Zinc-Enhanced Regulation of the Ginkgo biloba L. Response and Secondary Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Test Sites
2.2. Treatment
2.3. Measurements of Physiological Indicators of Ginkgo Leaves
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Times and Zinc Concentrations on the Photosynthesis and Gas Exchange in Ginkgo Leaves
3.2. Effects of Different Times and Zinc Concentrations on the Enzyme Activity and Antioxidant Capacity of Ginkgo Leaves
3.3. Effects of Different Times and Zinc Concentrations on the Endogenous Hormones of Ginkgo Leaves
3.4. Effects of Different Times and Zinc Concentrations on the Nascent Metabolites of Ginkgo Leaves
3.5. Effects of Different Times and Zinc Concentrations on the Flavonoids and TTL Contents of Ginkgo Leaves
3.6. Correlation Analysis and Principal Component Analysis (PCA) of Various Indicators of Ginkgo at Different Time Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, F.L. Chinese Ginkgo; China Forestry Publishing House: Beijing, China, 2007; ISBN 7-5038-4805-7. [Google Scholar]
- Strømgaard, K.; Nakanishi, K. Chemistry and Biology of Terpene Trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. Engl. 2004, 43, 1640–1658. [Google Scholar] [CrossRef]
- Lachachi, H.; Plantavid, M.; Simon, M.F.; Chap, H.; Braquet, P.; Douste-Blazy, L. Inhibition of Transmembrane Movement and Metabolism of Platelet Activating Factor (PAF-Acether) by a Specific Antagonist, BN 52021. Biochem. Biophys. Res. Commun. 1985, 132, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Sun, Q.; Chen, W.; Bai, Y.; Hu, D.; Xie, X. The Neuroprotective Mechanisms of Ginkgolides and Bilobalide in Cerebral Ischemic Injury: A Literature Review. Mol. Med. 2019, 25, 57. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, P.; Adamska, I.; Felisiak, K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds—A Review of the Recent Literature and Patents. Molecules 2023, 28, 3993. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-L.; Tsai, W.-C.; Wu, C.-H.; Wu, C.-H.; Cheng, C.-C.; Lin, W.-S.; Tsai, T.-N.; Wu, L.-S. Ginkgo biloba Induces Thrombomodulin Expression and Tissue-Type Plasminogen Activator Secretion via the Activation of Krüppel-like Factor 2 within Endothelial Cells. Am. J. Chin. Med. 2020, 48, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-W.; Yang, J.-L.; Niu, W.; Jia, W.-W.; Olaleye, O.E.; Wen, Q.; Duan, X.-N.; Huang, Y.-H.; Wang, F.-Q.; Du, F.-F.; et al. Human Pharmacokinetics of Ginkgo Terpene Lactones and Impact of Carboxylation in Blood on Their Platelet-Activating Factor Antagonistic Activity. Acta Pharmacol. Sin. 2018, 39, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Eisvand, F.; Razavi, B.M.; Hosseinzadeh, H. The Effects of Ginkgo biloba on Metabolic Syndrome: A Review. Phytother. Res. 2020, 34, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, Synthesis, Biosynthesis, and Activity of the Characteristic Compounds from Ginkgo biloba L. Nat. Prod. Rep. 2022, 39, 474–511. [Google Scholar] [CrossRef] [PubMed]
- Stanton, C.; Sanders, D.; Krämer, U.; Podar, D. Zinc in Plants: Integrating Homeostasis and Biofortification. Mol. Plant 2022, 15, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Sturikova, H.; Krystofova, O.; Huska, D.; Adam, V. Zinc, Zinc Nanoparticles and Plants. J. Hazard. Mater. 2018, 349, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, M.; Bayçu, G.; Gevrek, N.; Moustaka, J.; Csatári, I.; Rognes, S.E. Spatiotemporal Heterogeneity of Photosystem II Function during Acclimation to Zinc Exposure and Mineral Nutrition Changes in the Hyperaccumulator Noccaea Caerulescens. Environ. Sci. Pollut. Res. 2019, 26, 6613–6624. [Google Scholar] [CrossRef] [PubMed]
- Balafrej, H.; Bogusz, D.; Triqui, Z.-E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc Hyperaccumulation in Plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Tsonev, T.; Lidon, F. Zinc in Plants—An Overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Zhang, P.; Sun, L.; Qin, J.; Wan, J.; Wang, R.; Li, S.; Xu, J. cGMP Is Involved in Zn Tolerance through the Modulation of Auxin Redistribution in Root Tips. Environ. Exp. Bot. 2018, 147, 22–30. [Google Scholar] [CrossRef]
- Mahawar, L.; Živčák, M.; Barboricova, M.; Kovár, M.; Filaček, A.; Ferencova, J.; Vysoká, D.M.; Brestič, M. Effect of Copper Oxide and Zinc Oxide Nanoparticles on Photosynthesis and Physiology of Raphanus sativus L. under Salinity Stress. Plant Physiol. Biochem. 2024, 206, 108281. [Google Scholar] [CrossRef] [PubMed]
- Rai-Kalal, P.; Jajoo, A. Priming with Zinc Oxide Nanoparticles Improve Germination and Photosynthetic Performance in Wheat. Plant Physiol. Biochem. 2021, 160, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Salehi, H.; De Diego, N.; Chehregani Rad, A.; Benjamin, J.J.; Trevisan, M.; Lucini, L. Exogenous Application of ZnO Nanoparticles and ZnSO4 Distinctly Influence the Metabolic Response in Phaseolus vulgaris L. Sci. Total Environ. 2021, 778, 146331. [Google Scholar] [CrossRef]
- Jan, A.U.; Hadi, F.; Midrarullah; Nawaz, M.A.; Rahman, K. Potassium and Zinc Increase Tolerance to Salt Stress in Wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2017, 116, 139–149. [Google Scholar] [CrossRef]
- Wei, C.; Jiao, Q.; Agathokleous, E.; Liu, H.; Li, G.; Zhang, J.; Fahad, S.; Jiang, Y. Hormetic Effects of Zinc on Growth and Antioxidant Defense System of Wheat Plants. Sci. Total Environ. 2022, 807, 150992. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Meng, Z.; Qinyue, Z.; Feng, X.; Zhang, W. Effects of Exogenous Zinc (ZnSO4·7H2O) on Photosynthetic Characteristics and Grain Quality of Hybrid Rice. Plant Physiol. Biochem. 2023, 205, 108049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc Stress Affects Ionome and Metabolome in Tea Plants. Plant Physiol. Biochem. 2017, 111, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Jiang, T.; Chun, Z.; Wang, G.; Yang, K.; Tan, X.; Zhao, J.; Pu, S.; Luo, A. Zinc Affects the Physiology and Medicinal Components of Dendrobium nobile Lindl. Plant Physiol. Biochem. 2021, 162, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, G.T.; Hu, Q.H.; Zhao, S.W.; Zhao, L.Y. Separation, Purification and Structure Characteristics of Zn-Binding Polysaccharides from Flammulina velutipes. Food Sci. 2014, 35, 1. [Google Scholar] [CrossRef]
- Jin, L.; Gao, M.J.; Duan, X.H.; Guo, X.R. Zn Stress Changchun Spend Different Parts of Zn Accumulation by Exogenous Ethephon Regulation. Bull. Bot. Res. 2015, 35, 150–153. [Google Scholar] [CrossRef]
- Lin, Y.; Lou, K.; Wu, G.; Wu, X.; Zhou, X.; Feng, Y.; Zhang, H.; Yu, P. Bioactive Metabolites in of Ginkgo biloba Leaves: Variations by Seasonal, Meteorological and Soil. Braz. J. Biol. Rev. Brasleira Biol. 2020, 80, 790–797. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Kaundal, M.; Sharma, S.; Thakur, M. Response of Damask Rose (Rosa damascena Mill.) to Foliar Application of Magnesium (Mg), Copper (Cu) and Zinc (Zn) Sulphate under Western Himalayas. Ind. Crops Prod. 2016, 83, 596–602. [Google Scholar] [CrossRef]
- Horbowicz, M.; Wiczkowski, W.; Góraj-Koniarska, J.; Miyamoto, K.; Ueda, J.; Saniewski, M. Effect of Methyl Jasmonate on the Terpene Trilactones, Flavonoids, and Phenolic Acids in Ginkgo biloba L. Leaves: Relevance to Leaf Senescence. Molecules 2021, 26, 4682. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Mao, D.; Cheng, S.; Zhang, X.; Tan, J.; Zheng, J.; Xu, F. Comparative Transcriptome Analysis Reveals the Potential Stimulatory Mechanism of Terpene Trilactone Biosynthesis by Exogenous Salicylic Acid in Ginkgo biloba. Ind. Crops Prod. 2020, 145, 112104. [Google Scholar] [CrossRef]
- Li, L.; Yu, J.; Li, L.; Rao, S.; Wu, S.; Wang, S.; Cheng, S.; Cheng, H. Treatment of Ginkgo biloba with Exogenous Sodium Selenite Affects Its Physiological Growth, Changes Its Phytohormones, and Synthesizes Its Terpene Lactones. Molecules 2022, 27, 7548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, S.; Zhong, L.; Zhao, X.; Wang, L. Effects of Zinc Oxide Nanoparticles on Growth, Development, and Flavonoid Synthesis in Ginkgo biloba. Int. J. Mol. Sci. 2023, 24, 15775. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.-J.; Yang, C.-J.; Chen, X.-F.; Maiheliya, M.-J.-T.; Huang, M.-M.; Wei, X.-J.; Wang, K.; Liu, C.-S.; Yang, Y.-J. Effect of origin, tree age, and harvesting time on content of flavonoids and terpene lactones in Ginkgo folium. Zhongguo Zhong Yao Za Zhi 2022, 47, 4055–4065. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Plant Physiological and Biochemical Experimental Principles and Techniques, 2nd ed.; Higher Education Press: Beijing, China, 2006; ISBN 9787040192162. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Weiler, E.W. Immunoassay of Plant Growth Regulators. Annu. Rev. Plant Physiol. 1984, 35, 85–95. [Google Scholar] [CrossRef]
- Xia, X.; Cao, J.; Zheng, Y.; Wang, Q.; Xiao, J. Flavonoid Concentrations and Bioactivity of Flavonoid Extracts from 19 Species of Ferns from China. Ind. Crops Prod. 2014, 58, 91–98. [Google Scholar] [CrossRef]
- Su, E.; Yang, M.; Cao, J.; Lu, C.; Wang, J.; Cao, F. Deep Eutectic Solvents as Green Media for Efficient Extraction of Terpene Trilactones from Ginkgo biloba Leaves. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 385–391. [Google Scholar] [CrossRef]
- Tietze, F. Enzymic Method for Quantitative Determination of Nanogram Amounts of Total and Oxidized Glutathione: Applications to Mammalian Blood and Other Tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: II. Role of Electron Transfer. Arch. Biochem. Biophys. 1968, 125, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Maehly, A.C. Plant Peroxidase. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1955; Volume 2, pp. 801–813. [Google Scholar]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Rukhsar-Ul-Haq; Kausar, A.; Hussain, S.; Javed, T.; Zafar, S.; Anwar, S.; Hussain, S.; Zahra, N.; Saqib, M. Zinc Oxide Nanoparticles as Potential Hallmarks for Enhancing Drought Stress Tolerance in Wheat Seedlings. Plant Physiol. Biochem. 2023, 195, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Garg, N. Zinc Toxicity in Plants: A Review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, X.; Tan, X.-R.; Liu, Y.; Wang, M.-X. Accumulation, subcellular distribution, and chemical forms of zinc in three tree species. Ying Yong Sheng Tai Xue Bao 2021, 32, 4298–4306. [Google Scholar] [CrossRef]
- Misra, A.; Srivastava, A.K.; Srivastava, N.K.; Khan, A. Zn-Acquisition and Its Role in Growth, Photosynthesis, Photosynthetic Pigments, and Biochemical Changes in Essential Monoterpene Oil(s) of Pelargonium Graveolens. Photosynthetica 2005, 43, 153–155. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-P.; Deng, Q.-J.; Shang, Y.-J.; Yao, X.-W.; Wang, H.-K.; Tang, Y.-J.; Peng, F.-R.; Tan, P.-P. Effects of Zinc Application on the Growth and Photosynthetic Characteristics of Pecan at the Seedling Stage. Plant Biol. 2021, 23, 1149–1156. [Google Scholar] [CrossRef]
- Heerema, R.J.; VanLeeuwen, D.; Thompson, M.Y.; Sherman, J.D.; Comeau, M.J.; Walworth, J.L. Soil-Application of Zinc-EDTA Increases Leaf Photosynthesis of Immature ‘Wichita’ Pecan Trees. J. Am. Soc. Hortic. Sci. 2017, 142, 27–35. [Google Scholar] [CrossRef]
- Gomes, M.P.; Duarte, D.M.; Carneiro, M.M.L.C.; Barreto, L.C.; Carvalho, M.; Soares, A.M.; Guilherme, L.R.G.; Garcia, Q.S. Zinc Tolerance Modulation in Myracrodruon urundeuva Plants. Plant Physiol. Biochem. 2013, 67, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Michael, P.I.; Krishnaswamy, M. The Effect of Zinc Stress Combined with High Irradiance Stress on Membrane Damage and Antioxidative Response in Bean Seedlings. Environ. Exp. Bot. 2011, 74, 171–177. [Google Scholar] [CrossRef]
- Goodarzi, A.; Namdjoyan, S.; Soorki, A.A. Effects of Exogenous Melatonin and Glutathione on Zinc Toxicity in Safflower (Carthamus tinctorius L.) Seedlings. Ecotoxicol. Environ. Saf. 2020, 201, 110853. [Google Scholar] [CrossRef] [PubMed]
- Kühnlenz, T.; Hofmann, C.; Uraguchi, S.; Schmidt, H.; Schempp, S.; Weber, M.; Lahner, B.; Salt, D.E.; Clemens, S. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis Thaliana Plants Grown in Soil with Adequate Zn Supply and Is Essential for Survival on Zn-Contaminated Soil. Plant Cell Physiol. 2016, 57, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Zlobin, I.E.; Kartashov, A.V.; Shpakovski, G.V. Different Roles of Glutathione in Copper and Zinc Chelation in Brassica Napus Roots. Plant Physiol. Biochem. 2017, 118, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Tang, J.; Zheng, X.; Li, A.; Zhang, J. The Regulating Mechanism of Salt Tolerance of Black Walnut Seedlings Was Revealed by the Physiological and Biochemical Integration Analysis. Plant Physiol. Biochem. 2024, 210, 108548. [Google Scholar] [CrossRef] [PubMed]
- Dani, K.G.S.; Loreto, F. Plant Volatiles as Regulators of Hormone Homeostasis. New Phytol. 2022, 234, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.C.R.; Souza, L.A.; Schiavinato, M.A.; de Oliveira Silva, F.M.; de Andrade, S.A.L. Zinc Toxicity in Seedlings of Three Trees from the Fabaceae Associated with Arbuscular Mycorrhizal Fungi. Ecotoxicol. Environ. Saf. 2020, 195, 110450. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Garg, N. Zinc-Arbuscular Mycorrhizal Interactions: Effect on Nutrient Pool, Enzymatic Antioxidants, and Osmolyte Synthesis in Pigeonpea Nodules Subjected to Cd Stress. Commun. Soil Sci. Plant Anal. 2017, 48, 1684–1700. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Chee Kong, Y.; Mohd Zain, N.A. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules 2017, 22, 1623. [Google Scholar] [CrossRef] [PubMed]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.-F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive Oxygen Species and Heavy Metal Stress in Plants: Impact on the Cell Wall and Secondary Metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
- Nekoukhou, M.; Fallah, S.; Abbasi-Surki, A.; Pokhrel, L.R.; Rostamnejadi, A. Improved Efficacy of Foliar Application of Zinc Oxide Nanoparticles on Zinc Biofortification, Primary Productivity and Secondary Metabolite Production in Dragonhead. J. Clean. Prod. 2022, 379, 134803. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The Dilemma of Plants: To Grow or Defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B. Effects of Cd, Pb, and Cu on Growth and Essential Oil Contents in Dill, Peppermint, and Basil. Environ. Exp. Bot. 2006, 58, 9–16. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential Oil Diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef] [PubMed]
Treatment Group | Treatment | Experimental Treatment Level Combination | Sampling Time |
---|---|---|---|
Control group | Treatment 1 | CK | Ginkgo leaves were sampled from the whole plant on September 22 |
Zinc application group A (sprayed on 2 June) | Treatment 2 | A-T1 | |
Treatment 3 | A-T2 | ||
Treatment 4 | A-T3 | ||
Treatment 5 | A-T4 | ||
Zinc application group B (sprayed on 2 August) | Treatment 6 | B-T1 | |
Treatment 7 | B-T2 | ||
Treatment 8 | B-T3 | ||
Treatment 9 | B-T4 | ||
Zinc application group C (sprayed on both 2 June and 2 August) | Treatment 10 | C-T1 | |
Treatment 11 | C-T2 | ||
Treatment 12 | C-T3 | ||
Treatment 13 | C-T4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Luo, Y.; Hou, H.; Yu, P.; Guo, J.; Wang, G. Zinc-Enhanced Regulation of the Ginkgo biloba L. Response and Secondary Metabolites. Forests 2024, 15, 759. https://doi.org/10.3390/f15050759
Zhang J, Luo Y, Hou H, Yu P, Guo J, Wang G. Zinc-Enhanced Regulation of the Ginkgo biloba L. Response and Secondary Metabolites. Forests. 2024; 15(5):759. https://doi.org/10.3390/f15050759
Chicago/Turabian StyleZhang, Jingjing, Yixuan Luo, Huifeng Hou, Pengfei Yu, Jing Guo, and Guibin Wang. 2024. "Zinc-Enhanced Regulation of the Ginkgo biloba L. Response and Secondary Metabolites" Forests 15, no. 5: 759. https://doi.org/10.3390/f15050759
APA StyleZhang, J., Luo, Y., Hou, H., Yu, P., Guo, J., & Wang, G. (2024). Zinc-Enhanced Regulation of the Ginkgo biloba L. Response and Secondary Metabolites. Forests, 15(5), 759. https://doi.org/10.3390/f15050759