Predicting the Occurrence of Forest Fire in the Central-South Region of China
Abstract
:1. Introduction
2. Resources and Methods
2.1. The Study Area
2.2. Data Sources
2.3. Method
2.3.1. Kernel Density Estimation
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Standard Deviation Ellipse
2.3.4. Light Gradient Boosting Model
2.3.5. Evaluation Indicators
3. Results
3.1. Forest Fire Kernel Density Analysis in the Central and Southern Regions
3.2. Results of Autocorrelation Analysis on Forest Fire Occurrences in Central and Southern China region
3.3. The Results of Standard Deviation Ellipse for the Forest Fires
3.4. Evaluation of Forecast Precision for Forest Fires in Southern China
3.5. Predicting Monthly Forest Fires in the Central and Southern Regions of China
- (i)
- March–May: This period witnesses elevated forest fire risks in specific regions of Guangdong Province (Meizhou, Chaozhou, Jieyang), the Guangxi Zhuang Autonomous Region (Wuzhou, Guilin, Baise), Hunan Province (Hengyang, Loudi, Yongzhou), Hubei Province (Huangshi, Xianning), and Dongfang City in Hainan Province. With the climate warming yet remaining dry and with minimal rainfall, the dead vegetation from winter becomes prime fuel for fires. Further exacerbating the risk are agricultural practices like burning crop residue, increased tourism activities, and the misuse of fires outdoors.
- (ii)
- June–August: Most of the Central-South region experiences low forest fire risk due to the rainy season, which increases humidity. However, some areas in Guangdong’s Heyuan and Hubei’s Huangshi face high risks, potentially due to uneven rainfall distribution or localized drought conditions.
- (iii)
- September–November: The risk of forest fires increases again in areas like Meizhou, Heyuan, and Shaoguan in Guangdong Province; Nanning, Hezhou, and Yulin in the Guangxi Zhuang Autonomous Region; and Binzhou, Yongzhou, and Hengyang in Hunan Province. As autumn progresses, temperatures drop and humidity decreases, while fallen leaves provide new fuel for fires.
- (iv)
- December–February: This timeframe marks a high-risk phase for areas like Shaoguan, Qingyuan, and Zhaoqing in Guangdong; several regions in Guangxi; and Hengyang, Binzhou, and Yongzhou in Hunan, along with Huangshi in Hubei. Despite cooler weather, the dry atmosphere and lack of moisture elevate fire risks. Dry vegetation and the accumulation of flammable material, along with human activities such as land clearing for agriculture, intensify the potential for fires.
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
- (i)
- Technological Integration: The study highlights the effectiveness of combining GISs with machine learning techniques to unravel the complex patterns of forest fires. This integration proves crucial in enhancing our understanding of the causative factors behind these events, showcasing the power of technological synergy in environmental science
- (ii)
- Model Performance: The Central-South forest fire prediction model stands out for its accuracy and reliability. With robust performance metrics, it effectively forecasts forest fire occurrences and differentiates between fire types, thereby playing a vital role in forest fire forecasting and risk management.
- (iii)
- Seasonal and Regional Variabilities: Our analysis reveals significant seasonal and regional variations in forest fire risk, identifying specific times and locations where risks are heightened. These insights are critical for the strategic allocation of resources and the development of targeted fire prevention protocols, underscoring the need for tailored fire management strategies.
- (iv)
- Holistic Fire Management Approach: The findings advocate for a holistic approach to forest fire management. By integrating state-of-the-art technology with a detailed understanding of the environmental and temporal factors influencing fire risk, the study paves the way for the development of more sophisticated and effective forest fire mitigation strategies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldocchi, D.; Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Chang. Biol. 2019, 25, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Meir, P.; Brown, S. Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1567–1591. [Google Scholar] [CrossRef] [PubMed]
- Pawłowski, A.; Pawłowska, M.; Pawłowski, L. Mitigation of greenhouse gases emissions by management of terrestrial ecosystem. Ecol. Chem. Eng. 2017, 24, 213–221. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, W.-Y.; Pasgaard, M.; Niu, Z.; Wang, L.; Chen, F.; Qin, Y.; Svenning, J.-C. Human fingerprint on structural density of forests globally. Nat. Sustain. 2023, 6, 368–379. [Google Scholar] [CrossRef]
- Keleş, S. An assessment of hydrological functions of forest ecosystems to support sustainable forest management. J. Sustain. For. 2019, 38, 305–326. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Ritter, E.; Dauksta, D. Human–forest relationships: Ancient values in modern perspectives. Environ. Dev. Sustain. 2013, 15, 645–662. [Google Scholar] [CrossRef]
- Melese, S.M. Importance of non-timber forest production in sustainable forest management, and its implication on carbon storage and biodiversity conservation in Ethiopia. Int. J. Biodivers. Conserv. 2016, 8, 269–277. [Google Scholar]
- Ramachandra, T.; Soman, D.; Naik, A.D.; Chandran, M.S. Appraisal of forest ecosystems goods and services: Challenges and opportunities for conservation. J. Biodivers. 2017, 8, 12–33. [Google Scholar] [CrossRef]
- Dhar, T.; Bhatta, B.; Aravindan, S. Forest fire occurrence, distribution and risk mapping using geoinformation technology: A case study in the sub-tropical forest of the Meghalaya, India. Remote Sens. Appl. Soc. Environ. 2023, 29, 100883. [Google Scholar] [CrossRef]
- Zacharakis, I.; Tsihrintzis, V.A. Environmental forest fire danger rating systems and indices around the globe: A review. Land 2023, 12, 194. [Google Scholar] [CrossRef]
- Cetin, M.; Isik Pekkan, Ö.; Ozenen Kavlak, M.; Atmaca, I.; Nasery, S.; Derakhshandeh, M.; Cabuk, S.N. GIS-based forest fire risk determination for Milas district, Turkey. Nat. Hazards 2023, 119, 2299–2320. [Google Scholar] [CrossRef]
- Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecol. 2023, 19, 9. [Google Scholar] [CrossRef]
- Akıncı, H.A.; Akıncı, H. Machine learning based forest fire susceptibility assessment of Manavgat district (Antalya), Turkey. Earth Sci. Inform. 2023, 16, 397–414. [Google Scholar] [CrossRef]
- Singh, K.R.; Neethu, K.; Madhurekaa, K.; Harita, A.; Mohan, P. Parallel SVM model for forest fire prediction. Soft Comput. Lett. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Sevinc, V.; Kucuk, O.; Goltas, M. A Bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol. Manag. 2020, 457, 117723. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, G.; Feng, Z.; Sun, L.; Yang, X.; Ma, T.; Li, X.; Fu, H.; Wang, A. Prediction of forest fire occurrence in China under climate change scenarios. J. For. Res. 2023, 34, 1217–1228. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Keane, R.E.; Zhu, Z.; Wang, Y.; Shan, Y. Current and future patterns of forest fire occurrence in China. Int. J. Wildland Fire 2019, 29, 104–119. [Google Scholar] [CrossRef]
- Preeti, T.; Kanakaraddi, S.; Beelagi, A.; Malagi, S.; Sudi, A. Forest fire prediction using machine learning techniques. In Proceedings of the International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–6. [Google Scholar]
- Si, L.; Shu, L.; Wang, M.; Zhao, F.; Chen, F.; Li, W.; Li, W. Study on forest fire danger prediction in plateau mountainous forest area. Nat. Hazards Res. 2022, 2, 25–32. [Google Scholar] [CrossRef]
- Zigner, K.; Carvalho, L.; Peterson, S.; Fujioka, F.; Duine, G.; Jones, C.; Roberts, D.; Moritz, M. Evaluating the ability of FARSITE to simulate wildfires influenced by extreme, downslope winds in Santa Barbara, California. Fire 2020, 3, 29. [Google Scholar] [CrossRef]
- Dong, X.-M.; Li, Y.; Pan, Y.-L.; Huang, Y.-J.; Cheng, X.-D. Study on urban fire station planning based on fire risk assessment and GIS technology. Procedia Eng. 2018, 211, 124–130. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, M.; Tian, Y.; Quan, Y.; Liu, J. Simulation of forest fire spread based on artificial intelligence. Ecol. Indic. 2022, 136, 108653. [Google Scholar] [CrossRef]
- Mandallaz, D.; Ye, R. Prediction of forest fires with Poisson models. Can. J. For. Res. 1997, 27, 1685–1694. [Google Scholar] [CrossRef]
- Balbi, J.H.; Morandini, F.; Silvani, X.; Filippi, J.B.; Rinieri, F. A physical model for wildland fires. Combust. Flame 2009, 156, 2217–2230. [Google Scholar] [CrossRef]
- Zhou, T.; Ding, L.; Ji, J.; Yu, L.; Wang, Z. Combined estimation of fire perimeters and fuel adjustment factors in FARSITE for forecasting wildland fire propagation. Fire Saf. J. 2020, 116, 103167. [Google Scholar] [CrossRef]
- Phelps, N.; Woolford, D.G. Guidelines for effective evaluation and comparison of wildland fire occurrence prediction models. Int. J. Wildland Fire 2021, 30, 225–240. [Google Scholar] [CrossRef]
- Su, Z.; Zeng, A.; Cai, Q.; Hu, H. Study on prediction model and driving factors of forest fire in Da Hinggan Mountains using Gompit regression method. J. For. Eng. 2019, 4, 135–142. [Google Scholar]
- D’Este, M.; Ganga, A.; Elia, M.; Lovreglio, R.; Giannico, V.; Spano, G.; Colangelo, G.; Lafortezza, R.; Sanesi, G. Modeling fire ignition probability and frequency using Hurdle models: A cross-regional study in Southern Europe. Ecol. Process. 2020, 9, 54. [Google Scholar] [CrossRef]
- Boubeta, M.; Lombardía, M.J.; Marey-Pérez, M.; Morales, D. Poisson mixed models for predicting number of fires. Int. J. Wildland Fire 2019, 28, 237–253. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, X.; Zhao, Z.; Jiang, X. Dynamic Fire Risk Classification Prediction of Stadiums: Multi-Dimensional Machine Learning Analysis Based on Intelligent Perception. Appl. Sci. 2022, 12, 6607. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Z.; Feng, Z.; Sun, L.; Yang, X.; Zheng, J.; Ma, T. Assessment of China’s forest fire occurrence with deep learning, geographic information and multisource data. J. For. Res. 2023, 34, 963–976. [Google Scholar] [CrossRef]
- Arif, M.; Alghamdi, K.; Sahel, S.; Alosaimi, S.; Alsahaft, M.; Alharthi, M.; Arif, M. Role of machine learning algorithms in forest fire management: A literature review. Robot. Autom 2021, 5, 212–226. [Google Scholar]
- Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Eslami, R.; Azarnoush, M.; Kialashki, A.; Kazemzadeh, F. GIS-based forest fire susceptibility assessment by random forest, artificial neural network and logistic regression methods. J. Trop. For. Sci. 2021, 33, 173–184. [Google Scholar] [CrossRef]
- Tang, X.; Machimura, T.; Li, J.; Liu, W.; Hong, H. A novel optimized repeatedly random undersampling for selecting negative samples: A case study in an SVM-based forest fire susceptibility assessment. J. Environ. Manag. 2020, 271, 111014. [Google Scholar] [CrossRef] [PubMed]
- Ananthi, J.; Sengottaiyan, N.; Anbukaruppusamy, S.; Upreti, K.; Dubey, A.K. Forest fire prediction using IoT and deep learning. Int. J. Adv. Technol. Eng. Explor. 2022, 9, 246–256. [Google Scholar]
- Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest fire occurrence prediction in China based on machine learning methods. Remote Sens. 2022, 14, 5546. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T. Application of improved LightGBM model in blood glucose prediction. Appl. Sci. 2020, 10, 3227. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, G.; Chen, Q.; Zhang, M.; Zhu, H.; Rehman, M.U. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. IEEE Access 2019, 7, 28309–28318. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Li, Y.; Li, G. Research on forest fire prediction in Yunnan province based on LightGBM and SHAP. Fire Sci. Technol. 2023, 42, 1567–1571. [Google Scholar]
- Tian, L.; Feng, L.; Yang, L.; Guo, Y. Stock price prediction based on LSTM and LightGBM hybrid model. J. Supercomput. 2022, 78, 11768–11793. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Yang, H.; Tian, M. Predicting Coronary Heart Disease Using an Improved LightGBM Model: Performance Analysis and Comparison. IEEE Access 2023, 11, 23366–23380. [Google Scholar] [CrossRef]
- Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758. [Google Scholar] [CrossRef]
- Alzamzami, F.; Hoda, M.; El Saddik, A. Light gradient boosting machine for general sentiment classification on short texts: A comparative evaluation. IEEE Access 2020, 8, 101840–101858. [Google Scholar] [CrossRef]
- Wang, H. GDP of 31 provinces in the first half of the year: Guangdong pulls ahead, Anhui continues to overtake Shanghai. China Econ. Wkly. (Newsp.) 2021, 15, 54–57. [Google Scholar]
- Ciesielski, M.; Balazy, R.; Borkowski, B.; Szczesny, W.; Zasada, M.; Kaczmarowski, J.; Kwiatkowski, M.; Szczygiel, R.; Milanovic, S. Contribution of anthropogenic, vegetation, and topographic features to forest fire occurrence in Poland. Iforest-Biogeosciences For. 2022, 15, 307. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21 st century. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 847–859. [Google Scholar] [CrossRef]
- De Rigo, D.; Libertà, G.; Durrant, T.H.; Vivancos, T.A.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty. Ph.D. Thesis, Publications Office of the European Union, Luxembourg, 2017. [Google Scholar]
- Tian, X.-R.; Shu, L.-F.; Zhao, F.-J.; Wang, M.-Y.; McRae, D. Future impacts of climate change on forest fire danger in northeastern China. J. For. Res. 2011, 22, 437–446. [Google Scholar] [CrossRef]
- Chéret, V.; Denux, J.-P. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GIScience Remote Sens. 2011, 48, 171–194. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of the western US. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. [Google Scholar]
- Laschi, A.; Foderi, C.; Fabiano, F.; Neri, F.; Cambi, M.; Mariotti, B.; Marchi, E. Forest road planning, construction and maintenance to improve forest fire fighting: A review. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2019, 40, 207–219. [Google Scholar]
- Kim, S.J.; Lim, C.-H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.-K. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, B.; Zhao, Z. Study on the layout method of coal mine ventilation monitoring points under linear constrained kernel density. Sci. Surv. Mapp. 2023, 48, 63–71+93. [Google Scholar]
- Jiang, H.; Li, C.; Feng, M.; Luo, M.; Ma, X. Analysis on probabilistic seismic damage characteristics of dry joint prefabricated bridge pier based on kernel density estimation. J. Southeast Univ. (Nat. Sci. Ed.) 2021, 51, 566–574. [Google Scholar]
- Zhou, Q. Spatial Patterns and Drivers of Forest Fire Occurrence in the Daxing’an Mountains of Inner Mongolia. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2023. [Google Scholar]
- Zhang, W.; Wang, J.; Wang, Q.; Zhang, X.; Cao, H.; Long, T. Analyses on spatial and temporal characteristies of forest fires in Yunnan Province based on MODIS from 2001 to 2020. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2023, 47, 73–79. [Google Scholar]
- Getis, A. A history of the concept of spatial autocorrelation: A geographer’s perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Lv, M.; Zhang, H.; He, G.; Zhang, X.; Liu, Y. Dynamic evolution and driving factors of water conservation service function in the Yellow River Basin. Acta Ecol. Sin. 2024, 7, 1–11. [Google Scholar]
- Gou, A.; Li, W.; Wang, J. Spatiotemporal Correlation Between Green Space Landscape Pattern and PM2.5 Concentration in Chongqing City, China. J. Earth Sci. Environ. 2024, 46, 25–37. [Google Scholar]
- Yu, W.; Chen, Y.; Fang, F.; Zhang, J.; Li, Z.; Zhao, L. An analysis of grassland spatial distribution and driving forces of patterns of change in grassland distribution in Guizhou Province from 1980 to 2020. Acta Prataculturae Sin. 2024, 33, 1–18. [Google Scholar]
- Sun, Y.; Xu, M.; Wang, X. Spatial-temporal Evolution of Carbon Storage and Spatial Autocorrelation Analysis in Zhengzhou City Based on InVEST-PLUS Model. Bull. Soil Water Conserv. 2023, 43, 374–384. [Google Scholar]
- Moore, T.W.; Mcguire, M.P. Using the standard deviational ellipse to document changes to the spatial dispersion of seasonal tornado activity in the United States. NPJ Clim. Atmos. Sci. 2019, 21, 21. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, L. Spatial evolution and differences in driving factors of China’s tourism dual circulation market efficiency. Arid. Land Geogr. 2024, 1–12. [Google Scholar]
- Hu, J.; Yu, J.; Zhang, C. A study on the spatial distribution of China’s aid to Africa based on Standard Deviational Ellipse. World Reg. Stud. 2024, 33, 79. [Google Scholar]
- Li, Y.; Peng, S. Characterisation of industrial agglomeration in the Yangtze River Delta region based on standard deviation ellipses. Stat. Decis. 2024, 40, 136–141. [Google Scholar]
- Guo, J.; Yun, S.; Meng, Y.; He, N.; Ye, D.; Zhao, Z.; Jia, L.; Yang, L. Prediction of heating and cooling loads based on light gradient boosting machine algorithms. Build. Environ. 2023, 236, 110252. [Google Scholar] [CrossRef]
- Chen, T.; Xu, J.; Ying, H.; Chen, X.; Feng, R.; Fang, X.; Gao, H.; Wu, J. Prediction of extubation failure for intensive care unit patients using light gradient boosting machine. IEEE Access 2019, 7, 150960–150968. [Google Scholar] [CrossRef]
- Cui, Z.; Qing, X.; Chai, H.; Yang, S.; Zhu, Y.; Wang, F. Real-time rainfall-runoff prediction using light gradient boosting machine coupled with singular spectrum analysis. J. Hydrol. 2021, 603, 127124. [Google Scholar] [CrossRef]
- He, R.; Lu, H.; Jin, Z.; Qin, Y.; Yang, H.; Liu, Z.; Yang, G.; Xu, J.; Gong, X.; Zhang, Q. Construction of forest fire prediction model and driving factors analysis based on random forests algorithm in Southwest China. Acta Ecol. Sin. 2023, 43, 9356–9370. [Google Scholar]
- Yuan, J.; Cao, J.; He, S.; Hu, J. The Design and Research of Air-space-ground Forest Fire Monitoring and Warning System. China Emerg. Rescue 2023, 6, 32–35+53. [Google Scholar]
- Farfán, M.; Dominguez, C.; Espinoza, A.; Jaramillo, A.; Alcántara, C.; Maldonado, V.; Tovar, I.; Flamenco, A. Forest fire probability under ENSO conditions in a semi-arid region: A case study in Guanajuato. Environ. Monit. Assess. 2021, 193, 684. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, X.; Yao, Q.; Fang, K. ENSO modulates interaction between forest insect and fire disturbances in China. Nat. Hazards Res. 2022, 22, 138–146. [Google Scholar] [CrossRef]
- Cordero, R.R.; Feron, S.; Damiani, A.; Carrasco, J.; Karas, C.; Wang, C.; Kraamwinkel, C.T.; Beaulieu, A. Extreme fire weather in Chile driven by climate change and El Niño–Southern Oscillation (ENSO). Sci. Rep. 2024, 14, 1974. [Google Scholar] [CrossRef]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 77, 529–534. [Google Scholar] [CrossRef]
- Krider, E.; Noggle, R.; Pifer, A.; Vance, D. Lightning direction-finding systems for forest fire detection. Bull. Am. Meteorol. Soc. 1980, 61, 980–986. [Google Scholar] [CrossRef]
- Arndt, N.; Vacik, H.; Koch, V.; Arpaci, A.; Gossow, H. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria. Iforest-Biogeosciences For. 2013, 66, 315. [Google Scholar] [CrossRef]
- Xiong, Q.; Luo, X.; Liang, P.; Xiao, Y.; Xiao, Q.; Sun, H.; Pan, K.; Wang, L.; Li, L.; Pang, X. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For. Ecol. Manag. 2020, 474, 118381. [Google Scholar] [CrossRef]
Classification | Data | Resolution | Source | References |
---|---|---|---|---|
Topographic | Slope/Elevation/Slope direction | 1 km | https://www.resdc.cn (Accessed on 5 May 2023) | [33,48] |
Climate | Average daily surface temperature/average daily relative humidity/daily maximum surface temperature, etc. | - | https://data.cma.cn (Accessed on 1 May 2023) | [18,49,50,51] |
Vegetation | Fractional vegetation cover | - | https://www.resdc.cn (Accessed on 2 May 2023) | [52,53] |
Social and human factors | Distance from road/Distance from residential area/Gross Domestic Product/Population | 1:100,000,1:100,000, 1 km, 1 km, | https://www.resdc.cn (Accessed on 8 May 2023) | [33,54,55] |
Year | XStdDist (km) | YStdDist (km) | Shape_Leng (km) | Shape_Area (km2) | Oblateness | Rotation |
---|---|---|---|---|---|---|
2001 | 372.534 | 268.997 | 2028.542 | 314,802.413 | 1.385 | 45.072 |
2002 | 388.413 | 296.779 | 2162.196 | 362,120.052 | 1.309 | 56.898 |
2003 | 373.526 | 258.979 | 2003.366 | 303,885.299 | 1.442 | 55.733 |
2004 | 381.818 | 285.181 | 2106.417 | 342,059.692 | 1.339 | 60.849 |
2005 | 436.113 | 317.943 | 2383.464 | 435,584.544 | 1.372 | 45.146 |
2006 | 376.658 | 271.229 | 2048.857 | 320,927.371 | 1.389 | 73.757 |
2007 | 370.653 | 286.349 | 2072.507 | 333,418.207 | 1.294 | 48.246 |
2008 | 303.707 | 380.991 | 2157.867 | 363,492.458 | 0.797 | 35.858 |
2009 | 345.373 | 287.833 | 1993.357 | 312,288.287 | 1.200 | 62.898 |
2010 | 491.176 | 339.273 | 2630.753 | 523,491.125 | 1.448 | 60.522 |
2011 | 348.712 | 398.867 | 2351.203 | 436,941.327 | 0.874 | 35.829 |
2012 | 297.208 | 422.206 | 2277.155 | 394,192.353 | 0.704 | 24.360 |
2013 | 308.922 | 461.787 | 2445.076 | 448,137.993 | 0.669 | 13.721 |
2014 | 300.586 | 424.630 | 2294.988 | 400,961.846 | 0.708 | 18.729 |
2015 | 415.751 | 283.334 | 2215.941 | 370,044.820 | 1.467 | 67.391 |
2016 | 317.519 | 470.922 | 2500.411 | 469,722.244 | 0.674 | 25.864 |
2017 | 275.339 | 369.203 | 2035.607 | 319,343.775 | 0.746 | 42.487 |
2018 | 431.219 | 305.251 | 2330.600 | 413,502.468 | 1.413 | 46.869 |
2019 | 276.814 | 562.527 | 2713.722 | 489,146.723 | 0.492 | 21.242 |
Timeframe | Province | Regions/Cities |
---|---|---|
March–May | Guangdong, Guangxi Zhuang Autonomous Region, Hunan, Hubei, Hainan | Meizhou, Chaozhou, Jieyang Wuzhou, Guilin, Baise Hengyang, Loudi, Yongzhou, Huangshi, Xianning, Dongfang |
June–August | Guangdong, Hubei | Heyuan, Huangshi |
September–November | Guangdong, Guangxi Zhuang Autonomous Region, Hunan | Meizhou, Heyuan, Shaoguan, Nanning, Hezhou, Yulin, Binzhou, Yongzhou, Hengyang |
December–February | Guangdong, Guangxi, Hunan, Hubei | Shaoguan, Qingyuan, Zhaoqing Several regions Hengyang, Binzhou, Yongzhou, Huangshi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, Q.; Han, X.; Vandansambuu, B.; Bao, Y.; Gantumur, B.; Bayarsaikhan, S.; Chantsal, N.; Sun, H. Predicting the Occurrence of Forest Fire in the Central-South Region of China. Forests 2024, 15, 844. https://doi.org/10.3390/f15050844
Hai Q, Han X, Vandansambuu B, Bao Y, Gantumur B, Bayarsaikhan S, Chantsal N, Sun H. Predicting the Occurrence of Forest Fire in the Central-South Region of China. Forests. 2024; 15(5):844. https://doi.org/10.3390/f15050844
Chicago/Turabian StyleHai, Quansheng, Xiufeng Han, Battsengel Vandansambuu, Yuhai Bao, Byambakhuu Gantumur, Sainbuyan Bayarsaikhan, Narantsetseg Chantsal, and Hailian Sun. 2024. "Predicting the Occurrence of Forest Fire in the Central-South Region of China" Forests 15, no. 5: 844. https://doi.org/10.3390/f15050844
APA StyleHai, Q., Han, X., Vandansambuu, B., Bao, Y., Gantumur, B., Bayarsaikhan, S., Chantsal, N., & Sun, H. (2024). Predicting the Occurrence of Forest Fire in the Central-South Region of China. Forests, 15(5), 844. https://doi.org/10.3390/f15050844