Evidence for the Use of Karst Tiankengs as Shelters: The Effect of Karst Tiankengs on Genetic Diversity and Population Differentiation in Manglietia aromatica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Hyper-seq Library Construction and Sequencing
2.3. SNP Calling
2.4. Population Genetics, Population Structure and Genetic Relationship Analysis
2.5. Gene Introgression Analysis
3. Results
3.1. SNP Calling Based on the Reference Genome
3.2. Analysis of Genetic Diversity and Genetic Differentiation among Populations of Manglietia aromatica inside and outside Tiankeng
3.3. Analysis of Genetic Diversity and Genetic Differentiation among 10 Populations of Manglietia aromatica
3.4. Gene Flow among Manglietia aromatica Populations
3.5. Analysis of Genetic Structure of Manglietia aromatica Population
4. Discussion
4.1. Karst Tiankengs Can Play a Protective Role in the Genetic Diversity of Manglietia aromatica Populations
4.2. Geographical Isolation Hinders Gene Exchange between Populations of Manglietia aromatica
4.3. Genetic Structure and Genetic Relationship of Manglietia aromatica Populations
4.4. Protection Suggestions and Measures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waele, J.D.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in Karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Pu, G.Z.; Wang, K.Y.; Mo, L.; Zeng, D.J.; Chen, X.X. Research progress on evolution and vegetation ecosystem of Karst Tiankeng in China. Guihaia 2021, 41, 1632–1643. [Google Scholar]
- Shen, L.N.; Hou, M.F.; Xu, W.B.; Huang, Y.F.; Liang, S.C.; Zhang, Y.H.; Jiang, Z.C.; Chen, W.H. Research on flora of seed plants in Dashiwei Karst Tiankeng Group of Leye, Guangxi. Guihaia 2020, 40, 751–764. [Google Scholar]
- Huang, B.J.; Zhang, Y.H.; Chen, W.H.; Wei, Y.L.; Zhang, J.; Zhai, X.M.; Luo, S.W. Karst Tiankeng Resource of Guangxi and Its Exploitation. Guangxi Sci. 2018, 25, 567–578. [Google Scholar]
- Chen, M.; Huang, L.J.; Huang, G.; Liu, X.Y.; Xue, Y.G. Diversity and niche characteristics of herbaceous plants in Dashiwei Tiankeng Group, Guangxi. Acta Ecol. Sin. 2023, 43, 2831–2844. [Google Scholar]
- Zhu, X.W.; Chen, W.H. Tiankengs in the Karst of China. Carsologica Sin. 2006, 4, 7–24. [Google Scholar]
- Pu, G.Z.; Lv, Y.N.; Xu, G.P.; Zeng, D.J.; Huang, Y.Q. Research Progress on Karst Tiankeng Ecosystems. Bot. Rev. 2017, 83, 5–37. [Google Scholar] [CrossRef]
- Huang, L.J.; Yu, Y.M.; An, X.F.; Yu, L.L.; Xue, Y.G. Leaf functional traits, species diversity and functional diversity of plant community in Tiankeng forests. Acta Ecol. Sin. 2022, 42, 10264–10275. [Google Scholar]
- Pan, Y.Z.; Liang, H.X.; Gong, X. Studies on the Reproductive Biology and Endangerment Mechanism of the Endangered Plant Manglietia aromatica. J. Integr. Plant Biol. 2003, 45, 311–316. [Google Scholar]
- Zoltán, B.; János, C.; Tünde, F.; Anna, V.; László, E.; Dániel, K.; Tamás, W.; László, K.; András, V. The conservation value of Karst dolines for vascular plants in woodland habitats of Hungary: Refugia and climate change. Int. J. Speleol. 2014, 43, 15. [Google Scholar]
- Zhou, C.M.; Qin, D.W.; Qin, W.M.; Yan, L. Photosynthesis of Manglietia aromatica under Drought Stress. J. Northeast For. Univ. 2015, 43, 47–50. [Google Scholar]
- Li, X.F.; Li, M. Cuttage Study of Manglietia aromatica. J. Southwest For. Univ. 2003, 2, 9–12. [Google Scholar]
- Miao, Y.M.; Shi, S.; Yang, M.; Liu, S.N. Transcriptome Sequencing Analysis of Manglietia aromatica, an Endangered Species. J. Beihua Univ. 2021, 22, 122–127. [Google Scholar]
- Palsbøll, J.P.; Bérubé, M.; Allendorf, W.F. Identification of management units using population genetic data. Trends Ecol. Evol. 2006, 22, 11–16. [Google Scholar] [CrossRef]
- Ottewel, K.M.; Bickerton, D.C.; Byrne, M.; Lowe, A.J. Bridging the gap: A genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers. Distrib. 2015, 22, 174–188. [Google Scholar] [CrossRef]
- Liu, C.G.; Yu, W.T.; Cai, C.P.; Huang, S.J.; Wu, H.H.; Wang, Z.H.; Wang, P.; Zheng, Y.C.; Wang, P.J.; Ye, N.X. Genetic Diversity of Tea Plant (Camellia sinensis (L.) Kuntze) Germplasm Resources in Wuyi Mountain of China Based on Single Nucleotide Polymorphism (SNP) Markers. Horticulturae 2022, 8, 932. [Google Scholar] [CrossRef]
- Yukio, N.; Hiroaki, T.; Sayoko, N.; Naofumi, H.; Atsushi, J.N.; Shinji, F. Genetic diversity of loquat (Eriobotrya japonica) revealed using RAD-Seq SNP markers. Sci. Rep. 2022, 12, 10200. [Google Scholar]
- Zou, M.L.; Xia, Z.Q. Hyper-seq: A novel, effective, and flexible marker-assisted selection and genotyping approach. Innovation 2022, 3, 100254. [Google Scholar] [CrossRef]
- Andrews, S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 29 January 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Zhou, L.J.; Hou, F.X.; Wang, L.; Zhang, L.Y.; Wang, Y.L.; Yin, Y.P.; Pei, J.; Peng, C.; Qin, X.B.; Gao, J.H. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. Front. Plant Sci. 2023, 14, 1108701. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Rochette, N.C.; Rivera-Col’on, A.G.; Catchen, J.M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 2019, 28, 4737–4754. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Korunes, K.L.; Samuk, K. PIXY: Unbiased Estimation of Nucleotide Diversity and Divergence in the Presence of Missing Data. Mol. Ecol. Resour. 2021, 21, 1359–1368. [Google Scholar] [CrossRef]
- Quang, M.B.; Heiko, A.S.; Olga, C.; Dominik, S.; Michael, D.W.; Arndt, V.H.; Robert, L. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Zhu, X.L.; Zou, R.; Tang, J.M.; Deng, L.L.; Wei, X. Genetic diversity variation during the natural regeneration of Vatica guangxiensis, an endangered tree species with extremely small populations. Glob. Ecol. Conserv. 2023, 42, e02400. [Google Scholar] [CrossRef]
- Wang, Q. The Genetic Diversity of Strobilanthes biocullata. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2021. [Google Scholar]
- Willi, Y.; Van Buskirk, J.; Hoffmann, A.A. Limits to the Adaptive Potential of Small Populations. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 433–458. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guan, S.M.; Yang, S.Z.; Luo, Y.; Chen, X.Y. Genetic decline and inbreeding depression in an extremely rare tree. Conserv. Genet. 2012, 13, 343–347. [Google Scholar] [CrossRef]
- Yang, X.J.; Miao, Y.M.; Wei, Q.S.; Qin, Y.H.; Liu, S.N. Genetic Diversity of Manglietia aromatic in Guangxi Based on Chloroplast trnL-trnF Region. Mol. Plant Breed. 2023, 1–14. Available online: http://kns.cnki.net/kcms/detail/46.1068.s.20230727.1407.002.html (accessed on 29 January 2024).
- Chandra, R.S.; Kaushik, M.; Dilip, D.S. Assessment of genetic diversity among four orchids based on ddRAD sequencing data for conservation purposes. Physiol. Mol. Biol. Plants 2017, 23, 169–183. [Google Scholar]
- Liu, D.T.; Zhang, L.; Wang, J.H.; Ma, Y.P. Conservation Genomics of a Threatened Rhododendron: Contrasting Patterns of Population Structure Revealed from Neutral and Selected SNPs. Front. Genet. 2020, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, F.O.; Acar, P.; Kaya, Z. Consequences of habitat fragmentation on genetic diversity and structure of Salix alba L. populations in two major river systems of Turkey. Tree Genet. Genomes 2019, 15, 59. [Google Scholar] [CrossRef]
- Su, Y.; Tang, Q.; Mo, F.; Xue, Y.G. Karst Tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci. Rep. 2017, 7, 4249. [Google Scholar] [CrossRef]
- Fan, B.B. The Study on Characteristics and Succession of Karst Tiankeng Community in Dashiwei. Master’s Thesis, Guangxi Normal University, Guilin, China, 2011. [Google Scholar]
- Feng, H.Z. The Study on Origion and Evolution of Karst Tiankeng Flora in Dashiwei, Guangxi. Master’s Thesis, Guangxi Normal University, Guilin, China, 2012. [Google Scholar]
- Li, Y.Y.; Dou, Y.Y.; Peng, C.L. Response of photosynthesis in saplings of three endangered Magnolialia species to high temperature. Acta Ecol. Sin. 2008, 8, 3789–3797. [Google Scholar]
- Meng, Q.; Shen, H.T.; Mao, L.Q.; Liang, W.G.; Zhao, Z.Z.; Liang, Z.Y.; Lai, M.F.; Huang, B.J.; Li, S.Z.; He, M.; et al. Determination of Exposure Age of Tiankeng, Leye County of Guangxi by Accelerator Mass Spectrometry. J. Guangxi Norm. Univ. 2017, 35, 16–20. [Google Scholar]
- Zhai, X.M.; Zhang, Y.H.; Li, F.Y.; Shi, W.Q.; Wei, H.X. Evolutional process of erosional Tiankengs. Carsologica Sin. 2021, 40, 952–964. [Google Scholar]
- Cibrian-Jaramillo, A.; Hird, A.; Oleas, N.; Ma, H.L.; Meerow, A.W.; Francisco-Ortega, J.; Griffith, M.P. What is the Conservation Value of a Plant in a Botanic Garden? Using Indicators to Improve Management of Ex Situ Collections. Bot. Rev. 2013, 79, 559–577. [Google Scholar] [CrossRef]
- Zhu, X.L.; Zou, R.; Qin, H.Z.; Chai, S.F.; Tang, J.M.; Li, Y.Y.; Wei, X. Genome-wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden Camellia tunghinensis. Evol. Appl. 2023, 16, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, D.C.; De Godoy, S.M.D.; Marques Da Silva, J.F.; Goes, B.D.; Ferraz, J.R.; Santos, P.D.O.; Da Silva, L.; Ribeiro, J.E.; Ruas, P.M.; Ruas, C.D.F. Landscape genetics reveal low diversity and adaptive divergence in Portulaca hatschbachii (Portulacaceae): An endangered species endemic to rocky outcrops of the Atlantic Forest. Bot. J. Linn. Soc. 2022, 200, 116–141. [Google Scholar] [CrossRef]
- Su, Z.H.; Richardson, B.A.; Zhuo, L.; Jiang, X.L. Divergent Population Genetic Structure of the Endangered Helianthemum (Cistaceae) and Its Implication to Conservation in Northwestern China. Front. Plant Sci. 2016, 7, 2010. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Latinne, A.; Waengsothorn, S.; Herbreteau, V.; Michaux, J.R. Evidence of complex phylogeographic structure for the threatened rodent Leopoldamys neilli, in Southeast Asia. Conserv. Genet. 2011, 12, 1495–1511. [Google Scholar] [CrossRef]
- Ke, F.; Vasseur, L.; Yi, H.; Yang, L.; Wei, X.; Wang, B.; Kang, M. Gene Flow, Linked Selection, and Divergent Sorting of Ancient Polymorphism Shape Genomic Divergence Landscape in a Group of Edaphic Specialists. Mol. Ecol. 2022, 31, 104–118. [Google Scholar] [CrossRef] [PubMed]
Population | Location | Type | Latitude | Longitude | No. of Samples |
---|---|---|---|---|---|
CW-MBL | Caowang Mountain and Maobiliang Mountain, Leye County, Guangxi, China | Outside the tiankeng | 24°43′46″ N | 106°21′21″ E | 7 |
FD | Fengdong village, Leye County, Guangxi, China | Outside the tiankeng | 24°45′42″ N | 106°28′20″ E | 2 |
FY | Fengyandong Mountain, Leye County, Guangxi, China | Outside the tiankeng | 24°51′01″ N | 106°24′21″ E | 3 |
XB | Xiabai Mountain, Huanjiang County, Guangxi, China | Outside the tiankeng | 25°8′34″ N | 107°56′21″ E | 5 |
CY-LH | Chengyang Town and Liuhua village, Napo County, Guangxi, China | Outside the tiankeng | 23°22′48″ N | 105°53′35″ E | 2 |
DC | Dacao Tiankeng, Leye County, Guangxi, China | Inside the tiankeng | 24°47′39″ N | 106°30′38″ E | 4 |
LJ | Luojia Tiankeng, Leye County, Guangxi, China | Inside the tiankeng | 24°48′26″ N | 106°26′58″ E | 10 |
SM | Shenmu Tiankeng, Leye County, Guangxi, China | Inside the tiankeng | 24°48′28″ N | 106°28′19″ E | 2 |
Pop ID | Private SNP | HO | HE | π | FIS |
---|---|---|---|---|---|
CW-MBL | 101.000 | 0.155 | 0.173 | 0.199 | 0.100 |
FD | 0.000 | 0.173 | 0.106 | 0.167 | −0.008 |
FY | 1.000 | 0.153 | 0.158 | 0.205 | 0.093 |
XB | 329.000 | 0.143 | 0.126 | 0.149 | 0.016 |
CY-LH | 4.000 | 0.130 | 0.085 | 0.144 | 0.020 |
DC * | 21.000 | 0.175 | 0.146 | 0.179 | 0.011 |
LJ * | 195.000 | 0.205 | 0.176 | 0.190 | −0.026 |
SM * | 1.000 | 0.195 | 0.120 | 0.185 | −0.015 |
CW-MBL | FD | FY | XB | CY-LH | DC * | LJ * | SM * | |
---|---|---|---|---|---|---|---|---|
CW-MBL | 0.204 | 0.109 | 0.206 | 0.149 | 0.174 | 0.147 | 0.184 | |
FD | 0.218 | 0.325 | 0.31 | 0.154 | 0.085 | 0.231 | ||
FY | 0.246 | 0.194 | 0.165 | 0.11 | 0.191 | |||
XB | 0.268 | 0.263 | 0.204 | 0.297 | ||||
CY-LH | 0.188 | 0.101 | 0.264 | |||||
DC * | 0.082 | 0.141 | ||||||
LJ * | 0.077 |
P1 | P2 | P3 | D-Statistic | Z-Score | p-Value | f4-Ratio |
---|---|---|---|---|---|---|
CY | FY | MBL | 0.32 | 5.81 | 0.0000 | 0.18 |
XB | DC * | CW | 0.21 | 5.55 | 0.0000 | 0.66 |
CW | LJ * | XB | 0.25 | 5.31 | 0.0000 | 0.21 |
MBL | CW | DC * | 0.25 | 5.26 | 0.0000 | 0.18 |
LJ * | CW | MBL | 0.25 | 5.19 | 0.0000 | 0.21 |
MBL | FY | XB | 0.23 | 5.13 | 0.0000 | 0.16 |
CW | SM * | XB | 0.25 | 4.81 | 0.0000 | 0.2 |
CY | FY | CW | 0.2 | 4.67 | 0.0000 | 1.78 |
MBL | CW | SM * | 0.23 | 4.62 | 0.0000 | 0.15 |
MBL | CW | FD | 0.24 | 4.18 | 0.0000 | 0.13 |
CY | LJ * | FY | 0.17 | 4.09 | 0.0000 | 0.7 |
CW | CY | XB | 0.27 | 3.74 | 0.0002 | 0.2 |
CW | FD | XB | 0.2 | 3.4 | 0.0007 | 0.17 |
MBL | CW | CY | 0.22 | 3.3 | 0.0010 | 0.15 |
SM * | CY | LH | 0.26 | 3.29 | 0.0010 | 0.14 |
CY | SM * | FY | 0.15 | 3.06 | 0.0022 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tang, J.; Zhu, X.; Pan, L.; Zou, R.; Jiang, Y.; Wei, X. Evidence for the Use of Karst Tiankengs as Shelters: The Effect of Karst Tiankengs on Genetic Diversity and Population Differentiation in Manglietia aromatica. Forests 2024, 15, 576. https://doi.org/10.3390/f15040576
Yang Y, Tang J, Zhu X, Pan L, Zou R, Jiang Y, Wei X. Evidence for the Use of Karst Tiankengs as Shelters: The Effect of Karst Tiankengs on Genetic Diversity and Population Differentiation in Manglietia aromatica. Forests. 2024; 15(4):576. https://doi.org/10.3390/f15040576
Chicago/Turabian StyleYang, Yishan, Jianmin Tang, Xianliang Zhu, Lipo Pan, Rong Zou, Yunsheng Jiang, and Xiao Wei. 2024. "Evidence for the Use of Karst Tiankengs as Shelters: The Effect of Karst Tiankengs on Genetic Diversity and Population Differentiation in Manglietia aromatica" Forests 15, no. 4: 576. https://doi.org/10.3390/f15040576
APA StyleYang, Y., Tang, J., Zhu, X., Pan, L., Zou, R., Jiang, Y., & Wei, X. (2024). Evidence for the Use of Karst Tiankengs as Shelters: The Effect of Karst Tiankengs on Genetic Diversity and Population Differentiation in Manglietia aromatica. Forests, 15(4), 576. https://doi.org/10.3390/f15040576