Sap Flow Responses of the Endangered Species Juniperus drupacea Labill. to Environmental Variables in Parnon Mountain, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Environmental Variables
2.3. Sapwood Area Determination and Sapwood Area Allometric Equation
2.4. Sap Flux Density, Sap Flux Radial Profile, and Total Tree Sap Flow
2.5. Data Analysis
3. Results
3.1. Micrometerological Conditions during the Study Period
3.2. Radial Profile Patterns of Js, Total Tree Sap Flow (Qs) and Its Responses to Environmental Variables
4. Discussion
4.1. Sap Flow Radial Variability in J. drupacea
4.2. Total Tree Sap Flow Responses to Environmental Variables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Boratyfiski, A.; Browicz, K.; Zielifiski, J. Chorology of Trees and Shrubs in Greece; Institute of Dendrology, Polish Academy of Sciences: Kórnik, Poland, 1992. [Google Scholar]
- Tan, K.; Iatrou, G.; Johsen, B. Endemic Plants of Greece: The Peloponnese; Gads Forlag: Copenhagen, Denmark, 2001; Volume 1. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist–Englera 31; Ser. Publ. Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin and by Hellenic Botanical Society: Athens, Greece, 2013. [Google Scholar]
- Tan, K.; Sfikas, G.; Vold, G. Juniperus drupacea (Cupressaceae) in the southern Peloponnese. Acta Bot. Fenn. 1999, 162, 133–135. [Google Scholar]
- Gardner, M. Juniperus drupacea. In The IUCN Red List of Threatened Species 2013: e. T30311A2792553; International Union for Conservation of Nature and Natural Resources (IUCN): Gland, Switzerland, 2013. [Google Scholar]
- Rivers, M.; Beech, E.; Bazos, I.; Bogunić, F.; Buira, A.; Caković, D.; Carapeto, A.; Carta, A.; Cornier, B.; Fenu, G. European Red List of Trees; International Union for Conservation of Nature and Natural Resources (IUCN): Gland, Switzerland, 2019. [Google Scholar]
- Union, O.J.E.; Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Daskalakou, E.; Oikonomidis, S.; Boutsios, S.; Ioannidis, K.; Thanos, C. Population characteristics of Juniperus drupacea (Cupressaceae) at the westernmost marginal area of its world distribution (Mt. Parnon, Greece). Flora Mediterr. 2022, 32, 305–316. [Google Scholar] [CrossRef]
- Walas, Ł.; Sobierajska, K.; Ok, T.; Dönmez, A.A.; Kanoğlu, S.S.; Dagher-Kharrat, M.B.; Douaihy, B.; Romo, A.; Stephan, J.; Jasińska, A.K. Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The Juniperus drupacea case study. Reg. Environ. Change 2019, 19, 1507–1520. [Google Scholar] [CrossRef]
- Spm-Ipcc-Wgii, I. Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; De Roo, A. Impact of a Changing Climate, Land Use, and Water Usage on Europe’s Water Resources; A Model Simulation Study; Joint Research Centre (JRC), Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Poyatos, R.; Granda, V.; Molowny-Horas, R.; Mencuccini, M.; Steppe, K.; Martínez-Vilalta, J. SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiol. 2016, 36, 1449–1455. [Google Scholar] [CrossRef]
- Oishi, A.C.; Oren, R.; Stoy, P.C. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 2008, 148, 1719–1732. [Google Scholar] [CrossRef]
- Čermák, J.; Cienciala, E.; Kučera, J.; Hällgren, J.-E. Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing. Tree Physiol. 1992, 10, 367–380. [Google Scholar] [CrossRef]
- Cermak, J.; Nadezhdina, N. Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow? In Annales des Sciences Forestieres; EDP Sciences: Les Ulis, France, 1998; pp. 509–521. [Google Scholar]
- Lu, P.; Müller, W.J.; Chacko, E.K. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiol. 2000, 20, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Delzon, S.; Sartore, M.; Granier, A.; Loustau, D. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiol. 2004, 24, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Fiora, A.; Cescatti, A. Diurnal and seasonal variability in the radial distribution of sap flux density: Implications for estimating stand transpiration. Tree Physiol. 2006, 26, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Acosta, J.L.; Lubczynski, M.W. Optimization of dry-season sap flow measurements in an oak semi-arid open woodland in Spain. Ecohydrology 2014, 7, 258–277. [Google Scholar] [CrossRef]
- Zhang, J.G.; He, Q.Y.; Shi, W.Y.; Otsuki, K.; Yamanaka, N.; Du, S. Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrol. Process. 2015, 29, 4993–5002. [Google Scholar] [CrossRef]
- Berdanier, A.B.; Miniat, C.F.; Clark, J.S. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiol. 2016, 36, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Si, J.; Feng, Q.; Yu, T.; Zhao, C. Nighttime sap flow and its driving forces for Populus euphratica in a desert riparian forest, Northwest China. J. Arid Land 2015, 7, 665–674. [Google Scholar] [CrossRef]
- Korakaki, E.; Fotelli, M.N. Sap Flow in Aleppo Pine in Greece in Relation to Sapwood Radial Gradient, Temporal and Climatic Variability. Forests 2021, 12, 2. [Google Scholar] [CrossRef]
- Hultine, K.; Nagler, P.; Morino, K.; Bush, S.; Burtch, K.; Dennison, P.; Glenn, E.; Ehleringer, J. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata). Agric. For. Meteorol. 2010, 150, 1467–1475. [Google Scholar] [CrossRef]
- Steppe, K.; De Pauw, D.J.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010, 150, 1046–1056. [Google Scholar] [CrossRef]
- Hölttä, T.; Linkosalo, T.; Riikonen, A.; Sevanto, S.; Nikinmaa, E. An analysis of Granier sap flow method, its sensitivity to heat storage and a new approach to improve its time dynamics. Agric. For. Meteorol. 2015, 211, 2–12. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Čermák, J.; Ceulemans, R. Radial patterns of sap flow in woody stems of dominant and understory species: Scaling errors associated with positioning of sensors. Tree Physiol. 2002, 22, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.R.; McGuire, M.A.; Mitchell, R.J.; Teskey, R.O. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiol. 2004, 24, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhao, W.; He, Z. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agric. For. Meteorol. 2014, 187, 14–21. [Google Scholar] [CrossRef]
- Köstner, B.; Biron, P.; Siegwolf, R.; Granier, A. Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods. Theor. Appl. Climatol. 1996, 53, 105–113. [Google Scholar] [CrossRef]
- Zang, D.; Beadle, C.; White, D. Variation of sapflow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient. Tree Physiol. 1996, 16, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Poyatos, R.; Čermák, J.; Llorens, P. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Tree Physiol. 2007, 27, 537–548. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Y.; Shao, M.; Li, X.; Sun, L.; Jia, X. Environmental controls on sap flow in black locust forest in Loess Plateau, China. Sci. Rep. 2017, 7, 13160. [Google Scholar] [CrossRef]
- Bosch, D.D.; Marshall, L.K.; Teskey, R. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system. Agric. For. Meteorol. 2014, 187, 72–82. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Yi, R.; Zhong, F.; Zhang, Y. Sap flow and plant water sources for typical vegetation in a subtropical humid karst area of southwest China. Hydrol. Process. 2021, 35, e14090. [Google Scholar] [CrossRef]
- Boratynski, A.; Donmez, A.; Bou Dagher-Kharrat, M.; Romo, A.; Tan, K.; Ok, T.; Iszkulo, G.; Sobierajska, K.; Marcysiak, K. Biology and ecology of Juniperus drupacea Labill. Dendrobiology 2023, 90, 1–29. [Google Scholar] [CrossRef]
- West, A.; Hultine, K.; Sperry, J.; Bush, S.; Ehleringer, J. Transpiration and hydraulic strategies in a piñon–juniper woodland. Ecol. Appl. 2008, 18, 911–927. [Google Scholar] [CrossRef]
- Mata-González, R.; Abdallah, M.A.; Ochoa, C.G. Water use by mature and sapling western juniper (Juniperus occidentalis) trees. Rangel. Ecol. Manag. 2021, 74, 110–113. [Google Scholar] [CrossRef]
- Northup, A.P.; Keitt, T.H.; Farrior, C.E. Cavitation-resistant junipers cease transpiration earlier than cavitation-vulnerable oaks under summer dry conditions. Ecohydrology 2022, 15, e2337. [Google Scholar] [CrossRef]
- Mollnau, C.; Newton, M.; Stringham, T. Soil water dynamics and water use in a western juniper (Juniperus occidentalis) woodland. J. Arid Environ. 2014, 102, 117–126. [Google Scholar] [CrossRef]
- West, A.; Hultine, K.; Burtch, K.; Ehleringer, J. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 2007, 153, 787–798. [Google Scholar] [CrossRef]
- Torquato, P.R. Water Relation and Photosynthetic Performance of Eastern Redcedar (Juniperus virginiana) and Post Oak (Quercus stellata) in the Cross Timbers Forest; Oklahoma State University: Stillwater, OK, USA, 2019. [Google Scholar]
- Elhag, M.; Bahrawi, J. Evaluation of the transpiration character of Juniperus macrocarpa as an invasive species in western Crete, Greece. Appl. Ecol. Environ. Res. 2018, 16, 1659–1672. [Google Scholar] [CrossRef]
- Avramidou, E.V.; Korakaki, E.; Malliarou, E.; Boutsios, S. Studying the Genetic and the Epigenetic Diversity of the Endangered Species Juniperus drupacea Labill. towards Safeguarding Its Conservation in Greece. Forests 2023, 14, 1271. [Google Scholar] [CrossRef]
- Maerki, D.; Frankis, M. Juniperus drupacea in the Peloponnese (Greece). Trip report and range map, with notes on phenology, phylogeny, palaeontology, history, types and use. Bull. CCP 2015, 3, 3–31. [Google Scholar]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von Maltitz, G. World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management; Publication Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Proutsos, N.; Tigkas, D. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere 2020, 11, 554. [Google Scholar] [CrossRef]
- Granier, A. A new method of sap flow measurement in tree stems. Ann. For. Sci. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Čermák, J.; Gašpárek, J.; Nadezhdin, V.; Prax, A. Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland. Tree Physiol. 2006, 26, 1277–1288. [Google Scholar] [CrossRef]
- Xie, J.; Wan, X. The accuracy of the thermal dissipation technique for estimating sap flow is affected by the radial distribution of conduit diameter and density. Acta Physiol. Plant. 2018, 40, 88. [Google Scholar] [CrossRef]
- Yang, J.; He, Z.; Lin, P.; Du, J.; Tian, Q.; Feng, J.; Liu, Y.; Guo, L.; Wang, G.; Yan, J. Variability in minimal-damage sap flow observations and whole-tree transpiration estimates in a coniferous forest. Water 2022, 14, 2551. [Google Scholar] [CrossRef]
- Ochoa, C.G.; Abdallah, M.A. The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings. Hydrology 2023, 10, 232. [Google Scholar] [CrossRef]
- Alvarado-Barrientos, M.S.; Hernández-Santana, V.; Asbjornsen, H. Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico. Agric. For. Meteorol. 2013, 168, 108–119. [Google Scholar] [CrossRef]
- Magh, R.-K.; Bonn, B.; Grote, R.; Burzlaff, T.; Pfautsch, S.; Rennenberg, H. Drought superimposes the positive effect of Silver Fir on water relations of European beech in mature forest stands. Forests 2019, 10, 897. [Google Scholar] [CrossRef]
- Sánchez-Costa, E.; Poyatos, R.; Sabaté, S. Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agric. For. Meteorol. 2015, 207, 24–37. [Google Scholar] [CrossRef]
- Lange, O.L.; Lösch, R.; Schulze, E.-D.; Kappen, L. Responses of stomata to changes in humidity. Planta 1971, 100, 76–86. [Google Scholar] [CrossRef]
- Monteith, J. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 1995, 18, 357–364. [Google Scholar] [CrossRef]
- Oren, R.; Phillips, N.; Ewers, B.; Pataki, D.; Megonigal, J.P. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiol. 1999, 19, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P.G. Stomatal response to water stress in conifers. In Adaption of Plants to Water and High Temperature Stress; Turner, N.C., Kramer, P.J., Eds.; John Wiley & Sons: New York, NY, USA, 1980; pp. 105–122. [Google Scholar]
- Pataki, D.E.; Oren, R.; Smith, W.K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology 2000, 81, 2557–2566. [Google Scholar] [CrossRef]
- Yoder, B.; Ryan, M.; Waring, R.; Schoettle, A.; Kaufmann, M. Evidence of reduced photosynthetic rates in old trees. For. Sci. 1994, 40, 513–527. [Google Scholar]
- Tognetti, R.; Michelozzi, M.; Giovannelli, A. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provinces. Tree Physiol. 1997, 17, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Atalay, I.; Efe, R.; Öztürk, M. Ecology and classification of forests in Turkey. Procedia-Soc. Behav. Sci. 2014, 120, 788–805. [Google Scholar] [CrossRef]
- Bergmeier, E. Plant communities and habitat differentiation in the Mediterranean coniferous woodlands of Mt. Parnon (Greece). Folia Geobot. 2002, 37, 309–331. [Google Scholar] [CrossRef]
- Thurow, T.L.; Hester, J.W. How an increase or reduction in juniper cover alters rangeland hydrology. In Juniper Symposium Proceedings; Texas A&M University: San Angelo, TX, USA, 1997; pp. 9–22. [Google Scholar]
- Abdallah, M.A.; Durfee, N.; Mata-Gonzalez, R.; Ochoa, C.G.; Noller, J.S. Water use and soil moisture relationships on western juniper trees at different growth stages. Water 2020, 12, 1596. [Google Scholar] [CrossRef]
- Rozas, V.; DeSoto, L.; Olano, J.M. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol. 2009, 182, 687–697. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
Tree ID | Height (m) | D (cm) | As (cm2) | Age (yrs) |
---|---|---|---|---|
Tree 1 | 6.4 | 11.6 | 70.3 | 27 |
Tree 2 | 5.8 | 11.8 | 73.6 | 29 |
Tree 3 | 4.2 | 9.90 | 50.7 | 29 |
Tree 4 | 8.4 | 19.4 | 211.6 | 33 |
Tree 5 | 5.3 | 15.1 | 123.4 | 31 |
Period | Tmean (°C) | VPD (kPa) | Precipitation (mm) | PAR (μmol m−2 s−1) | Tsoil (°C) | θ (%) |
---|---|---|---|---|---|---|
Dry (July–Sept) | 22.7 (±4.0) | 1.7 (±0.8) | 28.0 (±1.7) | 491.0 (±115.6) | 24.7 (±3.0) | 39.8 (±1.0) |
Wet (Oct–March) | 6.6 (±4.8) | 0.3 (±0.2) | 599.6 (±6.5) | 186.6 (±102.5) | 8.2 (±4.2) | 52.2 (±5.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korakaki, E.; Avramidou, E.V.; Solomou, A.D.; Boutsios, S.; Daskalakou, E.N. Sap Flow Responses of the Endangered Species Juniperus drupacea Labill. to Environmental Variables in Parnon Mountain, Greece. Forests 2024, 15, 431. https://doi.org/10.3390/f15030431
Korakaki E, Avramidou EV, Solomou AD, Boutsios S, Daskalakou EN. Sap Flow Responses of the Endangered Species Juniperus drupacea Labill. to Environmental Variables in Parnon Mountain, Greece. Forests. 2024; 15(3):431. https://doi.org/10.3390/f15030431
Chicago/Turabian StyleKorakaki, Evangelia, Evangelia V. Avramidou, Alexandra D. Solomou, Stefanos Boutsios, and Evangelia N. Daskalakou. 2024. "Sap Flow Responses of the Endangered Species Juniperus drupacea Labill. to Environmental Variables in Parnon Mountain, Greece" Forests 15, no. 3: 431. https://doi.org/10.3390/f15030431
APA StyleKorakaki, E., Avramidou, E. V., Solomou, A. D., Boutsios, S., & Daskalakou, E. N. (2024). Sap Flow Responses of the Endangered Species Juniperus drupacea Labill. to Environmental Variables in Parnon Mountain, Greece. Forests, 15(3), 431. https://doi.org/10.3390/f15030431