Riparian Forests as Nature-Based Solutions within the Mediterranean Context: A Biophysical and Economic Assessment for the Koiliaris River Watershed (Crete, Greece)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Future Alternative NBS Scenario
2.3. Scenario Assessment Methodology
2.4. Models and Data Inputs
3. Results
3.1. Ecosystem Services Assessment
3.1.1. Biophysical Assessment
3.1.2. Economic Assessment
3.2. Cost–Benefit Analysis
4. Discussion
4.1. Ecosystem Service Assessment
4.2. Cost–Benefit Analysis
4.3. Planning and Management Implications
4.4. Policy Implications
4.5. Research Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2233–2272. [Google Scholar]
- MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; MedECC: Marseille, France, 2020. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 872–980. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Ringler, C.; Bhaduri, A.; Lawford, R. The Nexus across Water, Energy, Land and Food (WELF): Potential for Improved Resource Use Efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Foran, T. Node and Regime: Interdisciplinary Analysis of Water-EnergyFood Nexus in the Mekong Region. Water Altern. 2015, 8, 655–674. [Google Scholar]
- Wolfe, M.L.; Ting, K.C.; Scott, N.; Sharpley, A.; Jones, J.M.; Verma, L. Engineering Solutions for Food-Energy-Water Systems: It Is More than Engineering. J. Environ. Stud. Sci. 2016, 6, 172–182. [Google Scholar] [CrossRef]
- Union for the Mediterranean. UfM Water Policy Framework for Actions 2030; Union for the Mediterranean: Barcelona, Spain, 2020. [Google Scholar]
- Riccaboni, A.; Antonelli, M.; Stanghellini, G. Partnership for Research and Innovation in the Mediterranean Area and the Promotion of a Nexus Approach. In Connecting the Sustainable Development Goals: The WEF Nexus. Sustainable Development Goals Series; Cavalli, L., Vergalli, S., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Malagó, A.; Comero, S.; Bouraoui, F.; Kazezyılmaz-Alhan, C.M.; Gawlik, B.M.; Easton, P.; Laspidou, C. An Analytical Framework to Assess SDG Targets within the Context of WEFE Nexus in the Mediterranean Region. Resour. Conserv. Recycl. 2021, 164, 105205. [Google Scholar] [CrossRef]
- Shannak, S.; Mabrey, D.; Vittorio, M. Moving from Theory to Practice in the Water–Energy–Food Nexus: An Evaluation of Existing Models and Frameworks. Water-Energy Nexus 2018, 1, 17–25. [Google Scholar] [CrossRef]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Governance in the Water-Energy-Food Nexus: Gaps and Future Research Needs; Stockholm Environment Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Liu, J.; Yang, H.; Cudennec, C.; Gain, A.K.; Hoff, H.; Lawford, R.; Qi, J.; de Strasser, L.; Yillia, P.T.; Zheng, C. Challenges in Operationalizing the Water–Energy–Food Nexus. Hydrol. Sci. J. 2017, 62, 1714–1720. [Google Scholar] [CrossRef]
- De Roo, A.; Trichakis, I.; Bisselink, B.; Gelati, E.; Pistocchi, A.; Gawlik, B. The Water-Energy-Food-Ecosystem Nexus in the Mediterranean: Current Issues and Future Challenges. Front. Clim. 2021, 3, 782553. [Google Scholar] [CrossRef]
- Quagliarotti, D.A.L. The Water-Energy-Food Nexus in the Mediterranean Region in a Scenario of Polycrisis. TeMA-J. Land Use Mobil. Environ. 2023, 109–122. [Google Scholar] [CrossRef]
- Lucca, E.; El Jeitany, J.; Castelli, G.; Pacetti, T.; Bresci, E.; Nardi, F.; Caporali, E. A Review of Water-Energy-Food-Ecosystems Nexus Research in the Mediterranean: Evolution, Gaps and Applications. Environ. Res. Lett. 2022, 18, 083001. [Google Scholar] [CrossRef]
- Fürst, C.; Luque, S.; Geneletti, D. Nexus Thinking–How Ecosystem Services Can Contribute to Enhancing Thecross-Scale and Cross-Sectoral Coherence between Land Use, Spatial Planningand Policy-Making. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 412–421. [Google Scholar] [CrossRef]
- Bekchanov, M.; Ringler, C.; Mueller, M. Ecosystem Services in the Water-Energy-Food Nexus. Chang. Adapt. Socioecol. Syst. 2015, 2, 100–102. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerstrom, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated Analysis of Climate Change, Land-Use, Energy and Water Strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Hülsmann, S.; Sušnik, J.; Rinke, K.; Langan, S.; Wijk, D.; Janssen, A.B.G.; Mooji, W.M. Integrated Modelling and Management of Water Resources: The Ecosystem Perspective on the Nexus Approach. Curr. Opin. Environ. Sustain. 2019, 40, 14–20. [Google Scholar] [CrossRef]
- Galaitsi, S.; Veysey, J.; Huber-Lee, A. Where Is the Added Value? A Review of the Water-Energy-Food Nexus Literature; Stockholm Environment Institute: Stockholm, Sweden, 2018. [Google Scholar]
- van Gevelt, T. The Water–Energy–Food Nexus: Bridging the Science–Policy Divide. Curr. Opin. Environ. Sci. Health 2020, 13, 6–10. [Google Scholar] [CrossRef]
- EC. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; European Commission: Brussels, Belgium, 2015.
- CBD. Annex A to COP 5 Decision V/6. Ecosystem Approach; Convention on Biological Diversity: Montreal, QC, Canada, 2000. [Google Scholar]
- Naumann, S.; Anzaldua, G.; Berry, P.; Burch, S.; Davis, M.; Frelih-Larsen, A.; Gerdes, H.; Sanders, M. Assessment of the Potential of Ecosystem-Based Approaches to Climate Change Adaptation and Mitigation in Europe; Final Report to the European Commission; Ecologic Institute: Berlin, Germany; Environmental Change Institute, Oxford University Centre for the Environment: Oxford, UK, 2011. [Google Scholar]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban Greening through Nature-Based Solutions—Key Characteristics of an Emerging Concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2015, 10, 121–124. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- IUCN. Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of NBS, 1st ed.; International Union for Conservation of Nature: Gland, Switzerland, 2020; ISBN 978-2-8317-2058-6. [Google Scholar]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Diep, L.; McPhearson, T. Nature-Based Solutions for Global Climate Adaptation. Nature 2022, 606, 653. [Google Scholar] [CrossRef]
- Hölscher, K.; Frantzeskaki, N.; Collier, M.J.; Connop, S.; Kooijman, E.D.; Lodder, M.; McQuaid, S.; Vendergert, P.; Xidous, D.; Bešlagić, L.; et al. Strategies for Mainstreaming Nature-Based Solutions in Urban Governance Capacities in Ten European Cities. npj Urban. Sustain. 2023, 3, 54. [Google Scholar] [CrossRef]
- Sarkki, S.; Haanpää, O.; Heikkinen, H.I.; Hiedanpää, J.; Kikuchi, K.; Räsänen, A. Mainstreaming Nature-Based Solutions through Five Forms of Scaling: Case of the Kiiminkijoki River Basin, Finland. Ambio 2024, 53, 212–226. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Phil. Trans. R. Soc. B 2000, 375, 20190120. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Jones, H.; Hole, D.; Zavaleta, E. Harnessing Nature to Help People Adapt to Climate Change. Nat. Clim. Chang. 2012, 2, 504–509. [Google Scholar] [CrossRef]
- Keestra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerda, A. The Superior Effect of Nature Based Solutions in Land Management for Enhancing Ecosystem Services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Ecosystem Services in Urban Plans: What Is There, and What Is Still Needed for Better Decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Wingfield, T.; Macdonald, N.; Peters, K.; Spees, J.; Potter, K. Natural Flood Management: Beyond the evidence debate. Area 2019, 51, 743–751. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Aragão, L.; Barisani, F.; Basu, B.; Bucchignani, E.; Charizopoulos, N.; Domeneghetti, S.; Sorolla, A.; et al. Towards an Operationalisation of Nature-Based Solutions for Natural Hazards. Sci. Total Environ. 2020, 731, 138855. [Google Scholar] [CrossRef]
- Faivre, N.; Sgobbi, A.; Happaerts, S.; Raynal, J.; Schmidt, L. Translating the Sendai Framework into Action: The EU Approach to Ecosystem-Based Disaster Risk Reduction. Int. J. Disaster Risk Reduct. 2018, 32, 4–10. [Google Scholar] [CrossRef]
- Albert, C.; Hack, J.; Schmidt, S.; Schroter, B. Planning and Governing Nature-Based Solutions in River Landscapes: Concepts, Cases, and Insights. Ambio 2021, 50, 1405–1413. [Google Scholar] [CrossRef]
- Raška, P.; Bezak, N.; Ferreira, C.S.S.; Kalantari, Z.; Banasik, K.; Bertola, M.; Bourke, M.; Cerda, A.; Evans, R.; Finger, D.C.; et al. Identifying Barriers for Nature-Based Solutions in Flood Risk Management: An Interdisciplinary Overview Using Expert Community Approach. J. Environ. Manag. 2022, 310, 114725. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; Gutierrez Goizueta, G.; Brander, L.M.; Gonzalex Reguero, B.; Griffin, R.; Macleod, K.K.; Alves Beloqui, A.I.; Migdley, A.; Herrera Garcia, L.D.; Jongman, B. Assessing the Benefits and Costs of Nature-Based Solutions for Climate Resilience: A Guideline for Project Developers; World Bank: Washington, DC, USA, 2023. [Google Scholar]
- Arfaoui, N.; Gnonlonfin, A.; Piton, G.; Douai, A. Economic Efficiency and Financing of Nature-Based Solutions: The Brague River Case Study. Nat. Sci. Soc. 2022, 30, 238–253. [Google Scholar] [CrossRef]
- García-Herrero, L.; Lavrnić, S.; Guerrieri, V.; Toscano, A.; Milani, M.; Cirelli, G.L.; Vittuari, M. Cost-Benefit of Green Infrastructures for Water Management: A Sustainability Assessment of Full-Scale Constructed Wetlands in Northern and Southern Italy. Ecol. Eng. 2022, 185, 106797. [Google Scholar] [CrossRef]
- Keyzer, M.; Sonneveld, B.; Veen, W. Valuation of Natural Resources: Efficiency and Equity. Dev. Pract. 2009, 19, 233–239. [Google Scholar] [CrossRef]
- Albert, C.; Schroter, B.; Haasec, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing Societal Challenges through Nature-Based Solutions: How Can Landscape Planning and Governance Research Contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Moreno Vargas, G.C.; del Pilar Quiñones Hoyos, C.; Hernández Manrique, O.L. The Water-Energy-Food Nexus in Biodiversity Conservation: A Systematic Review around Sustainability Transitions of Agricultural Systems. Helyon 2023, 9, e17016. [Google Scholar] [CrossRef]
- Barton, D.N.; Kelemen, E.; Dick, J.; Martin-Lopez, B.; Gómez-Baggethun, E.; Jacobs, S.; Hendriks, C.M.; Termansen, M.; García-Llorente, M.; Primmer, E.; et al. (Dis) Integrated Valuation—Assessing the Information Gaps in Ecosystem Service Appraisals for Governance Support. Ecosyst. Serv. 2018, 29, 529–541. [Google Scholar] [CrossRef]
- Zhou, W.; Martius, C. Taking Stock of Nature-Based Solutions (NBS): An Analysis of Global NBS Submissions to the United Nations Climate Action Summit in September 2019; CIFOR: Bogor, Indonesia, 2022. [Google Scholar]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A.; et al. Notes from the Field: Lessons Learned from Using Ecosystem Service Approaches to Inform Real-World Decisions. Ecol. Econ. 2015, 11, 11–21. [Google Scholar] [CrossRef]
- Giordano, R.; Pluchinotta, I.; Pagano, I.; Scrieciu, A.; Nanu, F. Enhancing Nature-Based Solutions Acceptance through Stakeholders’ Engagement in Co-Benefits Identification and Trade-Offs Analysis. Sci. Total Environ. 2020, 713, 136552. [Google Scholar] [CrossRef]
- MedECC. Risks Associated to Climate and Environmental Changes in the Mediterranean Region. Apreliminary Assessment by the MedECC Network Science-Policy Interface—2019; MedECC-PlanBleu: Marseille, France, 2019. [Google Scholar]
- Llasat, M.C. Floods Evolution in the Mediterranean Region in a Context of Climate and Environmental Change. Cuad. Investig. Geogr. 2021, 47, 13–32. [Google Scholar] [CrossRef]
- Gaume, E.; Borga, M.; Llasat, M.C.; Maouche, S.; Lang, M.; Diakakis, M. Mediterranean Extreme Floods and Flash Floods. In The Mediterranean Region under Climate Change. A Scientific Update; IRD Editions: Marseille, France, 2016; pp. 133–134. [Google Scholar]
- Alfieri, L.; Feyen, L.; Dottori, F.; Bianchi, A. Ensemble Flood Risk Assessment in Europe under High End Climate Scenarios. Glob. Environ. Chang. 2015, 35, 199–212. [Google Scholar] [CrossRef]
- Davolio, S.; Buzzi, A.; Malguzzi, P. Orographic Triggering of Long Lived Convection in Three Dimensions. Meteorol. Atmos. Phys. 2009, 103, 35–44. [Google Scholar] [CrossRef]
- Tarolli, P.; Borga, M.; Morin, E.; Delrieu, G. Analysis of Flash Flood Regimes in the North-Western and South-Eastern Mediterranean Regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 1255–1265. [Google Scholar] [CrossRef]
- Jodar-Abellan, A.; Valdes-Abellan, J.; Pla, C.; Gomariz-Castillo, F. Impact of Land Use Changes on Flash Flood Prediction Using a Sub-Daily SWAT Model in Five Mediterranean Ungauged Watersheds (SE Spain). Sci. Total Environ. 2019, 657, 1578–1591. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Aurambout, J.P.; Schiavina, M.; Melchiori, M.; Fioretti, C.; Guzzo, F.; Vandecasteele, I.; Proietti, P.; Kavalov, B.; Panella, F.; Koukoufikis, G. Shrinking Cities—JRC126011; European Commission: Brussels, Belgium, 2021.
- European Flood Awareness System. Storm Daniel Affects Greece, Bulgaria and Türkiye—September 2023; European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2023. [Google Scholar]
- Mpekiaris, I.; Tsiotras, G.; Moschidis, O.; Gotzamani, K. Natural Disaster Preparedness and Continuity Planning of Greek Enterprises. Int. J. Disaster Risk Reduct. 2020, 47, 101555. [Google Scholar] [CrossRef]
- Lilli, M.A.; Efstathiou, D.; Moraetis, D.; Schuite, J.; Nerantzaki, S.D.; Nikolaidis, N.P. A Multi-Disciplinary Approach to Understand Hydrologic and Geochemical Processes at Koiliaris Critical Zone Observatory. Water 2020, 12, 2474. [Google Scholar] [CrossRef]
- Henao, E.; Lopez, M.L.; Osann, A. Baseline Description, Deliverable 8.1. PRIMA LENSES Project; PRIMA: Albacete, Spain, 2022. [Google Scholar]
- Lilli, M.A.; Nerantzaki, S.D.; Riziotis, C.; Kotronakis, M.; Efstathiou, D.; Kontakos, D.; Lymberakis, P.; Avramakis, M.; Tsakirakis, A.; Protopapadakis, K.; et al. Vision-Based Decision-Making Methodology for Riparian Forest Restoration and Flood Protection Using Nature-Based Solutions. Sustainability 2020, 12, 3305. [Google Scholar] [CrossRef]
- Yu, X.; Moraetis, D.; Nikolaidis, N.P.; Li, B.; Duffy, C.; Liu, B. A Coupled Surface-Subsurface Hydrologic Model to Assess Groundwater Flood Risk Spatially and Temporally. Environ. Model. Softw. 2019, 114, 129–139. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Giannakis, G.V.; Efsathiou, D.; Nikolaidis, N.P.; Sibetheros, I.A.; Karatzas, G.P.; Zacharias, I. Modeling Suspended Sediment Transport and Assessing the Impacts of Climate Change in a Karstic Mediterranean Watershed. Sci. Total Environ. 2015, 538, 288–297. [Google Scholar] [CrossRef]
- Moraetis, D.; Paranychianakis, N.V.; Nikolaidis, N.P.; Banwart, S.A.; Rousseva, S.; Kercheva, M.; Nenov, M.; Shishkov, T.; de Ruiter, P.; Bloem, J.; et al. Sediment Provenance, Soil Development, and Carbon Content in Fluvial and Manmade Terraces at Koiliaris River Critical Zone Observatory. J. Soils Sediments 2015, 15, 347–364. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Hristopulos, D.T.; Nikolaidis, N.P. Estimation of the Uncertainty of Hydrologic Predictions in a Karstic Mediterranean Watershed. Sci. Total Environ. 2020, 717, 137131. [Google Scholar] [CrossRef]
- Szałkiewicz, E.; Jusik, S.; Grygoruk, M. Status of and Perspectives on River Restoration in Europe: 310,000 Euros per Hectare of Restored River. Sustainability 2018, 10, 129. [Google Scholar] [CrossRef]
- Castellano, C.; Bruno, D.; Comin, F.A.; Rey Benayas, J.M.; Masip, A.; Jiménez, J.J. Environmental Drivers for Riparian Restoration Success and Ecosystem Services Supply in Mediterranean Agricultural Landscapes. Agr. Ecosyst. Environ. 2022, 337, 108048. [Google Scholar] [CrossRef]
- Demetropoulou, L.; Lilli, M.A.; Petousi, I.; Nikolaou, T.; Fountoulakis, M.; Kritsotakis, M.; Panakoulia, S.; Giannakis, G.V.; Manios, T.; Nikolaidis, N.P. Innovative Methodology for the Prioritization of the Program of Measures for Integrated Water Resources Management of the Region of Crete, Greece. Sci. Total Environ. 2019, 672, 61–70. [Google Scholar] [CrossRef]
- European Environment Agency and EUNIS EUNIS Habitat Classification 2012 Amended 2019—Helleno-Balkanic Riparian Plane Forests. Available online: https://eunis.eea.europa.eu/habitats/4939 (accessed on 23 March 2024).
- Natural Capital Project. InVEST 3.14.1. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 19 April 2024).
- CICES Common International Classification of Ecosystem Services (CICES) Version 5.1. Available online: https://cices.eu/ (accessed on 19 April 2024).
- Gregersen, H.; Contreras, A. Economic Assessment of Forestry Project Impacts; FAO Forestry Paper 106; FAO: Rome, Italy, 1995. [Google Scholar]
- Carvajal, V.C.; Janmat, J. A Cost-Benefit Analysis of a Riparian Rehabilitation Project on Alderson Creek, Township of Spallumcheen, British Columbia; University of British Columbia: Vancouver, BC, Canada, 2016. [Google Scholar]
- Masiero, M.; Pettenella, D.; Boscolo, M.; Barua, S.K.; Animon, I.; Matta, J.R. Valuing Forest Ecosystem Services: A Training Manual for Planners and Project Developers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131215-5. [Google Scholar]
- Dicks, J.; Dellaccio, O.; Stenning, J. Economic Costs and Benefits of Nature-Based Solutions to Mitigate Climate Change; Cambridge Econometrics: Cambridge, UK, 2020. [Google Scholar]
- Natural Capital Project. InVEST User Guide; Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Masiero, M.; Biasin, A.; Amato, G.; Malaggi, F.; Pettenella, D.; Nastasio, P.; Anelli, S. Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy). Forests 2022, 13, 444. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. CORINE Land Cover 2018 (Raster 100 m), Europe, 6-Yearly—Version 2020_20u1, May 2020; European Environment Agency: Copenhagen, Denmark, 2020.
- USDA. Urban Hydrology for Small Watersheds—TR55, 2nd ed.; United States Department of Agriculture: Washington, DC, USA, 1986.
- Ross, C.W.; Prihodko, L.; Anchang, J.Y.; Kumar, S.S.; Ji, W.; Hanan, N.P. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling; ORNL DAAC: Oak Ridge, TN, USA, 2018.
- Ingegnoli, V.; Giglio, E. Landscape Biodiversity Changes in Forest Vegetation and the Case Study of the Lavazé Pass (Trentino, Italy). Ann. Bot. 2008, 8, 21–29. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global Estimates of the Value of Ecosystems and Their Services in Monetary Units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Chiabai, A.; Travisi, C.M.; Markandya, A.; Ding, H.; Nunes, P.A.L.D. Economic Assessment of Forest Ecosystem Services Losses: Cost of Policy Inaction. Environ. Resour. Econ. 2011, 50, 405–445. [Google Scholar] [CrossRef]
- Nkonya, E.; Anderson, W.; Kato, E.; Koo, J.; Mizabaev, A.; von Braun, J.; Meyer, S. Global Cost of Land Degradation. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 117–165. [Google Scholar]
- Aksoy, E.; Panagos, P.; Montanarella, L. Spatial Prediction of Soil Organic Carbon of Crete by Using Geostatistics. In Digital Soil Assessments and Beyond, Proceedings of the Fifth Global Workshop on Digital Soil Mapping, Sydney, Australia, 10–13 April 2012; Minasny, B., Malone, B.P., McBratney, A.B., Eds.; CRC Press, Taylor&Francis Group: Leiden, The Netherlands, 2012; pp. 49–53. [Google Scholar]
- Ilarioni, L.; Nasini, L.; Brunori, A.; Proietti, P. Experimental Measurement of the Biomass of Olea europaea L. Afr. J. Biotech. 2013, 12, 1216–1222. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Peltola, H. Carbon Sequestration and Storage in European Forests. In Forest Bioeconomy and Climate Change; Managing Forest Ecosystems; Hetemäki, L., Kangas, J., Peltola, H., Eds.; Springer: Cham, Switzerland, 2022; Volume 42, pp. 113–128. [Google Scholar]
- Scandellari, F.; Caruso, G.; Liguori, G.; Meggio, F.; Palese, A.M.; Zanotelli, D.; Celano, G.; Gucci, R.; Inglese, P.; Pitacco, A.; et al. A Survey of Carbon Sequestration Potential of Orchards and Vineyards in Italy. Eur. J. Hortic. Sci. 2016, 71, 106–114. [Google Scholar] [CrossRef]
- Ecosystem Marketplace. The Art of Integrity: State of Voluntary Carbon Markets; Ecosystem Marketplace: Washington, DC, USA, 2022. [Google Scholar]
- Cooper, M.M.D.; Patil, S.D.; Nisbet, T.R.; Thomas, H.; Smith, A.R.; McDonald, M.A. Role of Forested Land for Natural Flood Management in the UK: A Review. Wiley Interdiscip. Rev. Water 2021, 8, e1541. [Google Scholar] [CrossRef]
- Halldórsson, G.; Ágústsdóttir, A.M.; Aradóttir, A.L.; Arnalds, O.; Hagen, D.; Mortensen, L.; Nilsson, C.; Óskarsson, H.; Pagneux, E.; Pilli-Sihvola, K.; et al. Ecosystem Restoration for Mitigation of Natural Disasters; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar]
- Haase, D. Urban Wetlands and Riparian Forests as a Nature-Based Solution for Climate Change Adaptation in Cities and Their Surroundings. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 111–121. [Google Scholar]
- Gwinn, D.C.; Middleton, J.A.; Beesley, L.; Close, P.; Quinton, B.; Storer, T.; Davies, P.M. Hierarchical Multi-taxa Models Inform Riparian vs. Hydrologic Restoration of Urban Streams in a Permeable Landscape. Ecol. Appl. 2018, 28, 385–397. [Google Scholar] [CrossRef]
- Hutchins, M.; Qu, Y.; Seifert-Dähnn, I.; Levin, G. Comparing Likely Effectiveness of Urban Nature-Based Solutions Worldwide: The Example of Riparian Tree Planting and Water Quality. J. Environ. Manag. 2024, 351, 119950. [Google Scholar] [CrossRef]
- Jakubínský, J.; Prokopová, M.; Raška, P.; Salvati, L.; Bezac, N.; Cudlín, O.; Purkyt, J.; Vezza, P.; Camporeale, C.; Daněk, J.; et al. Managing Floodplains Using Nature-Based Solutions to Support Multiple Ecosystem Functions and Services. WIREs Water 2021, 8, e1545. [Google Scholar] [CrossRef]
- European Environment Agency. Nature-Based Solutions in Europe: Policy, Knowledge and Practice for Climate Change Adaptation and Disaster Risk Reduction; European Environment Agency: Copenhagen, Denmark, 2021; ISBN 978-92-9480-362-7.
- Barth, C.; Doll, P. Assessing the Ecosystem Service Flood Protection of a Riparian Forest by Applying a Cascade Approach. Ecosyst. Serv. 2016, 21, 39–52. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, A.; Feyen, L. Cost-Effective Adaptation Strategies to Rising River Flood Risk in Europe. Nat. Clim. Chang. 2023, 13, 196–202. [Google Scholar] [CrossRef]
- Schindler, S.; O’Neill, F.H.; Biró, M.; Damm, C.; Gasso, V.; Kanaka, R.; van der Sluis, T.; Krug, A.; Lauwaar, S.G.; Sebesvari, Z.; et al. Multifunctional Floodplain Management and Biodiversity Effects: A Knowledge Synthesis for Six European Countries. Biodivers. Conserv. 2016, 25, 1349–1382. [Google Scholar] [CrossRef]
- Nilsson, C.; Riis, T.; Sarneel, J.M.; Svavarsdóttir, K. Ecological Restoration as a Means of Managing Inland Flood Hazards. Bioscience 2018, 68, 89–99. [Google Scholar] [CrossRef]
- IMF. International Monetary Fund—Greece. Available online: https://www.imf.org/en/Countries/GRC (accessed on 19 April 2024).
- OECD. Financing a Water Secure Future; OECD Studies on Water; OECD: Paris, France, 2022; ISBN 9789264351585. [Google Scholar]
- BenDor, T.; William Lester, T.; Livengood, A.; Davis, A.; Yonavjak, L. Estimating the Size and Impact of the Ecological Restoration Economy. PLoS ONE 2015, 10, e0128339. [Google Scholar] [CrossRef]
- Tidwell, T.L. Nexus between Food, Energy, Water, and Forest Ecosystems in the USA. J. Environ. Stud. Sci. 2016, 6, 214–224. [Google Scholar] [CrossRef]
- Melo, F.P.L.; Parry, L.; Brancalion, P.H.S.; Pinto, S.R.R.; Freitas, J.; Manhães, A.P.; Meli, P.; Ganade, G.; Chazdon, R.L. Adding Forests to the Water–Energy–Food Nexus. Nat. Sustain. 2021, 4, 85–92. [Google Scholar] [CrossRef]
- Carmona-Moreno, C.; Dondeynaz, C.; Biedler, M. (Eds.) Position Paper on Water, Energy, Food, and Ecosystem (WEFE) Nexus and Sustainable Development Goals (SDGs); Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-98276-7. [Google Scholar]
- Sowińska-Świerkosz, B.; García, J.; Wendling, L. Linkages between the Concept of Nature-Based Solutions and the Notion of Landscape. Ambio 2024, 53, 227–241. [Google Scholar] [CrossRef]
- Aguilera, E.; Díaz-Gaona, D.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for Adaptation to Climate Change and Resource Depletion in the Mediterranean Region. A Review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Snäll, T.; Lehtomäki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef]
- Arkema, K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking Social, Ecological, and Physical Science to Advance Natural and Nature-based Protection for Coastal Communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L. Ecosystem-Based Adaptation in Cities: An Analysis of European Urban Climate Adaptation Plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Xanthopoulos, G.; Eftychidis, G.; Mallinis, G.; Mitsopoulos, I.; Dimitrakopoulos, A. Report of the Independent Committee Tasked to Analyse the Underlying Causes and Explore the Perspectives for the Future Management of Landscape Fires in Greece; FLFM-Greece-Committee-Report: Athens, Greece, 2019. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. ‘Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change’ (COM/2021/82 F); European Commission: Brussels, Belgium, 2021.
- EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2020.
- EC. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks; European Commission: Brussels, Belgium, 2007.
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Committee of the Regions. EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020.
- EC. Proposal for a Regulation of the European Parliament and of the Council on Nature Restoration (COM(2022) 304); European Commission: Brussels, Belgium, 2022.
- European Environment Agency. Scaling Nature-Based Solutions for Climate Resilience and Nature Restoration; European Environment Agency: Copenhagen, Denmark, 2023.
- Koulelis, P.; Solomou, A.; Fassouli, V. Sustainability Constraints in Greece. Focusing on Forest Management and Biodiversity. In Proceedings of the 9th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA 2020), Thessaloniki, Greece, 24–27 September 2020; Vlontzos, G., Koutsou, S., Eds.; CEUR-WS: Thessaloniki, Greece, 2020; pp. 592–603. [Google Scholar]
- Aubert, G.; Costa Domingo, G.; Christopoulou, I.; Underwood, E.; Baroni, L. The Socioeconomic Benefits of Nature Restoration in Greece: Showcasing the Potential Benefits of Upscaling Nature Restoration in Greece to Meet the Targets of the Proposed EU Nature Restoration Law; Institute for European Environmental Policy: Brussels, Belgium, 2022. [Google Scholar]
- Dimelli, P.D. Planning Settlements in the Greek Islands. Reg. Sci. Inq. 2016, 1, 23–28. [Google Scholar]
- Dimelli, D.P. The Effects of Tourism in Greek Insular Settlements and the Role of Spatial Planning. J. Kow. Econ. 2017, 8, 319–336. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Draku, E.G.; Kokkoris, I.P.; Katsanevakis, S.; Kallimanis, A.; Tsiafouli, M.; Bormpoudakis, D.; Kormas, K.; Arends, J. The Need for the Implementation of an Ecosystem Services Assessment in Greece: Drafting the National Agenda. One Ecosyst. 2017, 2, e13714. [Google Scholar] [CrossRef]
- Salafsky, N.; Margoulis, R. Pathways to Success: Taking Conservation to Scale in Complex Systems; Isalnds Press: Washington, DC, USA, 2021; ISBN 978-1-64283-135-1. [Google Scholar]
Input Data | Description |
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 5 m × 5 m), developed from [87] |
Biophysical table | csv file reporting Curve number (CN) values for each LULC type and each hydrological group. CN values were derived from [88] |
Depth of rainfall (mm) | 120 mm as the critical depth of rainfall generating flash-floods in the area, identified from [72] |
Soils Hydrological Group Raster | 250 m spatial resolution raster of categorical hydrological groups from [89] |
Economic value | Replacement cost method. Surrogate good: lamination basin. Unit cost: 400 EUR/m3 [83] |
Output data | Description |
Retained runoff volume (m3) | Raster with runoff retention values (in m3) indicating the capability of each pixel to store runoff |
Runoff values (mm) | Raster with runoff values |
Runoff retention index | Raster with runoff retention values (unitless, relative to precipitation volume) |
Input Data | Description |
Land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 5 m × 5 m), developed from [87] |
Threats data | csv file reporting information on each threat’s relative importance and the maximum distance over which each threat affects habitat quality. For all threats, impacts were assumed to decay according to a linear decay function. A total of six threats were identified (each of them corresponding to a specific land use type, e.g., residential continuous medium-dense urban fabrics, industrial areas, railways, etc.). A raster file was developed for, and named after, each threat. |
Sensitivity of land cover types to each threat | csv file reporting, for each LULC type, whether or not they are considered habitat (either 1 or 0) and, for LULC types that are habitat, their specific sensitivity to each threat; these are according to a [0–1] range and based on the Biological Territorial Capacity Index [90] |
Accessibility | Vector of areas subject to environmental restrictions and protection |
Half-saturation constant | 0.5. Default value set by the InVEST model |
Economic value | Adjusted benefit transfer. Average unit value (EUR/m2) for different land use conversions/transformations into the riparian forest from the available literature [91,92,93] multiplied by 25 (i.e., the pixel size in m2) and then by the corresponding habitat quality index for each pixel through the raster calculator function in QGIS 3.16. |
Output data | Description |
Habitat quality | Raster file reporting the habitat quality index; this shows the relative level of habitat quality, ranging between 0 and 1, where values closer to 1 indicate better habitat quality vis-à-vis the distribution of habitat quality across the rest of the landscape. Areas on the landscape that are not habitat are given a quality score of 0 |
Input Data | Description |
Present land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 5 m × 5 m), developed from [87] |
Biophysical table | csv file reporting carbon density of the selected pools for each LULC class. Values for the different carbon pools have been elaborated and adapted from [94,95,96,97] |
land cover map | Raster of land use/land cover (LULC) for each pixel (resolution 5 m × 5 m), developed from [87]. For the NBS scenario, the land cover map integrated the NBS as a new LULC class |
Economic value | Market price of EUR 7.70 per tCO2eq [98] |
Output data | Description |
Carbon stock | Raster file reporting the amount of carbon stocked in the targeted pools in tons per pixel |
Ecosystem Services | BAU Scenario | NBS Scenario | NBS-BAU | |||
---|---|---|---|---|---|---|
Total Value | Value per m2 * | Total Value | Value per m2 | Total Value | Value per m2 | |
Flood Risk Mitigation | ||||||
Retained runoff volume (m3) | 17,931.96 | 0.05 | 20,620.84 | 0.06 | 2688.88 | 0.01 |
Runoff retention index (0–1) * | 0.45 (0.42–0.47) | 0.52 (0.46–0.56) | 0.07 (0.04–0.09) | |||
Carbon Storage and Sequestration | ||||||
Carbon stock (tons of carbon) | 3941.88 | 0.01 | 9761.59 | 0.03 | 5819.71 | 0.02 |
Carbon sequestration index (0–1) * | 0.29 (0.19–0.33) | 0.73 (0.19–0.75) | 0.44 (0–0.42) | |||
Habitat Quality | ||||||
Habitat quality index (0–1) * | 0.20 (0.05–0.61) | 0.97 (0.05–0.99) | 0.77 (0–0.38) |
Ecosystem Service | Economic Assessment Criteria and Methods | Unit Value | Biophysical Value (NBS-BAU) | Estimated Value (EUR) | Estimated Unit Value (EUR/m2) |
---|---|---|---|---|---|
Flood Risk Mitigation | Replacement cost method | 400 EUR/m3 | 2688.88 m3 | 1,075,554.07 | 3.21 |
Carbon Storage and Sequestration | Market Price | 7.70 EUR/tCO2eq | 21,358.35 tons of CO2eq | 164,459.29 | 0.49 |
Habitat Quality | Benefit transfer | 1.36 EUR/m2 | 335,450 m2 | 442,525.64 | 1.32 |
Total estimated value | 1,682,539.00 | 5.02 |
r | 1% | 2% | 3.5% | 5% |
NPV (EUR) | 21,857,387.60 | 19,268,742.50 | 16,028,861.35 | 13,408,945.37 |
B/C | 12.27 | 11.49 | 10.41 | 9.42 |
Costs (K) | Benefits (B) | |||||
+2% | +5% | +10% | −2% | −5% | −10% | |
NPV | 15,994,782.10 | 15,943,663.23 | 15,858,465.10 | 15,674,204.87 | 15,142,220.16 | 14,255,578.97 |
B/C | 10.20 | 10.20 | 9.46 | 10.20 | 9.89 | 9.37 |
PB | 5 years | 5 years | 5 years | 5 years | 5 years | 5 years |
% variation with reference to original K | % variation with reference to original B | |||||
NPV | 0% | −1% | −1% | −2% | −6% | −11% |
B/C | −2% | −2% | −9% | −2% | −5% | −10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiero, M.; Bottaro, G.; Righetti, C.; Nikolaidis, N.P.; Lilli, M.A.; Pettenella, D. Riparian Forests as Nature-Based Solutions within the Mediterranean Context: A Biophysical and Economic Assessment for the Koiliaris River Watershed (Crete, Greece). Forests 2024, 15, 760. https://doi.org/10.3390/f15050760
Masiero M, Bottaro G, Righetti C, Nikolaidis NP, Lilli MA, Pettenella D. Riparian Forests as Nature-Based Solutions within the Mediterranean Context: A Biophysical and Economic Assessment for the Koiliaris River Watershed (Crete, Greece). Forests. 2024; 15(5):760. https://doi.org/10.3390/f15050760
Chicago/Turabian StyleMasiero, Mauro, Giorgia Bottaro, Caterina Righetti, Nikolaos P. Nikolaidis, Maria A. Lilli, and Davide Pettenella. 2024. "Riparian Forests as Nature-Based Solutions within the Mediterranean Context: A Biophysical and Economic Assessment for the Koiliaris River Watershed (Crete, Greece)" Forests 15, no. 5: 760. https://doi.org/10.3390/f15050760
APA StyleMasiero, M., Bottaro, G., Righetti, C., Nikolaidis, N. P., Lilli, M. A., & Pettenella, D. (2024). Riparian Forests as Nature-Based Solutions within the Mediterranean Context: A Biophysical and Economic Assessment for the Koiliaris River Watershed (Crete, Greece). Forests, 15(5), 760. https://doi.org/10.3390/f15050760