Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Determination of Soil Indicators
2.4. Data Analysis
3. Results
3.1. Soil Physical Property Changes with Restoration Time and Depth
3.2. Soil Chemical Property Changes with Restoration Time and Depth
3.3. Variation of Soil Carbon Storage Distribution
4. Discussion
4.1. Soil Physical Property Changes with Restoration Years and Depths
4.2. Soil Chemical Property Changes with Restoration Years and Depths
4.3. Distribution Characteristics of Soil Carbon Storage
5. Conclusions
- (1)
- Soil physical and chemical properties of different planted forests exhibit significant changes within 5 to 10 years following vegetation restoration. Soil nutrients in different soil layers demonstrate surface aggregation effects, with the most pronounced improvement observed in the surface soil (0–20 cm). This improvement gradually diminishes with an increasing soil depth.
- (2)
- With the increase in years of vegetation restoration, the average organic carbon content in the 0–80 cm soil layer of P. sibirica forests exhibited a “V”-shaped trend, while that of H. rhamnoides forests showed an “N”-shaped trend.
- (3)
- The soil carbon reserves concentrated within the 0–20 cm layer. The comparative analysis of soil carbon and nitrogen reserves among the three forest types revealed the following hierarchy: P. sylvestris forest (45.42 t·hm−2) > P. sibirica forest (44.56 t·hm−2) > H. rhamnoides forest (41.87 t·hm−2).
- (4)
- In the context of ecological vegetation restoration in the Bulianta mining area, soils beneath P. sylvestris forest and P. sibirica forest exhibit a greater capacity for carbon storage and demonstrate superior soil enhancement effects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.Q.; Li, Y.Y.; Li, G.S.; Han, J.Z.; Liu, S.G. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target. Int. J. Coal Sci. Technol. 2023, 51, 474–483. [Google Scholar] [CrossRef]
- Zhao, P.; Shi, X.; Shang, Q.; Tan, J.; Wang, X.; Huang, Z. The research progress on soil amelioration in mine reclamation land. J. Agric. Resour. Environ. 2023, 40, 1–14. [Google Scholar] [CrossRef]
- Li, Y.X.; Lv, G.; Wang, D.H.; Wang, S.; Liu, S.; Zhu, S. Effects of ground fissure characteristics on soil physical properties in the dump. Agric. Res. Arid Areas 2022, 40, 214–222. [Google Scholar]
- Mao, J.H.; Zhao, H.Q.; Jin, Q.; Wang, X.F.; Miao, Q.F.; Wang, P.; Li, M.Y. Comparative study on the hyperspectral inversion methods for soil heavy metal contents in Hebei lead-zinc tailings reservoir areas. Trans. Chin. Soc. Agric. Eng. 2023, 39, 144–156. [Google Scholar]
- Li, J.; Zhao, Q.; Zhao, Y.; Fu, H.; Li, X.; Huang, J.; Li, Y.; Hu, X.; Tian, S. Remediation of heavy metal contaminated mine soils using smoldering combustion technology. Environ. Technol. Innov. 2023, 32, 103333. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Long, J.H.; Wang, X.J. Selfhealing, natural restoration and artificial restoration of ecological environment forcoal mining. J. China Coal Soc. 2014, 39, 1751–1757. [Google Scholar]
- Wu, Z.Z.Y.; Cui, F.; Nie, J.L. Relationship between soil water content and vegetation distribution in a small area before and after coal seam mining: A case study of coal mining subsidence area in Northwest China. Environ. Earth Sci. 2023, 82, 33–39. [Google Scholar] [CrossRef]
- Shen, X.Z. Research on Land Reclamation Forest and Grass Vegetation Restoration Technology in Coal Mining Subsidence Area—Taking Changcun Coal Mine as an Example; Shanxi Forestry Science and Technology: Taiyuan, China, 2020; pp. 36–37. [Google Scholar]
- Wang, X.L. Existing problems and countermeasures of ecological environment restoration and management in modern mines. Resour. Conserv. Environ. Prot. 2022, 8, 25–28. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, Y.Q. Study on physical properties of several main soils in Loess Plateau. J. Soil Water Conserv. 2000, 14, 99–103. [Google Scholar] [CrossRef]
- Shen, Y.T.; Zhang, W.; He, X.J. Vertical distribution characteristics of soil organic matter and its response to short-term vegetation succession. China Environ. Sci. 2024, 3, 4520–4529. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhang, J.J.; Wang, C.X. Effects of land use types on soil physical properties in Loess Plateau of western Shanxi. J. Soil Water Conserv. 2013, 27, 125–130. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Wang, G.D.; Shi, X.L.; Liu, Y.P. Soil water physical properties of Pinus tabulaeformis plantation in Loess Plateau. Agric. Res. Arid Areas 2005, 23, 60–64. [Google Scholar]
- Ding, Q.P.; Wang, Q.B.; Wei, Z.Y.; Han, C.L.; Wang, H.L.; Wang, X.F. Soil Nutrients and Organic Carbon Contents with Different Reclamation Years in the Colliery Areas of Fushun City. Chin. J. Soil Sci. 2007, 38, 262–267. [Google Scholar] [CrossRef]
- Peng, S.; Chen, A.; Fang, H.; Wu, J.; Liu, G. Effects of vegetation restoration types on soil quality in Yuanmou Dry-Hot Valley, China. Soil Sci. Plant Nutr. 2013, 59, 347–360. [Google Scholar] [CrossRef]
- Li, D.; Yang, X.; Deng, Y.; Li, Y. Soil physical properties under effects of Eucalyptus understory vegetation and litter. Chin. J. Ecol. 2006, 25, 607–611. [Google Scholar]
- Wang, G.H.; Wang, J.Q.; Liu, J. Characteristics of vegetation and soil in Caragana korshinskii plantations in the hilly and sandy areas of northwestern Shanxi Province, China. Chin. J. Appl. Ecol. 2024, 35, 62–72. [Google Scholar]
- Luo, H.B.; Qian, X.G.; Liu, F.; He, T.B.; Song, G.Y. Ecological benefit of soil and water conservation in hilly areas by defarming and reafforestation. J. Soil Water Conserv. 2003, 17, 31–34, 41. [Google Scholar]
- Guo, Q.L.; Ma, Z.H.; Su, N. Effects of cracks in coal mining subsidence area on soil moisture content in Shenfu-Dongsheng coalfiel. Sci. Soil Water Conserv. 2019, 17, 109–116. [Google Scholar] [CrossRef]
- Liu, Z.X. Study on Geological Environment Reconstruction of Drought Glassland Region in Bulianta Coal Mine. Saf. Coal Mines 2017, 48, 90–93+98. [Google Scholar] [CrossRef]
- Institute of Soil Science. Chinese Academy of Sciences. Soil Physicochemical Analysis; Shanghai Scientific and Technical Publishers: Shanghai, China, 1978. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 25–114. [Google Scholar]
- Xie, X.X. Determination of organic matter in soil with the method of potassium bichromate-dilution heat colorimetric. J. Anhui Agric. Sci. 2005, 33, 998–999. [Google Scholar] [CrossRef]
- Li, X.D.; Wen, Y.L.; Wang, Y.; Chen, S.Z.; Liu, L.S.; Zhang, X.C. Effects of planting and breeding combination recycle mode implementation on nutrient contents of soil. J. Southwest Univ. Natl. Nat. Sci. Ed. 2010, 36, 57–62. [Google Scholar] [CrossRef]
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012. [Google Scholar]
- Ma, X.H.; Jiao, J.Y.; Wen, Z.M.; Bai, W.J.; Jiao, F. The changes of soil physical properties in abandoned lands during vegetation restoration in hilly and gully regions on the Loess Plateau. Res. Soil Water Conserv. 2005, 12, 17–21. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Yan, X.Y.; Guo, T.Q.; Huang, M.B. A Comparative Study on Soil Physical Properties of Steep Slopes in the Gully Region of the Loess Plateau with Different Restoration Years of Typical Vegetation—A Case Study of Wangdonggou in Changwu, Shannxi Province. Bull. Mineral. Petrol. Geochem. 2022, 41, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, Y. Investigation of the impacts of various afforestation techniques on soil properties in forest areas designated for soil and water conservation. Guangdong Canye 2023, 57, 50–52. [Google Scholar]
- Guo, Y.H. Effective Monitoring and Evaluation of the Land Conversion Program Chinese Northwest Region. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, 2009. [Google Scholar]
- Yang, G.; Ding, G.D.; Chang, G.L.; Yang, L. Study on improving soil properties of forest vegetation in different land where returning farmland to forests in Loess Plateau. Res. Soil Water Conserv. 2006, 13, 204–207, 210. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xu, H.; An, Y.; Han, X.S.; Wan, H.X.; Dong, L.G. Relationship Between Fractal Characteristics of Soil Particle Size Distribution and Soil Nutrients Under Typical Plantations in Loess Region of Southern Ningxia. N. Hortic. 2023, 81–88. [Google Scholar]
- Peng, W.Y.; Zhang, K.L.; Chen, Y.; Yang, Q.K. Research on Soil Quality Change after Returning Farmlandto Forest on the Loess Sloping Croplands. J. Nat. Resour. 2005, 20, 272–278. [Google Scholar] [CrossRef]
- Jia, L.Z.; Zhang, J.H.; Wang, Y.; Zhang, H.Z.; Wei, Y.H. Effects of tillage erosion on the two dimensional distribution of soil bulk density and organic matter on a steep hillslope. Chin. J. Soil Sci. 2016, 47, 1461–1467. [Google Scholar] [CrossRef]
- Li, X.-G.; Li, F.-M.; Zed, R.; Zhan, Z.-Y.; Singh, B. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 2007, 139, 98–105. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Guo, Y.-R.; Zhou, R.-L.; Drake, S. The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China. Geoderma 2011, 160, 367–372. [Google Scholar] [CrossRef]
- Wei, Y.J.; Wang, J.; Dang, X.H.; Shi, T.; Wang, R.D.; Shen, J.L.; Zhang, Y. Soil Improvement in Artificial Haloxylon ammodendron of Different Stand Age. J. Northeast For. Univ. 2019, 47, 42–46+63. [Google Scholar] [CrossRef]
- Wang, H.L.; Wu, Q.Z.; Lan, W.M.; Chen, X.L.; KE, Q.; Wang, Z.Y.; Wei, Z.M.; Chen, L.J.; Wu, L.C.; Cao, J.Z. Dynamics of understory vegetation and soil physical properties in Eucalyptus plantations of different generations. J. Cent. South Univ. For. Technol. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Wei, Q.; Ling, L.; Chai, C.S.; Zhang, G.Z.; Yan, P.B.; Tao, J.X.; Xue, R. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Eclolgica Sin. 2012, 32, 4700–4713. [Google Scholar] [CrossRef]
- Dang, P.; Wang, N.J.; Wang, J.T.; Zhang, W.J.; Huang, Y. Changes of soil physicalchemical properties of Pinus tabuliformis plantations at different developmental stages in Ziwuling region of Loess plateau. J. Northwest AF Univ. 2014, 42, 115–121. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hossain, A.; Sarkar, M.A.R.; Jahiruddin, M.; da Silva, J.A.T.; Hossain, M.I. Productivity and soil fertility of the rice-wheat system in the High Ganges River Floodplain of Bangladesh is influenced by the inclusion of legumes and manure. Agric. Ecosyst. Environ. 2016, 218, 40–52. [Google Scholar] [CrossRef]
- Perim, P.L.; Gargaglione, V.; Pastur, G.M. Dynamics of above-and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus antarctica forest of Southern Patagonia. For. Ecol. Manag. 2006, 233, 85–99. [Google Scholar] [CrossRef]
- Dong, X.; Xin, Z.M.; Huang, Y.R.; Li, X.L.; Hao, Y.G.; Liu, F.; Liu, M.; Li, W. Soil stoichiometry in typical shrub communities in the Ulan Buh Desert. Acta Ecol. Sin. 2019, 39, 6247–6256. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, R.W.D. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For. Ecol. Manag. 2008, 256, 482–490. [Google Scholar] [CrossRef]
- Ostonen, I.; Lõhmus, K.; Pajuste, K. Fine root biomass, production and its proportion of npp in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For. Ecol. Manag. 2005, 212, 264–277. [Google Scholar] [CrossRef]
- Peng, S.Q.; Liu, Y.L.; Liu, Y.Q.; Fan, Y.X.; Zhou, Y.S.; Yang, Q.; Zou, W.W. The Effects of Soil Organic Carbon and Nitrogen Contents after the Coniferous Forest was Thinned and Replanted of Broad-leaved Trees. J. Gannan Norm. Univ. 2022, 43, 97–102. [Google Scholar] [CrossRef]
- Elser, J.J.; Sterner, R.W.; Gorokhova, E.A.; Fagan, W.F.; Markow, T.A.; Cotner, J.B.; Harrison, J.F.; Hobbie, S.E.; Odell, G.M.; Weider, L.W. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 2000, 3, 540–550. [Google Scholar] [CrossRef]
- Zhang, D.T.; Wang, C.K.; Zhang, Q.Z. Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China. Chin. J. Appl. Ecol. 2017, 28, 3134–3143. [Google Scholar] [CrossRef]
Soil Depth (cm) | P. sylvestris Forest (t·hm−2) | H. rhamnoides Forest (t·hm−2) | P. sibirica Forest (t·hm−2) | ||||||
---|---|---|---|---|---|---|---|---|---|
5y | 10y | 15y | 5y | 10y | 15y | 5y | 10y | 15y | |
0–20 | 33.51 ± 1.89 Ba | 27.93 ± 2.36 Ba | 45.42 ± 2.75 Aa | 26.01 ± 0.89 Ca | 25.21 ± 1.15 Ba | 41.87 ± 3.65 Ba | 37.06 ± 1.21 Aa | 37.12 ± 1.52 Aa | 44.56 ± 3.66 Aa |
20–40 | 27.45 ± 1.13 Ab | 23.90 ± 1.88 Bb | 38.33 ± 1.65 Bb | 20.46 ± 0.88 Bb | 22.41 ± 2.31 Bb | 37.46 ± 2.56 Bb | 28.81 ± 2.12 Ab | 34.85 ± 1.72 Ab | 40.16 ± 2.97 Ab |
40–60 | 19.20 ± 1.21 Bc | 20.66 ± 0.95 Bc | 31.16 ± 2.11 Cc | 18.03 ± 1.22 Bc | 21.66 ± 1.74 Bb | 36.00 ± 2.11 Bb | 26.23 ± 1.95 Ac | 24.43 ± 1.65 Ac | 39.07 ± 3.02 Ac |
60–80 | 8.47 ± 0.99 Cd | 20.69 ± 1.33 Bc | 25.80 ± 1.91 Bd | 16.92 ± 0.82 Bd | 21.21 ± 0.96 Bb | 33.01 ± 2.62 Ac | 25.15 ± 2.09 Ac | 25.05 ± 2.03 Ac | 34.57 ± 2.92 Ad |
Total | 88.62 | 93.18 | 140.72 | 81.42 | 90.49 | 148.34 | 117.25 | 121.45 | 158.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Han, Y.; Meng, Z.; Gao, Y.; Wu, Z. Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area. Forests 2024, 15, 1876. https://doi.org/10.3390/f15111876
Wang R, Han Y, Meng Z, Gao Y, Wu Z. Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area. Forests. 2024; 15(11):1876. https://doi.org/10.3390/f15111876
Chicago/Turabian StyleWang, Ruidong, Yanlong Han, Zhongju Meng, Yong Gao, and Zhenliang Wu. 2024. "Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area" Forests 15, no. 11: 1876. https://doi.org/10.3390/f15111876
APA StyleWang, R., Han, Y., Meng, Z., Gao, Y., & Wu, Z. (2024). Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area. Forests, 15(11), 1876. https://doi.org/10.3390/f15111876