflora
3.3. Changes of Mangrove and S. alterniflora Landscape Indexes
3.3.1. Mangroves
3.3.2. Spartina alterniflora
3.4. Expansion Mode of S. alterniflora from 2005 to 2019
4. Discussion
4.1. Mangroves and S. alterniflora Mapping
4.2. Dynamic Changes of Mangroves and S. alterniflora
4.3. Spartina alterniflora Invasion Process and Pattern
4.4. Implications for S. alterniflora Control and Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Carlton, J.M. Land-building and stabilization by mangroves. Environ. Conserv. 1974, 1, 285–294. [Google Scholar] [CrossRef]
- Marois, D.E.; Mitsch, W.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Spalding, M.; Mcivor, A.; Tonneijck, F.; Tol, S.; Eijk, P.V. Mangroves for coastal defence. In Guidelines for Coastal Managers & Policy Makers; Wetlands International and The Nature Conservancy: Wageningen, The Netherlands, 2014. [Google Scholar]
- Jia, M.; Wang, Z.; Luo, L.; Zhang, R.; Zhang, H. Global status of mangrove forests in resisting cyclone and tsunami. Innov. Geo. 2023, 1, 100024. [Google Scholar] [CrossRef]
- Arceo-Carranza, D.; Chiappa-Carrara, X.; Chávez López, R.; Yáñez Arenas, C. Mangroves as feeding and breeding grounds. In Mangroves: Ecology, Biodiversity and Management; Rastogi, R.P., Phulwaria, M., Gupta, D.K., Eds.; Springer Singapore: Singapore, 2021; pp. 63–95. ISBN 9789811624933. [Google Scholar]
- Lugendo, B.R.; Nagelkerken, I.; Kruitwagen, G.; Van Der Velde, G.; Mgaya, Y.D. Relative importance of mangroves as feeding habitats for fishes: A comparison between mangrove habitats with different settings. Bull. Mar. Sci. 2007, 80, 497–512. [Google Scholar]
- Corte, G.N.; Checon, H.H.; Shah Esmaeili, Y.; Lefcheck, J.S.; Amaral, A.C.Z. Mangrove fragments as key coastal reservoirs of taxonomic and functional biodiversity. Biodivers. Conserv. 2021, 30, 1573–1593. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zimmer, M.; Ahmed, I.; Donato, D.; Kanzaki, M.; Xu, M. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nat. Commun. 2021, 12, 3875. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef]
- Alongi, D.M. Global significance of mangrove blue carbon in climate change mitigation. Science 2020, 2, 67. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.C.; Sainge, M.N.; Feka, Z.N.; Kamara, R.A.; Kamara, A.; Sullivan, M.; Cuni-Sanchez, A. Human-driven degradation impacts on mangroves in southern Sierra Leone. Trees For. People. 2023, 14, 100445. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Biswas, S.R.; Choudhury, J.K.; Nishat, A.; Rahman, M.M. Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? For. Ecol. Manag. 2007, 245, 1–9. [Google Scholar] [CrossRef]
- Lu, C.; Li, L.; Wang, Z.; Su, Y.; Su, Y.; Huang, Y.; Jia, M.; Mao, D. The national nature reserves in China: Are they effective in conserving mangroves? Ecol. Indic. 2022, 142, 109265. [Google Scholar] [CrossRef]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Barizan, R.S.R.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Domínguez-Domínguez, M.; Zavala-Cruz, J.; Rincón-Ramírez, J.A.; Martínez-Zurimendi, P. Management strategies for the conservation, restoration and utilization of mangroves in Southeastern Mexico. Wetlands 2019, 39, 907–919. [Google Scholar] [CrossRef]
- Ngongolo, K.; Mtoka, S.; Mahulu, A. Challenges and opportunities for restoring the threatened mangroves. J. Sci. Res. Rep. 2015, 5, 352–360. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Jia, M.; Liu, M.; Wang, Z.; Mao, D.; Ren, C.; Cui, H. Evaluating the effectiveness of conservation on mangroves: A remote sensing-based comparison for two adjacent protected areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef]
- Xu, S.; Xie, J.; Chen, M. Integrated management improves emerging coastal industries and ecological restoration with the participation of social capital. Front. Mar. Sci. 2023, 9, 1015262. [Google Scholar]
- de Almeida, L.T.; Olímpio, J.L.S.; Pantalena, A.F.; de Almeida, B.S.; de Oliveira Soares, M. Evaluating ten years of management effectiveness in a mangrove protected area. Ocean Coast. Manag. 2016, 125, 29–37. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Yan, J.; He, Q.; Zeng, J.; Wei, Z. Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: A case study in Zhangjiang Estuary. J. Appl. Remote Sens. 2020, 14, 044504. [Google Scholar]
- Liu, M.; Mao, D.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Ren, C.; Zhang, Y. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from Landsat OLI images. Remote Sens. 2018, 10, 1933. [Google Scholar] [CrossRef]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention. Sensors 2019, 19, 2308. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Li, L.; Man, W.; Jia, M.; Wang, Z.; Lu, C. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; Wu, H.; Wang, W.; Tu, Z. Effects of Spartina alterniflora Invasion on the Diet of Mangrove Crabs (Parasesarma plicata) in the Zhangjiang Estuary, China. J. Coast. Res. 2018, 34, 106–113. [Google Scholar] [CrossRef]
- Jackson, M.V.; Fuller, R.A.; Gan, X.; Li, J.; Mao, D.; Melville, D.S.; Murray, N.J.; Wang, Z.; Choi, C.-Y. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J. Environ. Manag. 2021, 278, 111549. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Wang, W.; Chen, L.; Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 2012, 93, 588–597. [Google Scholar] [CrossRef]
- Huang, X.; Feng, J.; Dong, J.; Zhang, J.; Yang, Q.; Yu, C.; Wu, M.; Zhang, W.; Ling, J. Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community. Appl. Soil Ecol. 2022, 177, 104519. [Google Scholar] [CrossRef]
- Xia, S.; Wang, W.; Song, Z.; Kuzyakov, Y.; Guo, L.; Van Zwieten, L.; Li, Q.; Hartley, I.P.; Yang, Y.; Wang, Y. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Glob. Chang. Biol. 2021, 27, 1627–1644. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-resolution mangrove forests classification with machine learning using worldview and uav hyperspectral data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. The current status, potential and challenges of remote sensing for large-scale mangrove studies. Int. J. Remote Sens. 2022, 43, 6824–6855. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L.; Lu, Y.; Shi, C. Mangrove tree height growth monitoring from multi-temporal UAV-LiDAR. Remote Sens. Environ. 2024, 303, 114002. [Google Scholar] [CrossRef]
- Lu, C.; Liu, J.; Jia, M.; Liu, M.; Man, W.; Fu, W.; Zhong, L.; Lin, X.; Su, Y.; Gao, Y. Dynamic analysis of mangrove forests based on an optimal segmentation scale model and multi-seasonal images in Quanzhou Bay, China. Remote Sens. 2018, 10, 2020. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Okoye, O.K.; Li, H.; Gong, Z. Retraction of invasive Spartina alterniflora and its effect on the habitat loss of endangered migratory bird species and their decline in YNNR using remote sensing technology. Ecol. Evol. 2020, 10, 13810–13824. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, L.; Zhang, Y.; Wu, M. Monitoring of the invasion of Spartina alterniflora from 1985 to 2015 in Zhejiang Province, China. BMC Ecol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Zhao, B.; Li, B. Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Qiu, S.; Pan, L.; Ma, J.; Ju, R.; Wu, J.; Li, B. Continual expansion of Spartina alterniflora in the temperate and subtropical coastal zones of China during 1985–2020. Int. J. Appl. Earth Obs. 2023, 117, 103192. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Xu, X.; Zou, Z.; Chen, B.; Qin, Y.; Zhang, X.; Dong, J.; Liu, D.; Pan, L. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 2021, 4, 1076–1083. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, S.; He, Y.; You, S.; Yang, X.; Gan, Y.; Liu, A. A fine-scale mangrove map of China derived from 2-meter resolution satellite observations and field data. ISPRS Int. J. Geo Inf. 2021, 10, 92. [Google Scholar] [CrossRef]
- Yan, D.; Luan, Z.; Li, J.; Xie, S.; Wang, Y. Monitoring Spartina alterniflora Expansion Mode and Dieback Using Multisource High-Resolution Imagery in Yancheng Coastal Wetland, China. Remote Sens. 2023, 15, 3853. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.; Ma, Y.; Ren, G.; Xu, Z.; Song, X.; Ma, Y.; Wang, A.; Zhao, Y. Distribution and invasion of Spartina alterniflora within the Jiaozhou Bay monitored by remote sensing image. Acta Oceanol. Sin. 2022, 41, 31–40. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Li, Y.; Liu, L.; Xie, F. Recognition of spatial expansion patterns of invasive Spartina alterniflora and simulation of the resulting landscape-changes. Acta Ecol. Sin. 2018, 38, 5413–5422. (In Chinese) [Google Scholar]
- Li, J. Study on Population Dynamics and Diffusion Model of Invasive Plant Spartina alterniflora. Master’s Thesis, North China University of Science and Technology, Tangshan, China, 2021. (In Chinese). [Google Scholar]
- Shen, H.-K.; Zhao, B.; Chen, M.-Y.; Huang, R.-Y.; Yu, K.-F.; Liang, W. Changes of the area of Spartina alterniflora and mangroves in Guangxi Shankou Mangrove National Nature Reserve from 1995 to 2019. J. Appl. Ecol. 2022, 33, 397–404. (In Chinese) [Google Scholar]
- Wang, F.; Sun, X.; Zhao, Y.; Wang, H.; Song, X.; Wei, S.; Chen, H. Does Spartina invasion affect the carbohydrate assimilation of polychaetes in mangroves? A case study in the Zhangjiang Estuary Mangrove National Nature Reserve. J. Sea Res. 2023, 195, 102435. [Google Scholar] [CrossRef]
- Li, W.; Dong, R.; Fu, H.; Wang, J.; Yu, L.; Gong, P. Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sens. Environ. 2020, 237, 111563. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Dong, D.; Huang, H.; Gao, Q. Tracking the Dynamics of Spartina alterniflora with WorldView-2/3 and Sentinel-1/2 Imagery in Zhangjiang Estuary, China. Water 2024, 16, 1780. [Google Scholar] [CrossRef]
- Ahmadzadeh, R.; Dehdar Dargahi, M.; Khorasani, N.; Farsad, F.; Rahimibashar, M.R. Assessment of wetland landscape changes based on landscape metrics and trophic state index (case study: Anzali International Wetland). Environ. Monit. Assess. 2023, 195, 1206. [Google Scholar] [CrossRef]
- Millán-Aguilar, O.; Nettel-Hernanz, A.; Hurtado-Oliva, M.Á.; Dodd, R.S.; Flores-Cárdenas, F.; Manzano-Sarabia, M. Landscape Metrics and Conservation Status of Five Mangrove Wetlands in the Eastern Gulf of California Margin. J. Coast. Res. 2019, 36, 102–194. [Google Scholar] [CrossRef]
- Pengfei, W.; De-min, Z.; Huili, G. A new landscape expansion index: Definition and quantification. Acta Ecol. Sin. 2012, 32, 4270–4277. [Google Scholar] [CrossRef]
- Zhong, L.; Lu, C.; Wang, Z.; Liu, M.; Chen, Y.; Lin, X.; Su, Y.; Jia, M. Health assessment of mangrove swamp in Zhangjiang Estuary based on GIS and RS. Chinese J. Ecol. 2019, 38, 2553–2563. (In Chinese) [Google Scholar]
- Pan, L.; Shi, X.; Tao, Y.; Fan, H.; Mo, Z. Distribution and Expansion of Spartina alterniflora in Coastal Tidal Zone, Guangxi. Wetland Sci. 2016, 14, 464–470. (In Chinese) [Google Scholar]
- Pan, W.; Chen, J.; Wang, Y. Analysis of spatio-temporal dynamical change and landscape characteristics of mangroves and Spartina alterniflora in Fujian based on satellite imageries from 1999 to 2018. J. Ecol. Rural Environ. 2020, 36, 1428–1436. (In Chinese) [Google Scholar]
- Chen, G. Landscape pattern evolution and driving factors analysis of wetland in Zhangjiang Estuary Mangrove National Nature Reserve. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2022. (In Chinese). [Google Scholar]
- Li, L.; Liu, W.; Tao, Y.; Xu, X.; Fu, W.; Dong, J. Diffusion dynamics and driving forces of Spartina alterniflora in the Guangxi Shankou Mangrove Reserve. Acta Ecol. Sin. 2021, 41, 6814–6824. (In Chinese) [Google Scholar]
- Deng, Z.; An, S.; Zhi, Y.; Zhou, C.; Chen, L.; Zhao, C.; Fang, S.; Li, H. Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alternilfora Loisel. Acta Ecol. Sin. 2006, 26, 2678–2686. (In Chinese) [Google Scholar]
- Liu, H.; Lin, Z.; Qi, X.; Zhang, M.; Yang, H. The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model. Ecol. Res. 2014, 29, 905–915. [Google Scholar] [CrossRef]
- Zhu, W.; Ren, G.; Wang, J.; Wang, J.; Hu, Y.; Lin, Z.; Li, W.; Zhao, Y.; Li, S.; Wang, N. Monitoring the invasive plant Spartina alterniflora in Jiangsu coastal wetland using MRCNN and Long-Time Series Landsat Data. Remote Sens. 2022, 14, 2630. [Google Scholar] [CrossRef]
- Li, H.; Mao, D.; Wang, Z.; Huang, X.; Li, L.; Jia, M. Invasion of Spartina alterniflora in the coastal zone of mainland China: Control achievements from 2015 to 2020 towards the Sustainable Development Goals. J. Environ. Manag. 2022, 323, 116242. [Google Scholar] [CrossRef]
- Xie, B.; Han, G. Control of invasive plant Spartina alterniflora: Concept, technology and practive. Bull. Chin. Acad. Sci. 2023, 38, 1924–1938. (In Chinese) [Google Scholar]
- Min, Y.; Cui, L.; Li, J.; Han, Y.; Zhuo, Z.; Yin, X.; Zhou, D.; Ke, Y. Detection of large-scale Spartina alterniflora removal in coastal wetlands based on Sentinel-2 and Landsat 8 imagery on Google Earth Engine. Int. J. Appl. Earth Obs. 2023, 125, 103567. [Google Scholar] [CrossRef]
Stuy Area | Source | Acquisition Date | Resolution (m) | Band | Tidal Level | Remark |
---|---|---|---|---|---|---|
ZJE | Google Earth | 9 August 2005 | 0.55 | 3 | Low | Classification |
Google Earth | 24 December 2011 | 0.55 | 3 | Low | Classification | |
Google Earth | 31 January 2014 | 0.55 | 3 | Low | Classification | |
Google Earth | 28 February 2016 | 0.55 | 3 | Low | Classification | |
Google Earth | 20 October 2019 | 0.55 | 3 | Low | Classification | |
DDS | Landsat 5 | 21 January 2005 | 30 | 7 | Low | Classification |
Google Earth | 31 December 2005 | 0.56 | 3 | High | Classification | |
Google Earth | 16 October 2009 | 0.56 | 3 | Low | Classification | |
Google Earth | 22 October 2013 | 0.56 | 3 | Low | Classification | |
Google Earth | 8 October 2015 | 0.56 | 3 | Low | Classification | |
Google Earth | 8 December 2019 | 0.56 | 3 | Low | Classification |
Indicator | Formula | Unit | Code | Ecological Significance |
---|---|---|---|---|
Class Area | ha | CA | CA is the total area of mangrove or S. alterniflora patches, which can influence the species richness, structure, and stability of mangrove or S. alterniflora ecosystems. | |
Number of Patches | n | # | NP | NP is the total number of mangrove or S. alterniflora patches, which can reflect the landscape fragmentation degree. |
Patch Density | NP/A | #/ha | PD | PD represents the number of mangrove or S. alterniflora patches per unit area, reflecting the fragmentation and heterogeneity of the mangrove or S. alterniflora landscape. |
Largest Patch Index | % | LPI | LPI reflects the concentration degree of patches, and indirectly describes the interference of anthropogenic activities. | |
Landscape Shape Index | - | LSI | LSI indicates the shape complexity of mangrove or S. alterniflora patches, and indirectly reflects the influence of human disturbance activities. The higher the value, the more scattered the patch distribution. | |
Area-weighted Mean Shape Index | - | AWMSI | AWMSI indicates the heterogeneity of mangrove or S. alterniflora patches. The higher the value, the more complex the shape of the patches. | |
Landscape Division Index | - | DIVISION | DIVISION represents the separation degree of mangrove or S. alterniflora patches. The value is close to 1 (0) when the patch composition is complex (simple). | |
Aggregation Index | % | AI | AI describes the connectivity among mangrove or S. alterniflora patches. The lower the value is, the more scattered the patches. | |
Splitting Index | - | SPLIT | SPLIT represents the dispersion and aggregation degree of S. alterniflora patches. The higher the value, the more dispersed the patches. |
ZJE | Year | 2005 | 2011 | 2014 | 2016 | 2019 |
Overall Accuracy | 95% | 95% | 96% | 97% | 92% | |
Kappa | 0.93 | 0.94 | 0.95 | 0.96 | 0.90 | |
DDS | Year | 2005 | 2009 | 2013 | 2015 | 2019 |
Overall Accuracy | 95% | 96% | 92% | 94% | 97% | |
Kappa | 0.94 | 0.95 | 0.90 | 0.93 | 0.96 |
Year | Mangroves | S. alterniflora | ||||
---|---|---|---|---|---|---|
Area/hm2 | Annual Change Rate/% | Annual Expansion Rate/% | Area/hm2 | Annual Change Rate/% | Annual Expansion Rate/% | |
2005 | 56.22 | / | / | 67.14 | / | / |
2011 | 57.00 | 0.23 | 0.23 | 68.83 | 0.42 | 0.42 |
2014 | 57.93 | 0.54 | 0.54 | 87.71 | 9.14 | 8.42 |
2016 | 59.40 | 1.27 | 1.26 | 120.48 | 18.68 | 17.2 |
2019 | 65.25 | 3.28 | 3.18 | 232.23 | 30.92 | 24.45 |
Year | Mangroves | S. alterniflora | ||||
---|---|---|---|---|---|---|
Area/hm2 | Annual Change Rate/% | Annual Expansion Rate/% | Area/hm2 | Annual Change Rate/% | Annual Expansion Rate/% | |
2005 | 475.78 | / | / | 144.21 | / | / |
2009 | 493.24 | 0.92 | 0.91 | 278.34 | 23.25 | 17.87 |
2013 | 486.20 | −0.36 | −0.36 | 364.87 | 7.77 | 7.00 |
2015 | 475.12 | −1.14 | −1.15 | 367.76 | 0.40 | 0.40 |
2019 | 475.41 | 0.02 | 0.02 | 372.49 | 0.32 | 0.32 |
Year | Expansion Pattern | LEI Interval Distribution | Number of Patches | Proportion of Total Number | Area/hm2 | AWMSI | SPLIT |
---|---|---|---|---|---|---|---|
2005–2011 | Marginal expansion 1 | LEI < 0 | 140 | 37.74% | 12.76 | 2.60 | 689.4 |
Marginal expansion 2 | LEI ≥ 0 | 41 | 11.05% | 18.95 | 3.74 | 38.7 | |
External expansion | LEI = 1 | 190 | 51.21% | 5.38 | 2.37 | 1010.17 | |
2011–2014 | Marginal expansion 1 | LEI < 0 | 114 | 22.71% | 8.27 | 3.04 | 1167.52 |
Marginal expansion 2 | LEI ≥ 0 | 32 | 6.37% | 19.48 | 5.55 | 32.88 | |
External expansion | LEI = 1 | 356 | 70.92% | 5.76 | 1.58 | 1864.15 | |
2014–2016 | Marginal expansion 1 | LEI < 0 | 118 | 7.99% | 5.16 | 2.63 | 4909.22 |
Marginal expansion 2 | LEI ≥ 0 | 116 | 7.86% | 21.63 | 4.37 | 122.51 | |
External expansion | LEI = 1 | 1242 | 84.15% | 14.65 | 1.86 | 1117.57 | |
2016–2019 | Marginal expansion 1 | LEI < 0 | 109 | 23.59% | 10.1 | 3.18 | 8556.01 |
Marginal expansion 2 | LEI ≥ 0 | 125 | 27.06% | 107.23 | 13.33 | 7.73 | |
External expansion | LEI = 1 | 228 | 49.35% | 4.74 | 1.54 | 37,135.2 |
Year | Expansion Pattern | LEI Interval Distribution | Number of Patches | Proportion of the Total Number | Area/hm2 | AWMSI | SPLIT |
---|---|---|---|---|---|---|---|
2005–2009 | Marginal expansion 1 | LEI < 0 | 207 | 17.92% | 36.87 | 2.82 | 334.78 |
Marginal expansion 2 | LEI ≥ 0 | 18 | 1.56% | 18.94 | 2.57 | 273.91 | |
External expansion | LEI = 1 | 930 | 80.52% | 98.93 | 2.48 | 128.22 | |
2009–2013 | Marginal expansion 1 | LEI < 0 | 780 | 56.03% | 34.56 | 3.3 | 1204.78 |
Marginal expansion 2 | LEI ≥ 0 | 342 | 24.57% | 47.61 | 4.39 | 191.16 | |
External expansion | LEI = 1 | 270 | 19.40% | 38.26 | 1.68 | 169.54 | |
2013–2015 | Marginal expansion 1 | LEI < 0 | 1572 | 80.91% | 29.85 | 2.52 | 507.38 |
Marginal expansion 2 | LEI ≥ 0 | 214 | 11.01% | 11.15 | 2.64 | 400.76 | |
External expansion | LEI = 1 | 157 | 8.08% | 3.84 | 1.61 | 4087.52 | |
2015–2019 | Marginal expansion 1 | LEI < 0 | 970 | 54.80% | 36.26 | 3.31 | 1000.46 |
Marginal expansion 2 | LEI ≥ 0 | 394 | 22.26% | 57.91 | 5.15 | 90.3 | |
External expansion | LEI = 1 | 406 | 22.94% | 12.16 | 1.88 | 3246.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Gao, Q.; Huang, H. Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China. Forests 2024, 15, 1788. https://doi.org/10.3390/f15101788
Dong D, Gao Q, Huang H. Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China. Forests. 2024; 15(10):1788. https://doi.org/10.3390/f15101788
Chicago/Turabian StyleDong, Di, Qing Gao, and Huamei Huang. 2024. "Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China" Forests 15, no. 10: 1788. https://doi.org/10.3390/f15101788
APA StyleDong, D., Gao, Q., & Huang, H. (2024). Mangroves Invaded by Spartina alterniflora Loisel: A Remote Sensing-Based Comparison for Two Protected Areas in China. Forests, 15(10), 1788. https://doi.org/10.3390/f15101788