Estimating Economic and Livelihood Values of the World’s Largest Mangrove Forest (Sundarbans): A Meta-Analysis
Abstract
:1. Introduction
2. Background of the Study Site
2.1. Socio-Ecological Aspects
2.2. Management System
3. Material and Methods
3.1. Literature Identification and Screening
3.2. Database Preparation
- i = Reporting year of ES values (year of estimation or publication),
- EVi = Economic value of the reporting year,
- LVi = Livelihood value of the reporting year,
- Tvi = Total value for a single ES for the entire forest area in US $,
- A = Forest area in ha,
- Tvi (dc) = Total value for a single ES of the entire forest area in different currency than US $,
- ER = Exchange rate between US $ and a different currency,
- IR = Inflation rate of US $,
- n = Number of years to 2019.
3.3. Data Analysis
- VB = ES value of Bangladesh Sundarbans,
- VI = ES value of Indian Sundarbans,
- AB = Total area of Bangladesh Sundarbans,
- AI = Total area of Indian Sundarbans,
- AS = Total area of Sundarbans.
- ln (y) = Dependent variable,
- i = Assumes values from 1 to 145 (number of observations of ES),
- a = Constant,
- ba, bb, bc and bd = Coefficients of associated variables,
- Xet = Type of ES,
- Xvt = Types of ES valuation method,
- Xsa = Study area,
- Xse = Socio-economic characteristics,
- ui = Vector of residuals.
4. Results
4.1. Overview of Ecosystem Services Studies for Sundarbans
4.2. Economic Values of Sundarbans Ecosystem Services
4.2.1. Provisioning Ecosystem Services
4.2.2. Regulating and Maintenance Ecosystem Services
4.2.3. Cultural Ecosystem Services
4.3. Livelihood Values of Sundarbans Provisioning Ecosystem Services
4.4. Meta-Regression Model of Economic and Livelihood Values
5. Discussion
5.1. Overview of Ecosystem Services Studies for Sundarbans
5.2. Economic Values of Sundarbans Ecosystem Services
5.2.1. Provisioning Ecosystem Services
5.2.2. Regulating and Maintenance Ecosystem Services
5.2.3. Cultural Ecosystem Services
5.3. Livelihood Values of Sundarbans Provisioning Ecosystem Services
5.4. Factors Influencing Economic and Livelihood Value Estimates of Ecosystem Services
5.5. Research Challenge and Opportunity to Support Decision Making
- Our findings might contribute to advancing the valuation and decision-making process regarding NTFP collection as well as the management of other provisioning ES. For example, information on the value of fuelwood collected might help design projects to supply alternative sources of energy (i.e., natural gas, biogas, and electric stoves). Similarly, information on the value of honey and thatching materials collected in the area may help identify alternative/complementary sources of income (e.g., poultry farming) to avoid/reduce extensive extraction and biodiversity conservation.
- Reliable economic estimates of ES can also inspire management practices aimed at resource conservation and responsible management, as well as represent key information for defining proper market-based mechanisms [82] to remunerating ES without an explicit market.
- Economic valuation of ES is also helpful in understanding the potential of an area with regard to the development of development opportunities to support local economies. This could be, for example, the case of cultural ES and, in particular, of tourism and recreation activities that, if properly valued, might create opportunities for the protection and sustainable use of ecosystems, including coastal ones like mangrove forests in the Sundarbans [67].
- Environmental risks and resources affect the migration and mobility of people. However, non-economic services are important for creating habitation in a place [83]. The Sundarbans support millions of people by providing protection against storms and surges, along with provisioning ES, but people are not aware of the protection services [21,61,84,85]. Getting the value of storm and surges protection of the Sundarbans might be helpful for advance thinking of alternative solutions (i.e., coastal plantations, cyclone-resistant buildings, cyclone-safe centers, etc.) to protect settlements and reduce migration of people due to these disasters.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Literature Searching and Screening Procedure
Step | Activities |
1 | Initially we searched for “Ecosystem services in Bangladesh” on Scopus until the end of 2023. The search focused on the title, abstract and key words. We found a total of 302 studies. |
2 | Our study focused on forest-based ecosystem services. Therefore, in the second step, we reduced the number of studies from the result step-1 (302studies) by using “Forest”. In this search we got 201 papers that studied forest-based ecosystem services. |
3 | Then, we screened the number of studies from the result step-2 (201 studies) by using “Sundarbans”. In this step we found 98 studies on Bangladesh Sundarbans. |
4 | Finally, we read the abstract and scanned all these studies (98 studies) to find out the papers on economic and livelihood valuation. However, 9 studies were found, that estimated economic and livelihood valuation on Bangladesh Sundarbans. |
5 | We also used other specific key-words to avoid missing the studies on economic and livelihood valuation. The additional key-words include economic valuation, economic value, livelihood value, livelihood valuation, provisioning services, regulating services, maintaining services, cultural services, non-timber forest products, fish, fuelwood, timber, fodder, thatching materials, carbon storage and sequestration, recreation and tourism, mangrove forest services, coastal forest services. |
6 | We also applied same procedure to find out the studies for Indian Sundarbans. Just in the beginning we started searching in terms of “Ecosystem services in India” (1650 studies), then “Forest” (970 studies), after that “Sundarbans” (84 studies). We read the abstract and scanned all the studies (84 studies) to find out the papers on economic and livelihood valuation and found 3 studies. We also followed steps-5 to locate the studies on Indian Sundarbans. No new studies were found. |
7 | We followed above mention steps for Science Direct, CABI Direct, CABI Forest Science Database and Google Scholar. Moreover, we collected relevant information from the policy reports of FD, DOE, IUCN, FAO, WB. In this step, we found 10 and 4 additional studies for Bangladesh and Indian Sundarbans respectively. |
8 | After finishing above mention search, we found 19 and 7 targeted studies for Bangladesh and Indian Sundarbans respectively. |
Appendix B. Retrieved Literature, Ecosystem Services (and Corresponding Unit), Types of Value and Valuation Methods Used
Reference Used | Reporting Year (Study Site) | Ecosystem Services (in Different Unit) | Types of Value | Method Used | Data Base (Expressed Values in Similar Way) |
Nobi et al. (2021) [32] | 2018 (BS 1) | Recreation and tourism (value/ha/yr) | EV 3 | TC 5 | US $ ha−1 yr−1 |
Barua et al. (2020) [30] | 2017 (BS) | Fish (value/ha/yr) | EV | MP 6 | US $ ha−1 yr−1 |
Crab (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Timber (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Thatching materials (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Honey (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fuelwood (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fodder (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Other non-wood NTFPs (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Avoided storm damage (value ha−1 yr−1) | EV | BT 7 | US $ ha−1 yr−1 | ||
Other coastal protection (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Carbon sequestration (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Soil erosion control (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Biodiversity conservation (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Gene pool conservation (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Nursery and habitat services (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Recreation and tourism (value/ha/yr) | EV | TC | US $ ha−1 yr−1 | ||
Barua et al. (2020) [30] | 2017 (BS) | Fish (income/collector/yr) | LV 4 | MPCP 9 | US $ collector−1 yr−1 |
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fuelwood (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Thatching materials (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Other miscellaneous products (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Sarker et al. (2020) [86] | 2007 (BS) | Avoided storm damage (value ha−1 yr−1) | EV | BT | US $ ha−1 yr−1 |
Mehvar et al. (2019) [87] | 2017 (BS) | Fish and marine species (value/ha/yr) | EV | MP | US $ ha−1 yr−1 |
Timber (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fuelwood (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Recreation/tourism (value/ha/yr) | EV | TC | US $ ha−1 yr−1 | ||
Landscape, flora and fauna (art value) (value/ha/yr) | EV | CV 8 | US $ ha−1 yr−1 | ||
Kibria et al. (2018) [18] | 2018 (BS) | Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp fry (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp catching (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fuelwood (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Rahman et al. (2018) [88] | 2015 (BS) | Fishing (value/ha/yr) | EV | MP | US $ ha−1 yr−1 |
Fuel (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Honey (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fodder (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Storm protection (value/ha/yr) | EV | CV | US $ ha−1 yr−1 | ||
Erosion control (value/ha/yr) | EV | CV | US $ ha−1 yr−1 | ||
Habitat for fish breeding and nursery (value/ha/yr) | EV | CV | US $ ha−1 yr−1 | ||
Akber (2018) [89] | 2015 (BS) | Avoided storm damage (value households−1 yr−1) | EV | BT | US $ ha−1 yr−1 |
BFD (2016) [90] | 2016 (BS) | Carbon sequestration (value/ha/yr) | EV | BT | US $ ha−1 yr−1 |
Golub and Golub (2016) [91] | 2016 (BS) | Golpata/Grass (Shon) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp fry (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Tourism and cultural services (value/ha/yr) | EV | TC | US $ ha−1 yr−1 | ||
Nursery service (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Gene pool conservation (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Abdullah et al. (2016) [92] | 2010 (BS) | Shrimp (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Shrimp fry (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fuel wood (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Golpata/Grass (Shon) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Other forest products (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Uddin et al. (2013) [68] | 2012 (BS) | Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Fuel wood (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Golpata (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Avoided storm damage (value/ha/yr) | EV | BT | US $ ha−1 yr−1 | ||
Bashar (2015) [93] | 2015 (BS) | Tourism and cultural services (value/ha/yr) | EV | TC | US $ ha−1 yr−1 |
Hussain (2014) [66] | 2013 (BS) | Avoided storm damage (value/yr) | EV | BT | US $ ha−1 yr−1 |
Winrock International (2013) [94] | 2013 (BS) | Avoided storm damage (value/yr) | EV | BT | US $ ha−1 yr−1 |
Tourism and cultural services (value/yr) | EV | TC | US $ ha−1 yr−1 | ||
Getzner and Islam (2013) [95] | 2011 (BS) | Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Golpata/Grass (Shon) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Islam and Islam (2011) [96] | 2010 (BS) | Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Golpata/Grass (Shon) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Islam (2010) [23] | 2010 (BS) | Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp fry (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Golpata/Grass (Shon) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shah and Datta (2010) [97] | 2001 (BS) | Fuel wood (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Golpata (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Others (honey, fish fry, etc) (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Mitchell (1995) [98] | 1995(BS) | Fish (value/ha/yr) | EV | MP | US $ ha−1 yr−1 |
Timber (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fuelwood (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Sannigrahi et al. (2019) [99] | 2017 (IS) | Gas regulation (value/yr) | EV | BT | US $ ha−1 yr−1 |
Waste assimilation (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Soil erosion control (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Biodiversity conservation (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Recreation and tourism (value/yr) | EV | TC | US $ ha−1 yr−1 | ||
Verma et al. (2017) [31] | 2014 (IS 2) | Fish (value/yr) | EV | MP | US $ ha−1 yr−1 |
Honey (value/yr) | EV | MP | US $ ha−1 yr−1 | ||
Other non-wood NTFPs (value/yr) | EV | MP | US $ ha−1 yr−1 | ||
Avoided storm damage (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Other coastal protection (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Carbon sequestration (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Soil erosion control (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Gene pool protection (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Pest and diseases control (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Nursery and habitat services (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Pollination (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Gas regulation (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Waste assimilation (value/yr) | EV | BT | US $ ha−1 yr−1 | ||
Recreation and tourism (value/yr) | EV | TC | US $ ha−1 yr−1 | ||
Basu et al. (2018) [100] | 2018 (IS) | Crab (value/yr) | EV | MP | US $ ha−1 yr−1 |
Fuel wood (value/yr) | EV | MP | US $ ha−1 yr−1 | ||
Recreation and tourism (value/yr) | EV | TC | US $ ha−1 yr−1 | ||
Singh et al. (2010) [70] | 2004 (IS) | Honey (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Wax (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Shrimp fry (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Crab (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 | ||
Fuelwood (value/yr) | EV | MP | US $ ha−1 yr−1 | ||
Crab (value/yr) | EV | MP | US $ ha−1 yr−1 | ||
Banerjee (2010) [101] | 2009 (IS) | Recreation and tourism(value/ha/yr) | EV | TC | US $ ha−1 yr−1 |
Fodder(value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fuel wood(value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Fish(value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Medicinal value(value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Honey and wax (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
Storms protections (value/ha/yr) | EV | MP | US $ ha−1 yr−1 | ||
ICSF (2009) [102] | 2009 (IS) | Fish (income/collector/yr) | LV | MPCP | US $ collector−1 yr−1 |
Das (2009) [103] | 1999 (IS) | Avoided cyclonic storm damage (value/ha/yr) | EC | BT | US $ ha−1 yr−1 |
1. BS = Bangladesh Sundarbans, 2. IS = Indian Sundarbans, 3. EV = Economic value, 4. LV = Livelihood value, 5. TC = Travel cost 6. MP = Market price, 7. BT = Benefit transfer, 8. CV= Contingent valuation and 9. MPCP = Market price of collected products. |
Appendix C. Classification of Identified ES According to CICES
Section | Division | Group | Class | Placing of Identified ES |
Provisioning | Biomass | Nutrition | Wild plants, algae and their outputs | Honey |
Wild animals and their products | Fish, shrimp, shrimp fry and crab | |||
Materials | Fibres and other materials from plants, algae and animals for direct use or processing | Wax, medicine | ||
Materials from plants, algae and animals for agricultural use | Timber, thatching materials and fodder | |||
Energy | Plant-based resources | Fuelwood | ||
Water | (Nutrition, materials and energy) | -- | -- | |
Regulating and maintenance | Transformation of biochemical or physical inputs to ecosystem | Mediation of wastes or toxic substances of anthropogenic origin by living processes | Bio-remediation by micro-organisms, algae, plants, and animals | Waste assimilation |
Filtration/sequestration/storage/accumulation by micro-organisms, algae, plants, and animals | Carbon sequestration | |||
Mediation of nuisances of anthropogenic origin | -- | -- | ||
Regulation of physical, chemical and biological conditions | Regulation of baseline flows and extreme events | Control of erosion rates | Soil erosion control | |
Storm protection | Storm and surges protection | |||
Atmospheric composition and conditions | Regulation of chemical composition of atmosphere | Gas regulation | ||
Lifecycle maintenance, habitat and gene pool protection | Maintaining nursery populations and habitats (including gene pool protection) | Nursery and habitat services, gene pool conservation and biodiversity conservation | ||
Pollination (or ’gamete’ dispersal in a marine context) | Pollination | |||
Pest and disease control | Pest control (including invasive species) | Pest control | ||
Disease control | Disease control | |||
Cultural | Direct, in-situ and outdoor interactions with living systems that depend on presence in the environmental setting | Intellectual and representative interactions with natural environment | Characteristics of living systems that are resonant in terms of culture or heritage | Art value (landscape, flora and fauna) |
Characteristics of living systems that enable aesthetic experiences | Recreation and tourism | |||
Indirect, remote, often indoor interactions with living systems that do not require presence in the environmental setting | -- | -- | -- |
References
- Getzner, M.; Islam, M.S. Ecosystem Services of Mangrove Forests: Results of a Meta-Analysis of Economic Values. Int. J. Environ. Res. Public Health 2020, 17, 5830. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). Global Forest Resources Assessment 2010: Main Report; Forestry Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; ISBN 978-92-5-106654-6. Available online: http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 2 January 2020).
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef]
- Kanan, A.H.; Pirotti, F.; Masiero, M.; Rahman, M.M. Mapping inundation from sea level rise and its interaction with land cover in the Sundarbans mangrove forest. Clim. Change 2023, 176, 104. [Google Scholar] [CrossRef]
- Chanda, A.; Mukhopadhyay, A.; Ghosh, T.; Akhand, A.; Mondal, P.; Ghosh, S.; Mukherjee, S.; Wolf, J.; Lázár, A.N.; Rahman, M.; et al. Blue Carbon Stock of the Bangladesh Sundarban Mangroves: What could Be the Scenario after a Century? Wetlands 2016, 36, 1033–1045. [Google Scholar] [CrossRef]
- Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarban Mangrove Forests: History, Utilization, Conservation Strategies and Local Perception. Diversity 2015, 7, 149–169. [Google Scholar] [CrossRef]
- Ortolano, L.; Sánchez-Triana, E.; Paul, T.; Ferdausi, S.A. Managing the Sundarbans region: Opportunities for mutual gain by India and Bangladesh. Int. J. Environ. Sustain. Dev. 2016, 15, 16–31. [Google Scholar]
- Quader, M.A.; Agrawal, S.; Kervyn, M. Multi-decadal land cover evolution in the Sundarban, the largest mangrove forest in the world. Ocean Coast. Manag. 2017, 139, 113–124. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, M.N.I.; Hoque, A.F.; Ahmed, I. Carbon stock in the Sundarban mangrove forest: Spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 2015, 23, 269–283. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 10 March 2021).
- Masiero, M.; Pettenella, D.; Boscolo, M.; Barua, S.; Animon, I.; Matta, J.R. Valuing Forest Ecosystem Services: A Training Manual for Planners and Project Developers; FAO: Rome, Italy, 2019; Available online: http://www.wipo.int/amc/en/mediation/rules (accessed on 20 June 2021).
- Uddin, S. Economic Valuation of Sundarban Mangrove Ecosystems-Bangladesh; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013; pp. 1–96. Available online: https://www.amazon.com/Economic-valuation-Sundarbans-mangrove-ecosystems-Bangladesh/dp/3659480355 (accessed on 1 October 2021).
- Das, C.S.; Mandal, R.N.; Bandyopadhyay, S. Reviewing the issues of Human-carnivore conflict vis-a-vis mitigation approaches of the Indian Sundarban. Environ. Dev. 2023, 47, 100888. [Google Scholar] [CrossRef]
- Kibria, A.S.M.G.; Costanza, R.; Gasparatos, A.; Soto, J. A composite human wellbeing index for ecosystem-dependent communities: A case study in the Sundarbans, Bangladesh. Ecosyst. Serv. 2022, 53, 101389. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services as productive inputs. Econ. Policy 2007, 22, 177–229. [Google Scholar] [CrossRef]
- Payo, A.; Mukhopadhyay, A.; Hazra, S.; Ghosh, T.; Ghosh, S.; Brown, S.; Nicholls, R.J.; Bricheno, L.; Wolf, J.; Kay, S.; et al. Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100. Clim. Change 2016, 139, 279–291. [Google Scholar] [CrossRef]
- Kibria, A.S.M.G.; Costanza, R.; Groves, C.; Behie, A.M. The interactions between livelihood capitals and access of local communities to the forest provisioning services of the Sundarbans Mangrove Forest, Bangladesh. Ecosyst. Serv. 2018, 32, 41–49. [Google Scholar] [CrossRef]
- Roy, A.K.D.; Alam, K.; Gow, J. Community perceptions of state forest ownership and management: A case study of the Sundarbans Mangrove Forest in Bangladesh. J. Environ. Manag. 2013, 117, 141–149. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Islam, M.M.; Pal, S.; Hossain, M.M.; Mozumder, M.M.H.; Schneider, P. Coastal Ecosystem Services, Social Equity, and Blue Growth: A Case Study from South-Eastern Bangladesh. J. Mar. Sci. Eng. 2020, 8, 815. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 137004. [Google Scholar] [CrossRef]
- Islam, K.M.N. Integrated Protected Area Co-Management (IPAC)—A Study of the Principal Marketed Value Chains Derived from the Sundarbans Reserved Forest; USAID: Dhaka, Bangladesh, 2010; pp. 1–170. Available online: https://www.preventionweb.net/publication/integrated-protected-area-co-management-ipac-study-principal-marketed-value-chains (accessed on 22 April 2021).
- Das, G.K.; Datta, S. Man-Made Environmental Degradation at Sunderbans. Reason-A Tech. J. 2016, 13, 89. [Google Scholar] [CrossRef]
- Mandal, D.B. Man in Biosphere: A Case Study of Sundarban Biosphere Reserve; Gyan Publishing House: New Delhi, India, 2007. [Google Scholar]
- Nishat, B.; Rahman, A.J.M.Z.; Mahmud, S. Landscape Narrative of the Sundarban: Towards Collaborative Management by Bangladesh and India. 2019. Available online: http://documents.worldbank.org/curated/en/539771546853079693 (accessed on 7 December 2021).
- Ahmed, A.; Mahmud, H.; Sohel, M.S.I. DPSIR framework to analyze anthropogenic factors influence on provisioning and cultural ecosystem services of Sundarbans East Reserve Forest, Bangladesh. Reg. Stud. Mar. Sci. 2021, 48, 102042. [Google Scholar] [CrossRef]
- Loomes, R.; O’Neill, K. Nature’s services: Societal dependence on natural ecosystems. Pac. Conserv. Biol. 2000, 6, 274. [Google Scholar] [CrossRef]
- Broitman, B.R.; Sproles, E.A.; Weideman, C.; Salas, S.; Geldes, C.; Zambra, A.; Silvestre, L.G.; Bugueño, L.; Reyers, B.; Nel, V.; et al. Success Stories in Mainstreaming Ecosystem Services into Macro-Economic Policy and Land Use Planning: Evidence from Chile; UNEP: Nairobi, Kenya, 2015; ISBN 978-92-807-3481-2. [Google Scholar]
- Barua, S.K.; Boscolo, M.; Animon, I. Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies. Ecosyst. Serv. 2020, 42, 101069. [Google Scholar] [CrossRef]
- Verma, M.; Negandhi, D.; Khanna, C.; Edgaonkar, A.; David, A.; Kadekodi, G.; Costanza, R.; Gopal, R.; Bonal, B.S.; Yadav, S.P.; et al. Making the hidden visible: Economic valuation of tiger reserves in India. Ecosyst. Serv. 2017, 26, 236–244. [Google Scholar] [CrossRef]
- Nobi, M.N.; Sarker, A.H.M.R.; Nath, B.; Røskaft, E.; Suza, M.; Kvinta, P. Economic valuation of tourism of the Sundarban Mangroves, Bangladesh. J. Ecol. Nat. Environ. 2021, 13, 100–109. [Google Scholar] [CrossRef]
- Mukherjee, N.; Sutherland, W.J.; Dicks, L.; Huge, J.; Koedam, N.; Guebas, F.D. Ecosystem Service Valuations of Mangrove Ecosystems to Inform Decision Making and Future Valuation Exercises. PLoS ONE 2014, 9, e107706. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.E.M.; Samonte-Tan, G.P.B.; Primavera, J.H.; Edwards-Jones, G.; Le Vay, L. Are mangroves worth replanting? The direct economic benefits of a community-based reforestation project. Environ. Conserv. 2006, 33, 335–343. [Google Scholar] [CrossRef]
- Everard, M.; Kangabam, R.; Tiwari, M.K.; McInnes, R.; Kumar, R.; Talukdar, G.H.; Dixon, H.; Joshi, P.; Allan, R.; Joshi, D.; et al. Ecosystem service assessment of selected wetlands of Kolkata and the Indian Gangetic Delta: Multi-beneficial systems under differentiated management stress. Wetl. Ecol. Manag. 2019, 27, 405–426. [Google Scholar] [CrossRef]
- Barlow, A.C.D.; Smith, J.L.D.; Ahmad, I.U.; Hossain, A.N.M.; Rahman, M.; Howlader, A. Female tiger Panthera tigris home range size in the Bangladesh Sundarbans: The value of this mangrove ecosystem for the species-conservation. Oryx 2011, 45, 125–128. [Google Scholar] [CrossRef]
- Neogi, S.B.; Dey, M.; Kabir, S.L.; Masum, S.J.H.; Kopprio, G.A.; Yamasaki, S.; Lara, R. Sundarban mangroves: Diversity, ecosystem services and climate change impacts. Asian J. Med. Biol. Res. 2017, 2, 488–507. [Google Scholar] [CrossRef]
- Rahman, M.; Asaduzzaman, M. Ecology of Sundarban, Bangladesh. J. Sci. Found. 2013, 8, 35–47. [Google Scholar] [CrossRef]
- Iftekhar, M.S.; Islam, M.R. Managing mangroves in Bangladesh: A strategy analysis. J. Coast. Conserv. 2004, 10, 139–146. [Google Scholar] [CrossRef]
- Kanan, A.H.; Masiero, M.; Pirotti, F. Land cover change across 45 years in the world’s largest mangrove forest (Sundarbans): The contribution of remote sensing in forest monitoring. Eur. J. Remote Sens. 2022, 1–17. [Google Scholar] [CrossRef]
- Pender, J.S. Climate Change, Its Impacts and Possible Community-Based Responses in Bangladesh, 2nd ed.; Church of Bangladesh: Dhaka, Bangladesh, 2010; pp. 1–93. [Google Scholar]
- Hossain, M.I.; Nabi, M.R.; Nayeem, M.; Ansari, A.; Latif, A.; Mahmud, M.R.; Islam, M.S. Ecosystem Services of the World Largest Mangrove Forest Sundarban in Bangladesh. Int. J. Innov. Sci. Res. 2016, 27, 9–15. [Google Scholar]
- Angelsen, A.; Jagger, P.; Babigumira, R.; Belcher, B.; Hogarth, N.J.; Bauch, S.; Börner, J.; Smith-Hall, C.; Wunder, S. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 2014, 64, S12–S28. [Google Scholar] [CrossRef] [PubMed]
- Jagger, P.; Luckert, M.K.; Banana, A.; Bahati, J. Asking questions to understand rural livelihoods: Comparing disaggregated vs. aggregated approaches to household livelihood questionnaires. World Dev. 2012, 40, 1810–1823. [Google Scholar] [CrossRef]
- World Bank. Report on GDP and Population Density of Bangladesh and India. GDP and Population Density. 2020. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2019&locations=BD-IN&start=1960 (accessed on 10 March 2021).
- Nelson, J.P.; Kennedy, P.E. The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environ. Resour. Econ. 2009, 42, 345–377. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Martín-López, B.; Santos-Martín, F.; Loureiro, M.; Montes, C.; Benayas, J.; García-Llorente, M. Ecosystem services values in Spain: A meta-analysis. Environ. Sci. Policy 2016, 55, 186–195. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Kun, B.; Qing, W.; Junmei, T.; Liping, C. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Aziz, A.; Paul, A.R. Bangladesh Sundarbans: Present status of the Environment and Biota. Diversity 2015, 7, 242–269. [Google Scholar] [CrossRef]
- Kothari, N. The Plight of the Honey Collectors in Sundarban: Challenges, Uncertainties Strategies and Survivals. IOSR J. Hum. Soc. Sci. 2015, 20, 56–59. [Google Scholar]
- Iqbal, M.H. Valuing ecosystem services of Sundarbans Mangrove forest: Approach of choice experiment. Glob. Ecol. Conserv. 2020, 24, e01273. [Google Scholar] [CrossRef]
- Gunawardena, M.; Rowan, J.S. Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environ. Manag. 2005, 36, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Bann, C. Economic Analysis of Alternative Mangrove Management Strategies in Cambodia. 1997. Available online: https://idl-bnc-idrc.dspacedirect.org/server/api/core/bitstreams/cfd45118-1165-4bb8-aeae-9bd8f7bc7b5a/content (accessed on 18 February 2021).
- Islam, M.N.; Dana, N.H.; Rahman, K.S.; Hossain, M.T.; Ahmed, M.U.; Sadig, A. Nypa fruticans Wurmb leaf collection as a livelihoods strategy: A case study in the Sundarbans Impact Zone of Bangladesh. Environ. Dev. Sustain. 2020, 22, 5553–5570. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, M.; Chakma, S. Plant Diversity and Forest Structure of the Three Protected Areas (Wildlife Sanctuaries) of Bangladesh Sundarbans: Current Status and Management Strategies; Springer: New York, NY, USA, 2014; pp. 127–152. [Google Scholar] [CrossRef]
- IUCN (International Union for Conservation of Nature). Environmental and Socioeconomic Value of Mangroves in Tsunami Affected Areas: Rapid Mangrove Valuation Study; Panama Village in South Eastern Coast of Sri Lanka: Colombo, Sri Lanka, 2007; pp. 1–49. Available online: https://www.iwlearn.net/files/pdfs/IUCN%202007_Mangroves%20in%20Tsunami%20Affected%20Areas.pdf (accessed on 22 March 2021).
- UNEP (United Nation Environment Programme). Economic Analysis of Mangrove Forests: A Case Study in Gazi Bay, Kenya; United Nations Environment Programme: Nairobi, Kenya, 2011; Available online: https://wedocs.unep.org/xmlui/handle/20.500.11822/7948 (accessed on 22 March 2021).
- Mahmud, I.; Islam, M.K.; Saha, S.; Barman, A.K.; Rahman, M.M.; Anisuzzman, M.; Rahman, T.; Al-Nahain, A.; Jahan, R.; Rahmatullah, M. Pharmacological and Ethnomedicinal Overview of Heritiera fomes: Future Prospects. Int. Sch. Res. Not. 2014, 2014, 938543. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.F.; Islam, M.A. Utilization of Mangrove Forest Plant: Nipa Palm (Nypa fruticans Wurmb). Am. J. Agric. For. 2015, 3, 156–160. [Google Scholar] [CrossRef]
- Mandal, M.S.H.; Hosaka, T. Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine. Nat. Hazards 2020, 102, 133–150. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Myint, S.W.; Wang, C. Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Sci. Total Environ. 2016, 569–570, 1241–1254. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental factors influence plant vascular system and water regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef]
- Dasgupta, N.; Nandy, P.; Das, S. Salt Stress: A Biochemical and Physiological Adaptation of Some Indian Halophytes of Sundarbans; Hindawi Publishing Corporation: London, UK, 2013; pp. 155–177. [Google Scholar] [CrossRef]
- Edu, E.A.B.; Edwin, W.N.L.; Inegbedion, A. Bio-Monitoring of Mangal Sediments and Tissues for Heavy Metal Accumulation in the Mangrove Forest of Cross River Estuary. Insight Ecol. 2015, 4, 46–52. [Google Scholar] [CrossRef]
- Hussain, M.Z. Bangladesh Sundarbans Delta Vision 2050: A First Step in Its Formulation—Document 2: A Compilation of Background Information; IUCN (International Union for Conservation of Nature): Dhaka, Bangladesh, 2014; pp. 1–203. Available online: https://portals.iucn.org/library/sites/library/files/documents/2014-065-doc.2.pdf (accessed on 17 April 2021).
- Chakraborty, S.; Saha, S.K.; Selim, S.A. Recreational services in tourism dominated coastal ecosystems: Bringing the non-economic values into focus. J. Outdoor Recreat. Tour. 2020, 30, 100279. [Google Scholar] [CrossRef]
- Uddin, M.S.; Steveninck, E.R.; Stuip, M.; Shah, M.A.R. Economic valuation of provisioning and cultural services of a protected mangrove ecosystem: A case study on Sundarbans Reserve Forest, Bangladesh. Ecosyst. Serv. 2013, 5, 88–93. [Google Scholar]
- Hoq, M.E. An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast. Manag. 2007, 50, 411–427. [Google Scholar] [CrossRef]
- Singh, A.; Bhattacharya, P.; Vyas, P.; Roy, S. Contribution of NTFPs in the Livelihood of Mangrove Forest Dwellers of Sundarban. J. Hum. Ecol. 2010, 29, 191–200. [Google Scholar] [CrossRef]
- Reynauda, A.; Lanzanovab, D. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Erfurt-Cooper, P. Wellness tourism: A perspective from Japan. In Wellness Tourism: A Destination Perspective; Voigt, C., Pforr, C., Eds.; Routledge Advances in Tourism; Routledge: Abingdon, UK, 2014; Volume 33, pp. 235–254. Available online: https://www.routledge.com/Wellness-Tourism-A-Destination-Perspective/Voigt-Pforr/p/book/9780415644679 (accessed on 10 April 2021).
- Pergams, O.R.W.; Zaradic, P.A. Evidence for a fundamental and pervasive shift away from nature-based recreation. Proc. Natl. Acad. Sci. USA 2007, 105, 2295–2300. [Google Scholar] [CrossRef]
- Boutwell, J.L.; Westra, J.V. Benefit Transfer: A Review of Methodologies and Challenges. Resources 2013, 2, 517–527. [Google Scholar] [CrossRef]
- Plummer, M.L. Assessing benefit transfer for the valuation of ecosystem services. Front. Ecol. Environ. 2009, 7, 38–45. [Google Scholar] [CrossRef]
- Richardson, L.; Loomis, J.; Kroeger, T.; Casey, F. The role of benefit transfer in ecosystem service valuation. Ecol. Econ. 2015, 115, 51–58. [Google Scholar] [CrossRef]
- Brander, L.M.; Wagtendonk, A.J.; Hussain, S.S.; McVittie, A.; Verburg, P.H.; De Groot, R.S.; Ploeg, S.V.D. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application Luke. Ecosyst. Serv. 2012, 1, 62–69. [Google Scholar] [CrossRef]
- Salem, M.E.; Mercer, D.F. The Economic Value of Mangroves: A Meta-Analysis. Sustainability 2012, 4, 359–383. [Google Scholar] [CrossRef]
- Mace, G.M. Whose conservation? Science 2014, 345, 1558–1560. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Laurans, Y.; Rankovic, A.; Bille, R.; Pirard, R.; Mermet, L. Use of ecosystem services economic valuation for decision making: Questioning a literature blindspot. J. Environ. Manag. 2013, 119, 208–219. [Google Scholar] [CrossRef]
- Pirard, R.; Lapeyre, R. Classifying market-based instruments for ecosystem services: A guide to the literature jungle. Ecosyst. Serv. 2014, 9, 106–114. [Google Scholar] [CrossRef]
- Adams, H.; Adger, W.N. The contribution of ecosystem services to place utility as a determinant of migration decision-making. Environ. Res. Lett. 2013, 8, 015006. [Google Scholar] [CrossRef]
- Islam, M.A.; Paull, D.J.; Griffin, A.L.; Murshed, S. Assessing ecosystem resilience to a tropical cyclone based on ecosystem service supply proficiency using geospatial techniques and social responses in coastal Bangladesh. Int. J. Disaster Risk Reduct. 2020, 49, 101667. [Google Scholar] [CrossRef]
- Kanan, A.H.; Pirotti, F. A comparative assessment of land use-land cover dynamics between Bangladesh and Indian Sundarbans from 1975–2020: A geospatial and statistical-based approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 625–632. [Google Scholar] [CrossRef]
- Sarker, A.H.M.R.; Nobi, M.N.; Roskaft, E.; Chivers, D.J.; Suza, M. Value of the Storm-Protection Function of Sundarban Mangroves in Bangladesh. J. Sustain. Dev. 2020, 13, 128–137. [Google Scholar] [CrossRef]
- Mehvar, S.; Filatova, T.; Sarker, M.H.; Dastgheib, A.; Ranasinghe, R. Climate change-driven losses in ecosystem services of coastal wetlands: A case study in the West coast of Bangladesh. Ocean Coast. Manag. 2019, 169, 273–283. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jiang, Y.; Irvine, K. Assessing wetland services for improved development decision-making: A case study of mangroves in coastal Bangladesh. Wetl. Ecol. Manag. 2018, 26, 563–580. [Google Scholar] [CrossRef]
- Akber, M.A.; Patwary, M.M.; Islam, M.A.; Rahman, M.R. Storm protection service of the Sundarbans mangrove forest, Bangladesh. Nat. Hazards 2018, 94, 405–418. [Google Scholar] [CrossRef]
- BFD (Bangladesh Forest Department). National Forest Policy; Final Draft; Ministry of Environment and Forests: Dhaka, Bangladesh, 2016. [Google Scholar]
- Golub, A.; Golub, E.S. Cost-Benefit Analysis of Adaptation Strategy in Bangladesh; Copenhagen Consensus Centre: Copenhagen, Demark, 2016; pp. 1–60. [Google Scholar]
- Abdullah, A.N.M.; Stacey, N.; Garnett, S.T.; Myers, B. Economic dependence on mangrove forest resources for livelihoods in the Sundarbans, Bangladesh. For. Policy Econ. 2016, 64, 15–24. [Google Scholar] [CrossRef]
- Bashar, R. Travel Cost Valuation of the Sundarbans Reserved Forest of Bangladesh; Durham University Business School: Durham, UK, 2015; pp. 1–42. [Google Scholar]
- Winrock International. Pioneering Mangrove Valuation Research. 2013. Available online: https://winrock.org/wp-content/uploads/2016/05/CREL-Bangladesh-Mangrove-Team-Summary-5-9-16.pdf (accessed on 25 July 2020).
- Getzner, M.; Islam, M.S. Natural resources, livelihoods, and reserve management: A case study from Sundarbans mangrove forests, Bangladesh. Int. J. Sustain. Dev. Plan. 2013, 8, 75–87. [Google Scholar] [CrossRef]
- Islam, K.M.N.; Islam, M.N. Economics of extraction of products from Sundarbans Reserve Forest. Bangladesh J. Agric. Econ. 2011, 34, 29–53. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Datta, D.K. A quantitative analysis of mangrove forest resource utilization by the dependent livelihoods. In Proceedings of the ISEE Conference on Advancing Sustainability in a Time of Crisis, Oldenburg-Bremen, Germany, 22–25 August 2010. [Google Scholar]
- Mitchell, A. Integrated Resource Development of the Sundarbans Reserve Forest, Bangladesh: Draft Report on Natural Resource Economics; United Nations Development Programme and Food and Agriculture Organization of the United Nations: Khulna, Bangladesh, 1995. [Google Scholar]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Kreuter, U.; Sutton, P.C.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef]
- Basu, O.; Ram, J.; Kumar, A. Ecosystem Service and Their Economic Valuation in Sundarban in India; International Biodiversity Congress: Uttarakhand, India, 2018. [Google Scholar]
- Banerjee, L.K. Mangrove (Bio-Shield) Zonation and Valuation along an Eroding Coastline in Mayagwalini, Western Part of Sagar Island, West Bengal; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- ICSF (International Collective in Support of Fish-Workers). Traditional Fishers in the Sundarban Tiger Reserve: A Study on Livelihood Practice under Protected Area; Society for Direct Initiative for Social and Health Action (DISHA): Kolkata, India, 2009. [Google Scholar]
- Das, S. Can Mangroves Minimize Property Loss during Big Storms? An Analysis of House Damage due to the Super Cyclone in Orissa; South Asian Network for Development and Environmental Economics (SANDEE): Kathmandu, Nepal, 2009. [Google Scholar]
Variables | Definition and Description of Variables | Omitted Variables of the Meta-Regression Model | |
---|---|---|---|
Dependent variable | ln(yi) | The dependent variable in the meta-regression model was a vector of ES values standardized to 2019 US $ ha−1 yr−1 for economic and US $ collector−1 yr−1 for livelihood values. | (Not applicable) |
Types of ES |
| According to CICES, three types of ES were recorded from the selected primary studies. | Provisioning |
Valuation method |
| Four types of valuation methods for different ES were recorded from the selected primary studies. | Market price |
Study area |
| Ecologically, the study areas are the same. However, based on the scale, the study areas were divided into two categories: 6000 km2 (Bangladesh Sundarbans) and 4000 km2 (Indian Sundarbans). | Bangladesh Sundarbans (6000 km2) |
Socio-economic |
| World Bank report was considered to record GDP/capita and population density/km2 for each primary study. The GDP values were divided into two categories, i.e., high (GDP/capita > US $ 1500) and low (GDP/capita < US $ 1500). The population density was also divided into two categories, i.e., high (Population density/km2 > 1000) and low (Population density/km2 < 1000). | GDP/capita > US $ 1500 Population density/km2 > 1000 |
ES | Bangladesh Sundarbans | Indian Sundarbans | Entire Sundarbans | ||
---|---|---|---|---|---|
No. Observation (Range) | Mean (±SD) | No. Observation (Range) | Mean (±SD) | ||
Provisioning | |||||
Fish | 4 | 418.92 | 2 | 107.99 | 295.08 |
(76.40–1052.76) | (445.94) | (102.77–113.21) | (7.38) | ||
Shrimp | 1 | 110.00 | 1 | 35.00 | 80.12 |
(na) | (na) | (na) | (na) | ||
Shrimp fry | 1 | 78.33 | 1 | 26.67 | 57.75 |
(na) | (na) | (na) | (na) | ||
Crab | 1 | 106.38 | 2 | 49.21 | 83.61 |
(na) | (na) | (1.17–97.24) | (67.93) | ||
Honey | 2 | 43.71 | 2 | 37.90 | 41.40 |
(30.25–57.17) | (19.04) | (0.42–75.38) | (53.00) | ||
Wax | 1 | 13.67 | 2 | 7.25 | 11.12 |
(na) | (na) | (0.50–14.00) | (9.55) | ||
Timber | 3 | 44.85 | 1 | 10.67 | 31.24 |
(27.16–72.97) | (24.62) | (na) | (na) | ||
Thatching materials | 1 | 17.73 | 1 | 6.00 | 13.06 |
(na) | (na) | (na) | (na) | ||
Fuelwood | 4 | 22.18 | 3 | 15.82 | 19.65 |
(0.52–86.29) | (42.74) | (0.18–41.71) | (22.58) | ||
Fodder | 2 | 27.06 | 1 | 17.88 | 23.40 |
(26.07–28.04) | (1.39) | (na) | (na) | ||
Medicine | 1 | 61.67 | 1 | 47.67 | 56.09 |
(na) | (na) | (na) | (na) | ||
Other miscellaneous products | 1 | 1.04 | 1 | 0.42 | 0.79 |
(na) | (na) | (na) | (na) | ||
Total | 945.54 | 362.48 | 713.30 | ||
Regulating and maintenance | |||||
Carbon sequestration | 2 | 2.02 | 1 | 1.80 | 1.93 |
(1.94–2.09) | (0.11) | (na) | (na) | ||
Storm and surges protection | 6 | 239.55 | 3 | 740.10 | 438.92 |
(14.04–705.29) | (248.55) | (17.54–1869.09) | (990.43) | ||
Soil erosion control | 2 | 2.13 | 1 | 39.48 | 17.00 |
(2.09–2.16) | (0.05) | (na) | (na) | ||
Waste assimilation | 1 | 316.67 | 2 | 296.63 | 308.69 |
(na) | (na) | (93.20–500.05) | (287.69) | ||
Gas regulation | 1 | 51.67 | 2 | 36.33 | 45.56 |
(na) | (na) | (6.86–65.79) | (41.67) | ||
Other coastal protection | 1 | 254.49 | 1 | 233.33 | 246.06 |
(na) | (na) | (na) | (na) | ||
Nursery and habitat services | 3 | 339.53 | 1 | 332.14 | 336.59 |
(9.71–805.05) | (415.00) | (na) | (na) | ||
Biodiversity conservation | 2 | 750.27 | 1 | 131.58 | 503.84 |
(652.58–847.95) | (138.15) | (na) | (na) | ||
Pollination | 1 | 33.33 | 1 | 17.34 | 26.96 |
(na) | (na) | (na) | (na) | ||
Pest and disease control | 1 | 11.67 | 1 | 6.45 | 9.59 |
(na) | (na) | (na) | (na) | ||
Gene pool conservation | 2 | 956.88 | 1 | 184.67 | 649.31 |
(644.57–1269.18) | (441.67) | (na) | (na) | ||
Total | 2958.21 | 2019.85 | 2584.46 | ||
Cultural | |||||
Recreation and tourism | 6 | 129.74 | 3 | 184.65 | 161.36 |
(1.77–360.91) | (142.59) | (2.51–526.65) | (307.36) | ||
Aesthetic value and inspiration for culture (landscape, flora, and fauna) | 2 | 0.26 | 1 | 0.28 | 0.27 |
(0.01–0.50) | (0.35) | (na) | (na) | ||
Total | 130.00 | 184.93 | 151.88 |
ES | Bangladesh Sundarbans (SIZ) | Indian Sundarbans (SBR) | Entire Sundarbans | ||
---|---|---|---|---|---|
No. Observation (Range) | Mean (±SD) | No. Observation (Range) | Mean (±SD) | ||
Fish | 8 | 920.70 | 2 | 520.69 | 720.70 |
(259.62–1376.10) | (438.17) | (457.96–583.41) | (88.71) | ||
Shrimp | 3 | 893.06 | 1 | 450.00 | 671.53 |
(259.62–1366.72) | (570.58) | (na) | (na) | ||
Shrimp fry | 4 | 1063.44 | 1 | 675.50 | 869.47 |
(259.62–2216.07) | (955.23) | (na) | (na) | ||
Crab | 8 | 876.42 | 1 | 134.15 | 505.29 |
(48.07–2437.99) | (914.50) | (na) | (na) | ||
Honey | 6 | 446.81 | 1 | 80.91 | 263.86 |
(111.64–1279.30) | (428.03) | (na) | (na) | ||
Wax | 1 | 20.67 | 1 | 14.16 | 17.42 |
(na) | (na) | (na) | (na) | ||
Thatching materials | 8 | 676.26 | 1 | 333.33 | 504.80 |
(61.24–1316.47) | (526.93) | (na) | (na) | ||
Fuelwood | 5 | 195.09 | 1 | 110.00 | 152.55 |
(26.07–589.22) | (240.33) | (na) | (na) | ||
Fodder | 1 | 16.00 | 1 (na) | 9.33 | 12.67 |
(na) | (na) | (na) | |||
Other miscellaneous products | 1 | 6.45 | 1 | 4.67 | 5.56 |
(na) | (na) | (na) | (na) |
Variables | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Coefficients (SD) | Coefficients (SD) | Coefficients (SD) | ||
Constant | 3.37 *** (0.36) | 3.22 *** (0.40) | 2.96 *** (0.33) | |
Types of ES | Regulating and maintenance | 1.32 * (0.52) | −1.72 (1.13) | −1.38 (1.14) |
Cultural | −0.95 (0.73) | −6.64 *** (1.40) | −6.60 *** (1.45) | |
Valuation method | Benefit transfer | 1.30 * (0.53) | 2.96 * (1.12) | 2.83 * (1.14) |
Travel cost | 0.25 (0.75) | 6.18 *** (1.42) | 6.41 *** (1.47) | |
Contingent valuation | −2.69 * (1.19) | (na) | (na) | |
Study area | Study site | −0.58 (0.52) | 1.57 (1.14) | |
Socio-economic | GDP/capita | 1.04 (0.57) | 1.29 * (0.53) | |
Population density/km2 | −0.82 (0.50) | −2.43 * (1.14) | ||
N = 89 | ||||
Adjusted R2 | 0.27 | 0.30 | 0.25 |
Variables | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Coefficients (SD) | Coefficients (SD) | Coefficients (SD) | ||
Constant | 5.52 *** (0.31) | 5.14 *** (40) | 5.14 *** (40) | |
Study area | Study site | −1.16 * (0.51) | −0.56 (0.57) | −− |
Socio-economic | GDP/capita | 1.20 ** (40) | 0.97 * (0.46) | 0.97 * (0.46) |
Population density/km2 | −1.16 * (0.51) | (na) | −0.56 (0.57) | |
N = 56 | ||||
Adjusted R2 | 0.13 | 0.13 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanan, A.H.; Masiero, M.; Pirotti, F. Estimating Economic and Livelihood Values of the World’s Largest Mangrove Forest (Sundarbans): A Meta-Analysis. Forests 2024, 15, 837. https://doi.org/10.3390/f15050837
Kanan AH, Masiero M, Pirotti F. Estimating Economic and Livelihood Values of the World’s Largest Mangrove Forest (Sundarbans): A Meta-Analysis. Forests. 2024; 15(5):837. https://doi.org/10.3390/f15050837
Chicago/Turabian StyleKanan, Akbar Hossain, Mauro Masiero, and Francesco Pirotti. 2024. "Estimating Economic and Livelihood Values of the World’s Largest Mangrove Forest (Sundarbans): A Meta-Analysis" Forests 15, no. 5: 837. https://doi.org/10.3390/f15050837
APA StyleKanan, A. H., Masiero, M., & Pirotti, F. (2024). Estimating Economic and Livelihood Values of the World’s Largest Mangrove Forest (Sundarbans): A Meta-Analysis. Forests, 15(5), 837. https://doi.org/10.3390/f15050837