Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plots
2.2. Data Collection and Sampling
2.3. Chemical Analysis
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Spatial Distributions of Lignin and Cellulose Contents
3.2. Microclimatic Changes along Latitudinal Gradient
3.3. Microclimatic Changes along Latitudinal Gradient
3.4. Structural Equation Models of Driving Forces
3.5. Maximum Likelihood Estimate of Effects on Lignin and Cellulose Contents
3.6. Multivariate Linear Regression against Driving Forces
4. Discussion
4.1. Sptatial Distributions of Litter Lignin and Cellulose Contents
4.2. Combined Effects of Climate and Forest Structure on Litter Lignin and Cellulose Contents
4.3. Relationship between Soil Properties and Litter Lignin and Cellulose Contents
4.4. Limits of the Current Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suthar, S.; Gairola, S. Nutrient recovery from urban forest leaf litter waste solids using Eisenia fetida. Ecol. Eng. 2014, 71, 660–666. [Google Scholar] [CrossRef]
- Railoun, M.Z.; Simaika, J.P.; Jacobs, S.M. Leaf litter production and litter nutrient dynamics of invasive Acacia mearnsii and native tree species in riparian forests of the Fynbos biome, South Africa. For. Ecol. Manag. 2021, 498, 119515. [Google Scholar] [CrossRef]
- Fernandez, R.D.; Moreno, M.L.; Aragón, R.; Harguindeguy, N.P. Ligustrum lucidum invasion decreases abundance and relative contribution of soil fauna to litter decomposition but increases decomposition rate in a subtropical montane forest of northwestern Argentina. Can. J. For. Res. 2022, 52, 261–268. [Google Scholar] [CrossRef]
- Yue, K.; Peng, C.H.; Yang, W.Q.; Peng, Y.; Zhang, C.; Huang, C.P.; Wu, F.Z. Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere 2016, 7, e01523. [Google Scholar] [CrossRef]
- Wu, A.; Yin, R.; Xu, Z.; Zhang, L.; You, C.; Liu, Y.; Li, H.; Wang, L.; Liu, S.; Zhang, Y.; et al. Forest gaps slow lignin and cellulose degradation of fir (Abies faxoniana) twig litter in an alpine forest. Geoderma 2022, 424, 116010. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.J.; Huang, W.; Timokhin, V.I.; Kenneth, E.H. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 2020, 101, e03113. [Google Scholar] [CrossRef] [PubMed]
- Hammel, K.E.; Kapich, A.N.; Jensen, K.A.; Ryan, Z.C. Reactive oxygen species as agents of wood decay by fungi. Enzym. Microb. Technol. 2002, 30, 445–453. [Google Scholar] [CrossRef]
- Berg, B.; McClauherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 3rd ed.; Sprinter Press: Berlin/Heidelberg, Germany; New York, NY, USA, 2014. [Google Scholar]
- Cooke, R.C.; Whipps, J.M. Ecophysiology of Fungi; Blackwell Scientific Publications: Oxford, UK, 1993. [Google Scholar]
- Berg, B.; McClauherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 4th ed.; Springer Press: New York, NY, USA, 2020. [Google Scholar]
- Liu, P.; Hu, S.Y.; Wei, H.X.; He, W.T.; Zhou, Y.M.; Wang, Y.T. Response of radial growth of Pinus sylvestris var. mongolica of different stand ages to climate and extreme drought events in the semi-arid region of western Liaoning, Northeast China. Front. For. Glob. Chang. 2023, 6, 1272477. [Google Scholar] [CrossRef]
- Hayakawa, C.; Funakawa, S.; Fujii, K.; Kadono, A.; Kosaki, T. Effects of climatic and soil properties on cellulose decomposition rates in temperate and tropical forests. Biol. Fertil. Soils 2014, 50, 633–643. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; He, R.; Chen, Y.; Yang, L.; Zheng, H.; Li, H.; Xiao, J.; Liu, Y. Impacts of soil fauna on lignin and cellulose degradation in litter decomposition across an alpine forest-tundra ecotone. Eur. J. Soil Biol. 2018, 87, 53–60. [Google Scholar] [CrossRef]
- Murphy, K.L.; Klopatek, J.M.; Klopatek, C.C. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol. Appl. 1998, 8, 1061–1071. [Google Scholar] [CrossRef]
- He, W.; Wu, F.Z.; Zhang, D.J.; Yang, W.Q.; Tan, B.; Zhao, Y.Y.; Wu, Q.Q. The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant Soil 2015, 393, 109–122. [Google Scholar] [CrossRef]
- Sheng, J.L.; Chen, J.B.; Liu, C.; Yang, Z.J.; Yang, Y.S.; Guan, X.; Lin, J.G. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 2020, 27, 4067–4077. [Google Scholar] [CrossRef]
- Bilbro, J.D.; Undersander, D.J.; Fryrear, D.W.; Lester, C.M. A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. J. Soil Water Conserv. 1991, 46, 314–316. [Google Scholar]
- Russell, A.E. Unexpected Effects of Chitin, Cellulose, and Lignin Addition on Soil Dynamics in a Wet Tropical Forest. Ecosystems 2014, 17, 918–930. [Google Scholar] [CrossRef]
- Thomas, F.M.; Molitor, F.; Werner, W. Lignin and cellulose concentrations in roots of Douglas fir and European beech of different diameter classes and soil depths. Trees-Struct. Funct. 2014, 28, 309–315. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Fujii, K.; Inagaki, Y.; Hayakawa, C.; Ono, K. Decoupling of cellulose decomposition and glucose mineralization in volcanic forest soils. Soil Sci. Plant Nutr. 2023, 69, 199–208. [Google Scholar] [CrossRef]
- Zhong, Y.Q.W.; Yan, W.M.; Wang, R.W.; Shangguan, Z.P. Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery. Biol. Fertil. Soils 2017, 53, 939–949. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agric. Ecosyst. Environ. 1999, 75, 133–140. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, B.; Yang, W.; Wang, Q.; Chang, C.; Wang, L.; Li, H.; You, C.; Cao, R.; Jiang, Y.; et al. Forest gaps accelerate the degradation of cellulose and lignin in decaying logs in a subalpine forest. Eur. J. For. Res. 2023, 142, 27–36. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.J.; Jian, Z.; Zhou, H.Y.; Zhao, Y.B.; Wei, D.P. Litter decomposition and the degradation of recalcitrant components in Pinus massoniana plantations with various canopy densities. J. For. Res. 2019, 30, 1395–1405. [Google Scholar] [CrossRef]
- Gliksman, D.; Haenel, S.; Osem, Y.; Yakir, D.; Zangy, E.; Preisler, Y.; Grünzweig, J.M. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 2018, 422, 317–329. [Google Scholar] [CrossRef]
- Boerma, J.A.K.; Luo, G.; Huang, B. Soil Brief CN 10. In People’s Republic of China: Reference Soils of the Liaohe Plain, Liaoning Province; Institute of Soil Science—Academica Sinica, and International Soil Reference and Information Centre: Nanjing, China; Wageningen, The Netherlands, 1995; pp. 5–11. [Google Scholar]
- De Marco, A.; Spaccini, R.; Vittozzi, P.; Esposito, F.; Berg, B.; De Santo, A.V. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 2012, 51, 1–15. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. Assoc. Off. Anal. Chem. 2020, 51, 780–785. [Google Scholar] [CrossRef]
- Wei, H.X.; Zhao, H.T.; Chen, X. Foliar N:P Stoichiometry in Aralia elata Distributed on Different Slope Degrees. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 887–895. [Google Scholar] [CrossRef]
- Trap, J.; Hättenschwiler, S.; Gattin, I.; Aubert, M. Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. For. Ecol. Manag. 2013, 302, 338–345. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; de Santiago, J.H.; Yang, Y.; Shen, Y.; Candel-Pérez, D. Nutrient, metal contents and microbiological properties of litter and soil along a tree age gradient in Mediterranean forest ecosystems. Sci. Total Environ. 2019, 650, 749–758. [Google Scholar] [CrossRef]
- Kwon, T.S.; Kim, Y.S.; Lee, S.W.; Park, Y.S. Changes of soil arthropod communities in temperate forests over 10 years (1998–2007). J. Asia-Pac. Entomol. 2016, 19, 181–189. [Google Scholar] [CrossRef]
- Brand, A.-F.; Hynes, J.; Walker, L.A.; Pereira, M.G.; Lawlor, A.J.; Williams, R.J.; Shore, R.F.; Chadwick, E.A. Biological and anthropogenic predictors of metal concentration in the Eurasian otter, a sentinel of freshwater ecosystems. Environ. Pollut. 2020, 266, 115280. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.H.; Zhang, X.K.; Lui, X.Y.; Yan, Y.; Wang, X.D. Leaf Litter Decomposition in Three Subalpine Forests along an Elevation Gradient in Tibet. Pol. J. Environ. Stud. 2014, 23, 1137–1146. [Google Scholar]
- Zhou, Y.; Clark, M.; Su, J.Q.; Xiao, C.W. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 2015, 386, 171–183. [Google Scholar] [CrossRef]
- Paudel, E.; Dossa, G.G.O.; de Blecourt, M.; Beckschäfer, P.; Xu, J.C.; Harrison, R.D. Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere 2015, 6, 267. [Google Scholar] [CrossRef]
- Ni, X.; Berg, B.; Yang, W.; Li, H.; Liao, S.; Tan, B.; Yue, K.; Xu, Z.; Zhang, L.; Wu, F. Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest. Biogeochemistry 2018, 139, 321–335. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.N.; Yan, J.; Huang, Q.; Li, R.; Shen, B.A.; Shen, Q.R. Soil fungal community affected by regional climate played an important role in the decomposition of organic compost. Environ. Res. 2021, 197, 111076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, X.; Li, S.; Wei, B. Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate. Forests 2024, 15, 240. https://doi.org/10.3390/f15020240
Wang Y, Sun X, Li S, Wei B. Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate. Forests. 2024; 15(2):240. https://doi.org/10.3390/f15020240
Chicago/Turabian StyleWang, Yige, Xiangyang Sun, Suyan Li, and Bin Wei. 2024. "Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate" Forests 15, no. 2: 240. https://doi.org/10.3390/f15020240
APA StyleWang, Y., Sun, X., Li, S., & Wei, B. (2024). Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate. Forests, 15(2), 240. https://doi.org/10.3390/f15020240